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History of Mathematics: Lecture 1

Syllabus:
Bureaucracy

■ Program & texts
■ Examination
■ Timing
■ Questions

Let’s start!
■ Methodology
■ Prehistory



Introduction

This course offers a comprehensive exploration of the evolution of
mathematical thought and practice.
The first part provides a concise overview of the development of Mathematics
from prehistory to the close of the 20th century, highlighting major
advancements and shifts in mathematical understanding.
The second and third parts are monographic, allowing for a deeper
investigation into specific areas of mathematical history. The themes and
instructors for these two parts may vary from year to year, reflecting current
research and scholarly interests.
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Program

The program of the whole course is then
1. 32 hours: General part (these slides)
2. 16 hours: Monographic part A
3. 24 hours: Monographic part B

Since the monographic parts vary from year to year, their programs will be
detailed at their beginnings.
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Program

The program of the general part illustrates the most significant periods from
the mathematical point of view:
1. Egyptian and Mesopotamian Mathematics
2. Greek Mathematics
3. Ancient Asian Mathematics
4. The Islamic Golden Age
5. Middle Ages and Renaissance
6. Mathematics in the 17th century: The dawn of modernity
7. Mathematics in the 18th century: The age of Euler
8. Mathematics in the 19th century: The age of revolution
9. The 20th century in Mathematics
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Texts

All the slides are available at the course website:

https://marcobenini.me/lectures/history-of-mathematics/

Also, at the end of each lesson, references to resources which may be of
interest to those interested in learning more, will be provided. While the
content of the slides is mandatory, looking at the references is optional.

■ Carl B. Boyer , A History of Mathematics, John Wiley & Sons (1968)
■ Morris Kline, Mathematical Thought from Ancient to Modern Times,

Oxford University Press (1972)
are the official reference texts for the first part of the course.
Furthermore, links to the original sources are available on the course web
page, as well as other relevant material.
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Examination

There are two ways to take the examination:
1. Writing and discussing a relation
2. Taking three partial assignments

If the student chooses the first way, the examination consists of writing a
paper on a topic agreed upon with one of the course instructors, chosen from
those covered during the teaching period.
The paper will be assessed during an oral discussion considering its historical
accuracy, the ability to correlate the topic with its developmental context and
with other related areas of mathematics, and the quality of its explanation,
particularly for a technical but non-specialist audience, and for an interested
but non-technical audience.
Alternatively, at the student’s choice, three intermediate written tests will be
conducted during the course period, aimed at verifying the learning and
comprehension of the three parts into which the course is divided.
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Timing

The schedule of lessons is fixed and not modifiable.
Please note that lessons typically begin at the official start time and conclude
15 minutes before the official end time, with no breaks within.
Intermediate assignments will be integrated into the course schedule.
Students will have the flexibility to choose a date for these assignments after
completing the relevant section of the course.
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Questions

Questions are welcome. Please, do not hesitate to ask questions when you do
not understand something during a lesson.
Questions could be asked also before the start of a lesson, or after the end.
Another possibility is to ask questions by email: in case write at the address
marco.benini@uninsubria.it specifying your name, the course, and the
question. Please, use your official email from uninsubria.
There are no office hours in this course: students have to fix an appointment.
Please, do so only if you really think there is no other way to solve your
problem: although I am usually available during the course term, when I am
not teaching it is often the case that I am not in University, so use this
opportunity as your last resource.
Online appointments are always possible and encouraged.
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Let’s start!
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The history of mathematics

Today’s plan:
■ Course aims and approach:

Understanding the unique perspective of this course
■ Sources in the history of Mathematics:

How do we know what we know?
■ Acknowledging the narrative focus:

Understanding the course’s scope and limitations
■ Major eras in Mathematics:

A chronological roadmap
■ Mathematics in pre-history:

Looking back before written records
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Course aims and approach

Our goal: To understand how and why mathematical concepts evolved,
connecting past breakthroughs to modern understanding.
Navigating the evolution of mathematical ideas:

■ This course offers a journey through the history of Mathematics,
specifically designed for mathematicians

( 12 )



Course aims and approach

■ It is not intended as a general historical survey, but rather a focused
exploration with a particular emphasis:

□ Highlighting the groundbreaking results of each period and their
revolutionary impact

□ Providing concrete references to key achievements, foundational texts,
and the researchers behind them

□ Whenever possible, drawing direct support from primary sources to
convey the authentic mathematical voice of the time

□ An illustration style that emphasises what is important within a
continuous line of narration, rather than an exhaustive list

□ By design, the course is not exhaustive; it focuses on depth and insight
over comprehensive coverage of every detail

□ We prioritise a sound and coherent narrative that illuminates the
development of mathematical thought over a purely chronological or
encyclopedic description
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Sources in the history of mathematics

Where does our knowledge come from?
The historian’s challenge: Reconstructing the past

■ Unlike mathematics itself, history relies heavily on evidence
■ For the history of mathematics, this evidence isn’t always straightforward
■ We often piece together fragments from diverse origins
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Sources in the history of mathematics

Primary sources: The voices of the past
■ Original mathematical texts: Treatises, letters, notebooks, ancient

tablets (e.g., Babylonian clay tablets, Egyptian papyri, Greek manuscripts)
■ Provide direct insight into how mathematicians of the time thought,

formulated problems, and presented their solutions
■ Often challenging to interpret due to language, notation differences, and

lost context
■ Archaeological evidence: Tools, structures, artefacts that suggest

mathematical understanding (e.g., bone carvings for counting)
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Sources in the history of mathematics

Secondary sources: Interpretations and syntheses
■ Historical studies and commentaries: Books and articles written by

modern historians of mathematics
■ These works analyse, translate, and contextualise primary sources, often

providing critical perspectives and identifying broader trends
■ Crucial for understanding complex developments, but always subject to

scholarly debate and new discoveries
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Sources in the history of mathematics

Challenges in interpretation:
■ Lost knowledge: Many texts are lost, damaged, or incomplete
■ Translation difficulties: Nuances of ancient languages and specialised

terminology can be hard to render precisely
■ Anachronism: The danger of viewing past ideas through modern lenses,

misinterpreting their original meaning or significance.
We strive to avoid this
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A western-centric journey

The scope of our exploration:
■ This course, while aiming for a broad historical understanding, will

primarily follow a Western-centric narrative of mathematical
development

■ This means our journey will largely trace the lineage of mathematical
ideas from ancient Greece through the European Renaissance, and into
modern Western academia
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A western-centric journey

Why this focus?
■ Academic tradition: This aligns with the historical development of

university curricula in which the course itself is situated
■ Source availability: While growing, readily accessible primary and robust

secondary sources for a comprehensive global history are still more
concentrated in the Western tradition for a single course

■ Direct lineage: The mathematics taught in most contemporary Western
curricula (and thus relevant to “mathematics for mathematicians”)
directly descends from this specific historical trajectory
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A western-centric journey

■ It is absolutely vital to acknowledge that mathematical thought is a
universal human endeavour with vibrant, independent, and profoundly
influential traditions across the globe

■ Significant contributions arose from:
□ Ancient civilisations: Egypt, Mesopotamia (as we’ll see)
□ China: Independent development of algebra, geometry, number theory
□ India: Place-value system, zero, foundations of trigonometry and calculus
□ The Islamic Golden Age: Preservation and advancement of Greek and

Indian knowledge, development of algebra, algorithms, and non-Euclidean
geometry precursors

□ Mesoamerica: Sophisticated calendar systems and numerical notation
■ We will touch upon these as they inform or intersect with the Western line

of development, but a full global history would require dedicated courses
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A western-centric journey

We will speak about ancient civilisations; we will sketch Indian and Chinese
contributions, and we will treat the influence of Islamic mathematics on the
European scene
We will sketch a bit the Japanese contribution: the reason for this is that
Japanese mathematics is a somewhat unique case of an advanced but still
independent mathematical tradition.
A necessary limitation, not a value judgement: Our focus is a pragmatic
choice for this course’s scope. It in no way diminishes the immense value and
ingenuity of mathematical traditions worldwide, which represent humanity’s
collective intellectual heritage
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Major eras in the history of mathematics

Dividing the past: A conventional periodisation
■ History is continuous, but periodisation helps us organise and understand

major shifts in mathematical thought and methodology
■ These periods are broad and can overlap, especially when considering

global developments
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Major eras in the history of mathematics

A chronological roadmap

1. Pre-historic Mathematics (before ~3000 BCE):
■ Early concepts of number, counting, basic measurement, recognition of

patterns, fundamental figures
■ Evidence from archaeological discoveries (e.g., tally sticks)

2. Ancient Mathematics (~3000 BCE – 600 CE):
■ Mesopotamia & Egypt: Practical arithmetic, geometry, early algebra

(solving equations)
■ Greece: Rise of deductive reasoning, axiomatic systems (Euclid), rigorous

geometry, number theory (Pythagoreans, Diophantus), early calculus
ideas (Archimedes)

■ China & India (Contemporary developments): Independent
advancements in numeration (place value, zero), algebra, trigonometry
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Major eras in the history of mathematics

3. Medieval Mathematics (~600 CE – 1400 CE):
■ Islamic Golden Age: Preservation of Greek and Indian texts, major

advancements in algebra, trigonometry, algorithms, number theory, and
early analytical geometry. Transmission to Europe

■ Europe: Limited until late period, re-engagement with classical texts via
Islamic scholars

4. Renaissance and early modern Mathematics (~1400 CE – 1700 CE):
■ Revival of European mathematics. Solutions to cubic/quartic equations,

logarithms, analytic geometry (Descartes, Fermat), foundations of
probability theory

■ Calculus: Independent development by Newton and Leibniz

( 24 )



Major eras in the history of mathematics

5. Modern Mathematics (~1700 CE – 20th century):
■ Extensive development of calculus, mechanics, analysis (Euler, Lagrange,

Laplace) and raise of structural problems
■ 19th century: Rigorisation of analysis, abstract algebra, non-Euclidean

geometries, foundations of set theory

6. Contemporary Mathematics (20th century – present):
■ Abstraction, axiomatisation, foundational crisis, mathematical logic,

computability, topology, functional analysis
■ Explosion of new fields, interdisciplinary connections (physics, computer

science), grand problem-solving
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Mathematics before written records

The dawn of mathematical thought: A challenge for historians
■ Our understanding of “pre-historic” mathematics relies on archaeological

and anthropological evidence, as written records did not yet exist
■ This period spans from the earliest human cognitive development (tens of

thousands of years ago) up to the emergence of complex civilisations with
writing systems (~3000 BCE)

■ While we cannot speak of formal “mathematics”, we can infer the
development of fundamental mathematical concepts
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Mathematics before written records

Evidence of early mathematical thinking:
■ Counting and numerosity:

□ Evidence of tally marks on bones (e.g., the Ishango Bone, ~20,000 BCE),
suggesting counting and perhaps prime number awareness

□ One-to-one correspondence for comparison (e.g., stones for sheep)
□ Development of number words and early counting systems

The Ishango bone (~20,000 BCE)
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Mathematics before written records

Evidence of early mathematical thinking:
■ Measurement:

□ Basic understanding of length, weight, volume, and time (cycles of the
moon and seasons) for practical needs (building, trading, agriculture)

□ Use of body parts (cubit, foot) as early units
■ Geometry and spatial reasoning:

□ Recognition of basic geometric patterns in nature (spirals, symmetries)
□ Practical geometry for shelter construction, tool making, and early art
□ Understanding of spatial relationships, balance, and proportions
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Mathematics before written records

The emergence of abstract concepts:
■ The crucial step from “three deer” to the abstract concept of “three”
■ This abstraction allowed for the development of counting systems

independent of the objects being counted

From concrete needs to abstract ideas: Pre-historic mathematical activity,
driven by practical necessity, laid the cognitive groundwork for the formal
systems that would emerge with the advent of writing and complex societies,
representing the fundamental human impulse to quantify, order, and
understand the world
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References

Three classical references are:
■ Carl B. Boyer , A History of Mathematics, John Wiley & Sons (1968)
■ Morris Kline, Mathematical Thought from Ancient to Modern Times,

Oxford University Press (1972)
■ Dirk J. Struik A Concise History of Mathematics, Fourth revised edition,

Dover Publications (1987)
The course is based on them
Also, very good references to authors and ideas can be found in the Stanford
Encyclopedia of Philosophy: https://plato.stanford.edu/

( 30 )



History of Mathematics: Lecture 2

Syllabus:
Egyptian and Mesopotamian Mathematics



Egyptian mathematics

Mathematics was an essential tool for practical
needs such as:

■ Constructions: pyramids, temples, obelisks
■ Administration: taxes, land surveying, labour

management
■ Astronomy and calendars

Our primary understanding comes from:
■ the Moscow papyrus (∼1800 BCE):

□ a collection of 25 problems, including the
volume of a truncated pyramid

■ the Rhind papyrus (∼1650 BCE):
□ a collection of 85 problems, including

arithmetic, geometry, and algebra
We will primarily focus on the Rhind papyrus

(fragment of the Moscow papyrus)
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Key periods and mathematical relevance

■ Early Dynastic Period (∼3100–2686 BCE)
□ Early development of writing, calendars, and

basic administration
■ Old Kingdom (∼2686–2181 BCE)

□ Period of pyramid building (e.g., Giza); implies
advanced surveying and geometry

■ Middle Kingdom (∼2055–1650 BCE)
□ Era of the Moscow papyrus (∼1800 BCE)
□ Flourishing of administrative systems and early

mathematical texts
■ Second Intermediate Period (∼1650–1550 BCE)

□ Period of the Rhind papyrus (∼1650 BCE)
■ New Kingdom (∼1550–1070 BCE)

□ Continued use of mathematical practices;
building of grand temples
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Egyptian numerals

By Florian Cajori, A History of Mathematical Notations (1928)

Two numbering systems:
■ Hieroglyphic numerals: the formal

way of writing, for ceremonial use
■ Hieratic script: it was the

everyday script for scribes, more
cursive

Both are additive systems
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Egyptian numerals

Hieroglyphic numerals:
1 a single stroke
10 a hobble for cattle
100 a coil of rope

1,000 a lotus plant
10,000 a finger
100,000 a tadpole or frog

1,000,000 a god

453 4,622

1,333,330

Photographs by Cynthia J. Huffman (Pittsburgh State University)
from An Ancient Egyptian Mathematical Photo Album,

Mathematical Association of America
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Egyptian arithmetic
The fundamental operation is addition.
Multiplication was computed by duplication:
to calculate a×b, duplicate b until the
number of duplications becomes greater or
equal than a. Thena a×b is the sum of those
duplications whose sum gives a.

aWe tried to write the rule as found in the
translation of the Rhind papyrus.
Admittedly, the example is much clearer.

23×17

1 17
2 34
4 68
8 136
16 272

Since 23= 16+4+2+1,
23×17= 272+68+34+17= 391
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Egyptian arithmetic
The fundamental operation is addition.
Multiplication was computed by duplication:
to calculate a×b, duplicate b until the
number of duplications becomes greater or
equal than a. Thena a×b is the sum of those
duplications whose sum gives a.

aWe tried to write the rule as found in the
translation of the Rhind papyrus.
Admittedly, the example is much clearer.

23×17

1 17
2 34
4 68
8 136
16 272

Since 23= 16+4+2+1,
23×17= 272+68+34+17= 391

Why? In contemporary terms, the binary representation of 23 is 10111 thus
23×17= (24 ×1+22 ×1+21 ×1+20 ×1)×17

= 24 ×17+22 ×17+21 ×17+20 ×17
= 272+68+34+17= 391 .
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Egyptian arithmetic

Division is reverse multiplication: consider 234/13
13 1
26 2
52 4
104 8
208 16

234= 208+26 thus
234/13= 16+2= 18

234= 208+26
= 24 ×13+21 ×13
= (24 +21)×13
= (16+2)×13
= 18×13

Hence 234/13= 18.

When a division resulted in a remainder, representing “parts of a whole” was
crucial for practical problems like sharing goods or dividing land.
Since the Egyptians did not use common fractions like 3/5, they developed a
unique system: Unit fractions.
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Unit fractions

What are unit fractions?
■ A fraction of the form 1/n, where n is a positive integer
■ Represented by placing a symbol resembling an open mouth (hieroglyph

for ‘part’) over the numeral. E.g. 1/3 is

■ The only exception was 2/3, which had its own special symbol:

...≡
( 38 )



Unit fractions

Why unit fractions?
■ Egyptians did not use fractions like 3/4 or 5/7 as single entities
■ Any non-unit fraction was expressed as a sum of distinct unit fractions

□ e.g., 3/5 would be written as 1/2+1/10
□ The decomposition required all denominators to be distinct

■ This system allowed for precise division and sharing of resources (e.g.,
loaves of bread, grain)

(A fragment of the Rhind papyrus)
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Unit fractions

Example 2.1. Sharing loaves (Rhind papyrus, problem 3)
■ Problem: Divide 6 loaves equally among 10 men

(Modern: 6/10= 3/5 per man)
■ Egyptian solution: Each man receives 1/2+1/10 of a loaf

□ Check: 1/2+1/10= 5/10+1/10= 6/10
■ This approach made sense for physical division:

□ Give each man half a loaf. (5 loaves used)
□ Divide the remaining 1 loaf among 10 men, giving 1/10 to each

The 2/n Table (Rhind papyrus)
■ To aid in these decompositions, the Rhind papyrus begins with a large

table listing the unit fraction expansions for 2/n for odd n from 5 to 101
■ Example: 2/7= 1/4+1/28
■ The methods for finding these decompositions are still debated, but show

considerable ingenuity
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Algebraic equations

Example 2.2. (Rhind papyrus, problem 24)
■ Problem: A quantity (aha) and its 1/7 added together become 19.

What is the quantity? (Modern: find x such that x + 1
7x = 19)
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Algebraic equations

Example 2.2. (Rhind papyrus, problem 24)
■ Problem: A quantity (aha) and its 1/7 added together become 19.

What is the quantity? (Modern: find x such that x + 1
7x = 19)

Pose x = 7. Then

1 7
1/7 1

8

False position method.
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Algebraic equations

Example 2.2. (Rhind papyrus, problem 24)
■ Problem: A quantity (aha) and its 1/7 added together become 19.

What is the quantity? (Modern: find x such that x + 1
7x = 19)

Pose x = 7. Then

1 7
1/7 1

8

False position method.

Calculate 19/8:

1 8
2 16 ∗

1/2 4
1/4 2 ∗
1/8 1 ∗

2+ 1
4 + 1

8 19

Thus 1
7x = 2+ 1

4 + 1
8 .
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Algebraic equations

Example 2.2. (Rhind papyrus, problem 24)
■ Problem: A quantity (aha) and its 1/7 added together become 19.

What is the quantity? (Modern: find x such that x + 1
7x = 19)

Pose x = 7. Then

1 7
1/7 1

8

False position method.

Calculate 19/8:

1 8
2 16 ∗

1/2 4
1/4 2 ∗
1/8 1 ∗

2+ 1
4 + 1

8 19

Thus 1
7x = 2+ 1

4 + 1
8 .

Indeed,

1 2+ 1
4 + 1

8
2 4+ 1

2 + 1
4

4 9+ 1
2

7 16+ 1
2 + 1

8
1/7 2+ 1

4 + 1
8

19

Hence x = 16+ 1
2 + 1

8 .

( 41 )



Geometry

Example 2.3. (Rhind papyrus, problem 48)
■ Problem: Compare the area of a circle and of its circumscribing square.
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Geometry

Example 2.3. (Rhind papyrus, problem 48)
■ Problem: Compare the area of a circle and of its circumscribing square.

Egyptian method for circle area
Rule: Take 1/9 off the diameter, and
square the result.
For a circle of diameter D = 9:

Areacircle =
µ
D− D

9

¶2
= 64

Ahmes found the area of the
circumscribing square of side 9:

Areasquare = 92 = 81
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Geometry

Example 2.3. (Rhind papyrus, problem 48)
■ Problem: Compare the area of a circle and of its circumscribing square.

Egyptian method for circle area
Rule: Take 1/9 off the diameter, and
square the result.
For a circle of diameter D = 9:

Areacircle =
µ
D− D

9

¶2
= 64

Ahmes found the area of the
circumscribing square of side 9:

Areasquare = 92 = 81

Deriving the implied π

In modern terms
Areacircle =πr2

64=π

µ9
2

¶2

π= 64×4
81

π= 256
81 ≈ 3.16 . . .
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Geometry

Example 2.3. (Rhind papyrus, problem 48)
■ Problem: Compare the area of a circle and of its circumscribing square.

Egyptian method for circle area
Rule: Take 1/9 off the diameter, and
square the result.
For a circle of diameter D = 9:

Areacircle =
µ
D− D

9

¶2
= 64

Ahmes found the area of the
circumscribing square of side 9:

Areasquare = 92 = 81

Deriving the implied π

In modern terms
Areacircle =πr2

64=π

µ9
2

¶2

π= 64×4
81

π= 256
81 ≈ 3.16 . . .

A remarkably good approximation: This value of π≈ 3.16 is surprisingly
accurate for its time (compare to Archimedes’ later bounds, for example)

( 42 )



Geometry

Example 2.4. (Moscow papyrus, problem 14)
■ Problem: The volume of a truncated pyramid (frustum)

Diagram of a truncated pyramid

■ This corresponds to:
□ Height (h) = 6 units
□ Side of lower base (a) = 4 units
□ Side of upper base (b) = 2 units
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Geometry

Example 2.4. (Moscow papyrus, problem 14)
■ Problem: The volume of a truncated pyramid (frustum)

Diagram of a truncated pyramid

■ This corresponds to:
□ Height (h) = 6 units
□ Side of lower base (a) = 4 units
□ Side of upper base (b) = 2 units

The Egyptian method
1. Square the base side: 42 = 16
2. Square the top side: 22 = 4
3. Multiply the base by the top side:

4×2= 8
4. Add these three results:

16+4+8= 28
5. Take one third of the height:

1/3×6= 2
6. Multiply the sum from step 4 by

the result from step 5:
28×2= 56

( 43 )



Geometry

Example 2.4. (Moscow papyrus, problem 14)
■ Problem: The volume of a truncated pyramid (frustum)

Diagram of a truncated pyramid

■ This corresponds to:
□ Height (h) = 6 units
□ Side of lower base (a) = 4 units
□ Side of upper base (b) = 2 units

The calculated volume is:
56 cubic units

The Egyptian method
1. Square the base side: 42 = 16
2. Square the top side: 22 = 4
3. Multiply the base by the top side:

4×2= 8
4. Add these three results:

16+4+8= 28
5. Take one third of the height:

1/3×6= 2
6. Multiply the sum from step 4 by

the result from step 5:
28×2= 56

( 43 )



Geometry

Modern formula for a square frustum: The volume V of a square frustum
with height h and base sides a and b is:

V = h
3 (a2 +ab+b2)

Substituting the values from the problem (h = 6, a = 4, b = 2):

V = 6
3 (42 +4 ·2+22)

= 2(16+8+4)
= 2 ·28= 56

Significance: The Egyptian calculation yields the exact modern formula.
The method by which they derived this formula is unknown, showcasing
remarkable sophistication

( 44 )



The character of Egyptian mathematics

Key characteristics:
■ Highly practical & utilitarian: Developed as a tool for administration,

construction (pyramids, temples), land surveying, and calendar keeping.
Not abstract mathematics for its own sake

■ Algorithmic & procedural: Focus on step-by-step methods and “recipes”
to solve specific problems, rather than generalised theories or proofs

■ Additive arithmetic: Multiplication and division relied heavily on doubling
and halving (binary-like approach)

■ Unit fraction system: A distinctive feature where all fractions (except
2/3) were expressed as sums of distinct reciprocals (1/n). This led to
complex manipulation techniques (e.g., 2/n table)
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The character of Egyptian mathematics

Major achievements:
■ Efficient number system: Their hieroglyphic and hieratic systems allowed

for large numbers and practical calculations
■ Sophisticated arithmetic techniques: Mastery of operations with integers

and unit fractions, enabling complex financial and resource management
■ Advanced geometry:

□ Area of a circle with a remarkably good approximation of π≈ 3.16
□ Exact formula for the volume of a truncated square pyramid (frustum),

demonstrating advanced spatial reasoning
■ Early record keeping: The Rhind and Moscow papyri provide invaluable

insights into their mathematical thought process and problem-solving

A foundation for future developments: Egyptian mathematics was robust
and effective for their needs, laying groundwork for later traditions, even if
their methods differed significantly from modern axiomatic approaches
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Mesopotamian mathematics

Key themes to explore:
■ The revolutionary Sexagesimal (Base-60) Positional System
■ Sophisticated algebraic problem-solving
■ Deep insights into number theory (Pythagorean triples)
■ Remarkable geometric precision (e.g.,

p
2)
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Geographic and chronological context

■ “Land between the rivers”
(Tigris and Euphrates)

■ Cradle of civilisation:
Sumer, Akkad, Babylon,
Assyria

■ Abundant clay (source of
cuneiform tablets)
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Geographic and chronological context

■ “Land between the rivers”
(Tigris and Euphrates)

■ Cradle of civilisation:
Sumer, Akkad, Babylon,
Assyria

■ Abundant clay (source of
cuneiform tablets)

■ Sumerian Period (∼4000–2000 BCE)
□ Earliest writing (cuneiform) and number

systems
□ Basic accounting, metrology

■ Old Babylonian Period (∼2000–1600 BCE)
□ Golden age of Babylonian mathematics
□ Most of our mathematical tablets

(especially, Plimpton 322 and YBC 7289)
date from this era

□ Focus on solving practical and theoretical
problems

■ Later Periods
(Kassite, Neo-Babylonian, . . . )

□ Continued mathematical activity,
especially in astronomy
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The revolutionary sexagesimal system

Positional system:
■ Similar to ours, the position of a

digit determines its value
■ Uses combinations of two wedge

symbols
■ Numbers within each position go

from 1 to 59
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The revolutionary sexagesimal system

Positional system:
■ Similar to ours, the position of a

digit determines its value
■ Uses combinations of two wedge

symbols
■ Numbers within each position go

from 1 to 59
Example 2.5. 1 : 2 : 360

1 : 2 : 360 = 1×602 +2×601 +3×600

= 1×3600+2×60+3×1
= 3600+120+3= 372310

Note: They did not have a true ‘zero’ placeholder (initially) or a sexagesimal
point. Context often inferred magnitude
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The revolutionary sexagesimal system

Strength in fractions:
■ Allows for convenient representation of many fractions:

1/2 = 30/60= 0,3060
1/3 = 20/60= 0,2060
1/4 = 15/60= 0,1560
1/5 = 12/60= 0,1260
1/6 = 10/60= 0,1060
1/10= 6/60 = 0,0660
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The revolutionary sexagesimal system

Strength in fractions:
■ Allows for convenient representation of many fractions:

1/2 = 30/60= 0,3060
1/3 = 20/60= 0,2060
1/4 = 15/60= 0,1560
1/5 = 12/60= 0,1260
1/6 = 10/60= 0,1060
1/10= 6/60 = 0,0660

Why is this powerful?
■ 60 is highly composite (divisors: 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60)
■ This means many common fractions have finite (terminating) sexagesimal

representations
■ Made division and handling of fractions much simpler than in base-10 or

Egyptian unit fractions
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Plimpton 322: A Pythagorean puzzle

Plimpton 322 (∼1800 BCE)

What is it?
■ A Babylonian clay tablet from the

Old Babylonian period
■ Discovered in southern Iraq in the

early 20th century
■ Currently housed at Columbia

University
■ Perhaps the most famous and

debated mathematical tablet
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Plimpton 322: A Pythagorean puzzle

Plimpton 322 (∼1800 BCE)

What is it?
■ A Babylonian clay tablet from the

Old Babylonian period
■ Discovered in southern Iraq in the

early 20th century
■ Currently housed at Columbia

University
■ Perhaps the most famous and

debated mathematical tablet
Its content:

■ A table of 15 rows and 4 columns of numbers written in sexagesimal
(base-60)

■ The numbers are remarkably large, indicating sophisticated calculations
■ Primarily interpreted as a list of Pythagorean triples
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Plimpton 322: Pythagorean triples

Reconstructed columns of Plimpton 322:
width w diagonal d number

1.9834. . . 119 169 1
1.94916. . . 3367 11521 (4825) 2
1.9188. . . 4601 6649 3
1.88635. . . 12709 18541 4
1.81501. . . 65 97 5
1.78519. . . 319 481 6
1.71988. . . 2291 3541 7
1.6928. . . 799 1249 8
1.64267. . . 541 (481) 769 9
1.58612. . . 4961 8161 10
1.5625. . . 45 75 11
1.48942. . . 1679 2929 12
1.34002. . . 25921 (161) 289 13
1.43024. . . 177 3229 14
1.38716. . . 56 53 (106 ) 15
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Plimpton 322: Pythagorean triples

Check for row 5:
■ w = 65, d = 97
■ Let b2 = d2 −w2

■ b2 = 972 −652 = 5184
■ b =

p
5184= 72

■ So, the triple is (65,72,97)

What are Pythagorean Triples?
■ Sets of three positive integers

(a,b,c) such that a2 +b2 = c2

■ Examples: (3,4,5), (5,12,13),
(8,15,17)
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Plimpton 322: Pythagorean triples

Check for row 5:
■ w = 65, d = 97
■ Let b2 = d2 −w2

■ b2 = 972 −652 = 5184
■ b =

p
5184= 72

■ So, the triple is (65,72,97)

What are Pythagorean Triples?
■ Sets of three positive integers

(a,b,c) such that a2 +b2 = c2

■ Examples: (3,4,5), (5,12,13),
(8,15,17)

Babylonian interest:
■ They had an advanced understanding of geometry, including right

triangles
■ These triples could be used for:

□ Land surveying and demarcation
□ Construction (ensuring right angles)
□ Astronomical calculations (though less direct evidence)

■ This knowledge predates Pythagoras by over a millennium
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How were the triples generated?

Hypothesis 1: Generating primitive triples (Euclid’s formula)
■ Modern formula for generating primitive Pythagorean triples: If m,n are

coprime integers, m > n, and one is even, one is odd, then:

a =m2 −n2

b = 2mn
c =m2 +n2

■ While the formula itself wasn’t known in this form, the Babylonians might
have implicitly used such a method

■ Example: For (m,n)= (16,9), the triple is (175,288,337).
For row 13 (161,240,289), this corresponds to m = 15, n = 8
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How were the triples generated?

A more likely method for Plimpton 322:
■ Generation using reciprocal pairs and regular numbers
■ Babylonian scribes used tables of reciprocals for division
■ A regular number is one whose prime factors are only 2, 3, or 5 (the

prime divisors of 60). Their reciprocals have finite sexagesimal expansions
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How were the triples generated?

Hypothesis 2: Van der Waerden’s reciprocal pair method (simplified)
■ Consider a pair of regular numbers (u,v) such that u/v is the ratio of

two sides of the right triangle
■ The sides of the right triangle (a,b,c) can be generated from u and v as:

a = u2 −v2

b = 2uv
c = u2 +v2

(This is essentially Euclid’s formula, but the point is how they found the
u,v pairs, which were often from reciprocal tables)

■ The crucial point is that all the u/v ratios that generate the Plimpton
322 rows are regular sexagesimal numbers

■ This suggests a systematic way of finding such pairs for generating the
table, possibly related to solving problems of finding sides of rectangles
given area and diagonal, or similar algebraic problems
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Significance and interpretations

Why is Plimpton 322 so important?
■ Pythagorean knowledge before Pythagoras: Provides undeniable evidence

that the Babylonians knew and systematically generated Pythagorean
triples over a thousand years before Pythagoras

■ Advanced number theory: Shows a sophisticated understanding of integer
properties, prime factorisation (in the context of regular numbers), and
how to generate specific sets of numbers

■ Algorithmic approach: Whether for geometry or number theory, the tablet
represents a systematic, algorithmic approach to problem-solving

■ Potential for early trigonometry: Some scholars argue that the tablet
might have served as a kind of “secant table” or a proto-trigonometric
table for specific angles in right triangles
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Significance and interpretations

Ongoing debates:
■ Was it a list of “Pythagorean triples” for geometric construction, a

teaching tool, or a number theory research tablet?
■ Exactly which method was used to generate the rows?
■ What was the exact purpose of the first column?

Observe how it can be generated as
³

d
c

´2
where c is the length of the

other side of the right triangle beside d and w

Plimpton 322 demonstrates the
profound mathematical ingenuity of

the old Babylonian scribes
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YBC 7289: Approximating
p

2

(YBC 7289 — ∼1800-1600 BCE)

What is it?
■ A small Babylonian clay tablet from the

Old Babylonian period
■ Discovered in southern Iraq
■ Housed at Yale University
■ One of the most famous examples of

Mesopotamian numerical approximation
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YBC 7289: Approximating
p

2

(YBC 7289 — ∼1800-1600 BCE)

What is it?
■ A small Babylonian clay tablet from the

Old Babylonian period
■ Discovered in southern Iraq
■ Housed at Yale University
■ One of the most famous examples of

Mesopotamian numerical approximation

Its content:
■ A square with diagonals drawn
■ Numbers written in sexagesimal (base-60)
■ The numbers represent the side and diagonal of the square
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The Babylonian approximation

The numbers on the tablet:
■ Side of the square: 30
■ Diagonal of the square: 42:25:35
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The Babylonian approximation

The numbers on the tablet:
■ Side of the square: 30
■ Diagonal of the square: 42:25:35

Sexagesimal interpretation:
■ 42:25:35 in base 60 means:

42+ 25
60 + 35

602 ≈ 42.42638889
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The Babylonian approximation

The numbers on the tablet:
■ Side of the square: 30
■ Diagonal of the square: 42:25:35

Sexagesimal interpretation:
■ 42:25:35 in base 60 means:

42+ 25
60 + 35

602 ≈ 42.42638889
The ratio:

■ Dividing the diagonal by the side:

42 : 25 : 35
30

≈42.42638889
30

≈1.414212963
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Comparison:
■ The Babylonian approximation is

accurate to six decimal places!
■ This level of precision is

remarkable for the time

( 60 )



The Babylonian approximation

The numbers on the tablet:
■ Side of the square: 30
■ Diagonal of the square: 42:25:35

Sexagesimal interpretation:
■ 42:25:35 in base 60 means:

42+ 25
60 + 35

602 ≈ 42.42638889
The ratio:

■ Dividing the diagonal by the side:

42 : 25 : 35
30

≈42.42638889
30

≈1.414212963

The Modern Value of
p

2:
■

p
2≈ 1.414213562

Comparison:
■ The Babylonian approximation is

accurate to six decimal places!
■ This level of precision is

remarkable for the time
Implications:

■ The Babylonians had a
sophisticated algorithm (though
we don’t know the exact method)
for approximating square roots

■ They understood the concept of
irrational numbers
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YBC 7289: How did they find it?

■ The exact method is unknown, but several possibilities exist:
□ Geometric methods: Repeated averaging of sides and diagonals of squares

or rectangles
□ Algebraic methods: An iterative algorithm similar to the Babylonian

method for solving quadratic equations:

xn+1 = 1
2

µ
xn + S

xn

¶

where S is the number whose square root is being approximated (in this
case, S = 2)

■ The Babylonians were skilled in both geometry and algebra, so either
approach is plausible

■ Regardless of the method, the result shows their computational power
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YBC 7289: Significance

■ Accurate approximation of an irrational number: Demonstrates a deep
understanding of numbers, including those that cannot be expressed as a
simple fraction

■ Computational skill: Shows their ability to perform complex calculations
with remarkable precision

■ Influence on later mathematics: This level of accuracy influenced later
Greek mathematics and beyond

YBC 7289 is a testament to the
sophisticated numerical techniques of

the old Babylonian period
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History of Mathematics: Lecture 3

Syllabus:
Greek Mathematics: The birth of deduction



Greek mathematics

From “How” to “Why”

A fundamental paradigm shift

Egyptian & Mesopotamian Mathematics:
■ Practical, utilitarian, algorithmic
■ Focus on procedures and numerical solutions (the “How”)
■ Examples: Doubling for multiplication, 2/n tables, volume of frustum

Greek Mathematics (Starting ∼6th century BCE):
■ Theoretical, abstract, philosophical
■ Emphasis on deductive reasoning and formal proof (the “Why”)
■ Mathematics as an axiomatic system
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Philosophy and the pursuit of truth

Mathematics as a branch of Philosophy:
■ Unlike earlier civilisations, Greeks sought universal and eternal truths
■ Numbers and geometric forms were seen as embodying perfect,

unchanging realities
■ This quest for truth led to the demand for rigorous justification for

mathematical statements
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Philosophy and the pursuit of truth

Key philosophers influencing mathematics:
■ Plato (∼428–347 BCE):

□ “Let no one ignorant of geometry enter here”
(inscription at the Academy)

□ Believed mathematical objects (Forms) were
more real than physical ones

□ Emphasised abstract thought over sensory
experience

■ Aristotle (∼384–322 BCE):
□ Systematised logic (syllogisms) and the

structure of arguments
□ His ideas on deduction influenced Euclid’s

axiomatic method
Plato and Aristotle

(from Raphael’s “School of Athens”)

The legacy of inquiry: This philosophical drive for certainty and general
principles profoundly shaped the development of Western mathematics
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Sources and early schools

How do we know? (sources):
■ Unlike Egyptian/Mesopotamian papyri/tablets, much of our knowledge

comes from later commentators:
□ Proclus (∼412–485 CE): Wrote “Commentary on the First Book of

Euclid’s Elements”, preserving much historical detail
□ Pappus of Alexandria (∼4th century CE): Compiled earlier works

■ Euclid’s Elements: The monumental summary of earlier Greek geometry
and number theory

■ Fragments and direct works of later major figures (e.g., Archimedes,
Apollonius, Diophantus)
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Sources and early schools

Early centres of mathematical thought:
■ Ionian School (Miletus, ∼6th century BCE):

□ Focus on natural philosophy and rational inquiry
□ Figures: Thales (often considered the first to seek proofs)

■ Pythagorean School (Croton, ∼6th–5th century BCE):
□ Emphasised the mystical and philosophical nature of numbers
□ Major discoveries: Pythagorean theorem (proof), incommensurability

■ Platonic Academy (Athens, ∼4th century BCE):
□ Geometry seen as essential for intellectual training
□ Many future mathematicians trained here
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Thales of Miletus: The dawn of proof

Who was Thales? (∼624–546 BCE)
■ From Miletus, Ionia (modern Turkey)
■ Considered the first philosopher and

scientist in the Western tradition
■ Often regarded as the first

mathematician to seek proofs
rather than just observing rules or
procedures

■ Travelled to Egypt, where he likely
learned practical geometry

The revolutionary idea of proof:
■ Previous civilisations used

geometry for practical tasks
■ Thales (and the Greeks) asked:

Why is this true?
■ This led to the demand for

logical, deductive arguments
based on definitions and axioms
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Thales of Miletus: The dawn of proof

Thales of Miletus

Key geometric theorems attributed to Thales:
■ An angle inscribed in a semicircle is a right angle
■ The base angles of an isosceles triangle are equal
■ Vertically opposite angles are equal
■ Two triangles are congruent if they have two

angles and the included side equal
■ A circle is bisected by its diameter
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Thales: Example of deductive reasoning

Theorem 3.1. An angle inscribed in a semicircle is a right angle
(Euclid, Elements, Book III, Proposition 31)

■ Let A, B, C be points on a circle, with AC being
a diameter; let O be the centre of the circle

■ Draw radius OB
■ Triangles AOB and BOC are isosceles
■ Let ∠OAB = x and ∠OCB = y

■ Then ∠OBA= x and ∠OBC = y
■ The sum of angles in △ABC is 180◦: x + (x +y)+y = 180◦, thus

2x +2y = 180◦ =⇒ 2(x +y)= 180◦, hence x +y = 90◦
■ Since ∠ABC = x +y , then ∠ABC = 90◦. Q.E.D.

This demonstrates the shift from empirical observation to logical derivation
from basic principles.
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The Pythagoreans

The Pythagorean Brotherhood (∼570–495 BCE):
■ Founded by Pythagoras of Samos in Croton

(Southern Italy)
■ More than just a school: a secret, quasi-religious

brotherhood
■ Believed that numbers were the essence of all

things
■ Motto: “All is Number”
■ Focused on purifying the soul through study,

especially of music and mathematics
Pythagoras of Samos
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The Pythagoreans

The Tetractys

Number mysticism and harmony:
■ Explored relationships between numbers and the

natural world
■ Discovered that musical harmony could be

expressed by simple numerical ratios (e.g., octave
1:2, fifth 2:3, fourth 3:4)

■ Associated numbers with specific qualities:
□ 1: point, reason
□ 2: line, opinion
□ 3: surface, wisdom
□ 4: solid, justice

■ The Tetractys (sum of 1+2+3+4= 10) was
considered sacred
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The Pythagorean theorem

The theorem:
■ In a right-angled triangle, the

square on the hypotenuse is equal
to the sum of the squares on the
other two sides (a2 +b2 = c2)

■ This relationship was known
empirically to Babylonians and
Egyptians over 1000 years earlier
(e.g., Plimpton 322)

Pythagorean contribution:
■ The Pythagoreans are widely

credited with providing the first
formal, deductive proof of the
theorem

■ This exemplifies the core Greek
contribution: moving from
practical knowledge to abstract,
proven truth
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The Pythagorean theorem

■ Consider a large square of side (a+b)
■ Inside it, arrange four identical right

triangles with sides a, b, c
■ The central unshaded area will be a square

of side c (area c2)
■ Since the total area of the large square

and the four triangles is constant,
c2 = a2 +b2

■ This visual proof (or a variant) is often
attributed to Pythagoreans Rearrangement proof of a2 +b2 = c2

A milestone in deductive thought: This proof established a powerful
precedent for mathematical reasoning, moving beyond calculation to rigorous
demonstration

( 76 )



The crisis of incommensurability

The “Axiom” of “All is Number”:
■ The Pythagoreans believed all quantities could be expressed as ratios of

integers (rational numbers)
■ This was fundamental to their entire philosophical system

The discovery of incommensurability:
■ Applying the Pythagorean Theorem to a simple square of side 1:

12 +12 = d2 =⇒ d2 = 2 =⇒ d =
p

2

■ Legend attributes the discovery to Hippasus of Metapontum
■ He proved that the diagonal of a square is incommensurable with its side
■ In other words,

p
2 cannot be expressed as a ratio of two integers,

i.e.,
p

2 is irrational
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The crisis of incommensurability

Proof:
p

2 is irrational, by contradiction:
■ Assume

p
2= p/q, where p,q are integers, q ̸= 0, and p/q is in lowest

terms (no common factors)
■ Squaring both sides: 2= p2/q2 =⇒ 2q2 = p2

■ This implies p2 is an even number. If p2 is even, then p must also be even
■ So, we can write p = 2k for some integer k
■ Substitute p = 2k back into 2q2 = p2:

2q2 = (2k)2 =⇒ 2q2 = 4k2 =⇒ q2 = 2k2

■ This implies q2 is an even number. If q2 is even, then q must also be even
■ Contradiction! We assumed p and q had no common factors, but we

showed both must be even (thus having a common factor of 2)
■ Therefore, our initial assumption (

p
2 is rational) must be false.p

2 is irrational Q.E.D.
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The crisis of incommensurability

Consequences for Greek Mathematics:
■ Shattered the “All is Number” philosophy based solely on rational

numbers
■ Led to a profound conceptual crisis for their understanding of “number”
■ Forced a shift in focus from arithmetic to geometry, where quantities

(lengths, areas) could be compared and reasoned about even if their
numerical ratio was unknown

■ Geometric algebra: Algebraic problems were often solved using geometric
constructions
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Euclid and the Elements

Euclid of Alexandria (∼325–265 BCE):
■ Lived and taught in Alexandria, Egypt

(Ptolemaic kingdom)
■ Little is known about his life; he’s often

referred to as “the author of the
Elements”

■ His work synthesised over 300 years of
Greek mathematical thought

Euclid of Alexandria
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Euclid and the Elements

Page from a medieval manuscript of Euclid’s Elements

The “Elements” (∼300 BCE):
■ Not a record of new discoveries

(mostly), but a systematic
compilation and organisation of
existing mathematical knowledge

■ Comprises 13 books, primarily on
geometry and number theory

■ Became the definitive textbook for
geometry for over 2000 years,
influencing countless thinkers
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The axiomatic method

Structure of the Elements:
■ Euclid began with a small set of self-evident truths:

□ Definitions: Clearly defined terms (e.g., point, line, surface)
□ Postulates (axioms for geometry): Fundamental assumptions about

geometric constructions that are taken as true without proof (e.g., “A
straight line may be drawn between any two points”)

□ Common notions (axioms for general math): General truths applicable to
all quantities (e.g., “Things which are equal to the same thing are also
equal to one another”)

■ From these initial statements, he logically deduced a vast system of
propositions (theorems)

■ Each proposition is proven using only definitions, postulates, common
notions, and previously proven propositions
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Euclid’s enduring legacy

Why is this Revolutionary?
■ Rigour & certainty: Established a benchmark for mathematical rigour,

aiming for absolute certainty
■ Logical structure: Provided a systematic way to organise mathematical

knowledge
■ Foundation for all Mathematics: This deductive, axiomatic approach

became the model for mathematical inquiry for millennia, from Newton’s
Principia to modern set theory

■ Independent of Experience: Mathematical truth became independent
of physical measurement or empirical observation
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Euclid’s enduring legacy

Why is this Revolutionary?
■ Rigour & certainty: Established a benchmark for mathematical rigour,

aiming for absolute certainty
■ Logical structure: Provided a systematic way to organise mathematical

knowledge
■ Foundation for all Mathematics: This deductive, axiomatic approach

became the model for mathematical inquiry for millennia, from Newton’s
Principia to modern set theory

■ Independent of Experience: Mathematical truth became independent
of physical measurement or empirical observation

The Parallel postulate: One of Euclid’s postulates (often phrased as
“Through a point not on a given line, exactly one line parallel to the given line
can be drawn”) remained controversial, leading to the development of
Non-Euclidean geometries in the 19th century.
This shows the power of examining axioms
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Euclid’s Elements

Beyond basic geometry:
■ Book I: Fundamental geometry (points, lines, triangles, parallels)
■ Book II: Geometric algebra (e.g., constructions for solving quadratic

equations, geometric identities)
■ Book V: Eudoxus’s theory of proportion (rigorous treatment of ratios,

including incommensurables, solving the Pythagorean crisis)
■ Books VII-IX: Number theory (primes, greatest common divisor

algorithm, perfect numbers, proof of infinitely many primes)
■ Book X: Classification of incommensurable magnitudes
■ Book XIII: Construction of the five Platonic solids
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Euclid’s Elements

Proof (Proposition 1, Book I):
Problem: To construct an equilateral triangle on a given finite straight line

Construction sketch:
1. With centre A, draw a circle with radius AB
2. With centre B, draw a circle with radius BA
3. Let C be one of the points where the circles

intersect
4. Draw lines AC and BC
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Euclid’s Elements

Proof (Proposition 1, Book I):
Problem: To construct an equilateral triangle on a given finite straight line

Construction sketch:
1. With centre A, draw a circle with radius AB
2. With centre B, draw a circle with radius BA
3. Let C be one of the points where the circles

intersect
4. Draw lines AC and BC

Proof sketch:
■ All radii of a circle are equal. So AC = AB (from circle 1) and BC = AB

(from circle 2)
■ By Common Notion 1 (“Things which are equal to the same thing are

also equal to one another”), AC =BC
■ Therefore, triangle ABC is equilateral Q.E.D.
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History of Mathematics: Lecture 4

Syllabus:
Greek Mathematics: Beyond Euclid

■ Dealing with the infinite (Zeno’s paradoxes)
■ Rigorous treatment of magnitude and proportion
■ Early “Calculus” (Method of Exhaustion)
■ The genius of Archimedes
■ Conic sections and their importance
■ The Hellenistic period and the eventual decline



Zeno’s paradoxes: Confronting the infinite

Zeno of Elea (∼490–430 BCE):
■ A pre-Socratic philosopher, student of Parmenides
■ Known for his paradoxes concerning motion and plurality
■ While philosophical, they had profound implications for the mathematical

understanding of infinity and continuity

( 88 )



Zeno’s paradoxes: Confronting the infinite

The dichotomy paradox:
■ To reach a destination, one must

first cover half the distance
■ Then, one must cover half of the

remaining distance
■ This process continues infinitely
■ Conclusion (Zeno): Therefore,

motion is impossible, as one must
complete an infinite number of
tasks in a finite time

Achilles and the tortoise paradox:
■ Achilles (the swift runner) races a

tortoise, who is given a head start
■ Achilles must first reach the

tortoise’s starting point
■ By then, the tortoise has moved a

little further
■ Achilles must reach that new

point, by which time the tortoise
has moved. . . and so on, infinitely

■ Conclusion (Zeno): Achilles can
never catch the tortoise

Mathematical implication: Both paradoxes deal with an infinite geometric
series: precisely, 1/2+1/4+1/8+·· · = 1 in the dichotomy paradox
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Zeno’s paradoxes: Confronting the infinite

Impact on Greek thought:
■ Highlighted the conceptual difficulties of infinitely divisible quantities
■ Contributed to the Greek aversion to actual infinities in mathematical

proofs, favouring potential infinities
■ Prompted mathematicians (like Eudoxus) to develop rigorous methods to

deal with magnitudes without relying on infinite processes directly
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Eudoxus: Rigour in ratios and volumes

Eudoxus of Cnidus (∼408–355 BCE):
■ A brilliant mathematician and astronomer, student of Plato
■ Resolved the crisis of incommensurability (from the Pythagoreans)
■ Developed methods that were foundational for later Greek geometry and

a precursor to integral calculus
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Eudoxus: Rigour in ratios and volumes

1. The theory of proportion (Euclid’s Book V):
■ Provided a rigorous definition of proportion (ratio) that worked for both

commensurable and incommensurable magnitudes
■ This bypassed the need to define irrational “numbers” explicitly
■ Definition: Four magnitudes A,B,C ,D are proportional (A is to B as C is

to D) if, for any integers m,n:
□ mA> nB =⇒ mC > nD
□ mA= nB =⇒ mC = nD
□ mA< nB =⇒ mC < nD

■ This definition is essentially equivalent to Dedekind cuts from 19th

century real analysis
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Eudoxus: Rigour in ratios and volumes

2. The method of exhaustion:
■ A technique for finding the area or volume of a curved figure by inscribing

and circumscribing polygons (or polyhedra) whose areas/volumes can be
calculated

■ The areas of the polygons “exhaust” the area of the curved figure as the
number of sides increases

■ Relies on an axiom (often attributed to Eudoxus, known as the Axiom of
Archimedes): “Given two unequal magnitudes, if from the greater there is
subtracted a magnitude greater than its half, and from the remainder a
magnitude greater than its half, and so on, there will at some time
remain a magnitude less than the lesser of the given magnitudes”

■ Significance: This was the closest the Greeks came to integral calculus,
avoiding the paradoxes of infinity by focusing on what can be “exhausted”

■ Used by Euclid to prove theorems about circles and spheres (e.g., area of
circle proportional to square of diameter)
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Eudoxus: Rigour in ratios and volumes

Impact: Eudoxus’s work provided the tools for rigorous geometry in the face
of incommensurability and laid the groundwork for Archimedes’ later triumphs.
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Archimedes of Syracuse

Archimedes of Syracuse (∼287–212 BCE):
■ Considered by many to be the greatest

mathematician of antiquity and one of
the greatest of all time

■ Lived in Syracuse, Sicily, a Greek city-state
■ Renowned not just for mathematics, but

also for physics, engineering, and
inventions (e.g., Archimedes’ screw, levers,
war machines)

■ Legend: “Eureka!” (buoyancy principle)
and “Give me a place to stand, and I will
move the Earth” (lever principle)

■ Killed during the Roman siege of Syracuse
Archimedes of Syracuse
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Archimedes of Syracuse

His mathematical approach: Archimedes brilliantly applied the rigorous
methods of Eudoxus (like the method of exhaustion) to solve an astonishing
array of complex problems, often pushing these methods to their limits,
bordering on what we now call calculus
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The most accurate π of antiquity

The problem:
■ To find the ratio of a circle’s

circumference to its diameter, π
■ Recall the Egyptian approximation:
π≈ (16/9)2 ≈ 3.16

The method of perimeters
■ He used a rigorous geometric

approach based on the method of
exhaustion

■ Involved inscribing and
circumscribing regular polygons
within and around a circle

■ As the number of sides of the
polygons increases, their
perimeters get closer and closer to
the circumference of the circle
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The most accurate π of antiquity

Inscribed and circumscribed polygons

Significance: This was the
most accurate value of π for
over 1000 years, derived purely
from rigorous geometric
methods, not empirical
measurement

His calculation:
■ Started with regular hexagons
■ Systematically doubled the number of

sides, going up to 96-sided polygons
■ This involved complex calculations with

square roots (often using rational
approximations for them)

■ Result:

3+ 10
71 <π< 3+ 10

70
3.140845<π< 3.142857

(In modern terms, 223/71<π< 22/7)
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Quadrature of the parabola

The problem:
■ To find the area of a parabolic

segment bounded by a chord
■ This is a problem typically solved

with integral calculus today

Archimedes’ method:
■ Used the method of exhaustion

(similar to Eudoxus’)
■ He filled the parabolic segment

with an infinite sequence of
triangles

■ First, construct the largest triangle
(with the given chord as its base)

■ Then, in the remaining two
parabolic segments, construct two
more triangles, and so on

■ He showed that the areas of these
triangles form a geometric
progression
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Quadrature of the parabola

Quadrature of the parabola

The result:
■ He proved that the area of the parabolic

segment is 4/3 the area of the first
(largest) inscribed triangle

■ The sum of the infinite series of triangle
areas:

A+ 1
4A+ 1

16A+·· · =A
Ã
1+ 1

4 +
µ1
4

¶2
+ . . .

!

This is a geometric series with ratio
r = 1/4. Sum =A

³
1

1−1/4

´
=A

³
1

3/4

´
= 4

3A
■ Archimedes arrived at this result without

the modern concept of limits or infinite
series sums
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Quadrature of the parabola

Quadrature of the parabola

Precursor to calculus: This
demonstrates his profound
ingenuity in handling infinite
processes rigorously, centuries
before Newton and Leibniz

The result:
■ He proved that the area of the parabolic

segment is 4/3 the area of the first
(largest) inscribed triangle

■ The sum of the infinite series of triangle
areas:

A+ 1
4A+ 1

16A+·· · =A
Ã
1+ 1

4 +
µ1
4

¶2
+ . . .

!

This is a geometric series with ratio
r = 1/4. Sum =A

³
1

1−1/4

´
=A

³
1

3/4

´
= 4

3A
■ Archimedes arrived at this result without

the modern concept of limits or infinite
series sums
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Volumes of solids and “the Method”

Volumes and surface areas of solids:
■ Archimedes determined the formulas for the

volume and surface area of many solids,
notably the sphere and the cylinder

■ His proof for the volume of a sphere (4/3πr3)
and its surface area (4πr2) was a crowning
achievement

■ He famously requested that his tombstone
depict a sphere inscribed within a cylinder,
along with the ratio 2 : 3 (Volume of Sphere :
Volume of Cylinder = Area of Sphere : Area
of Cylinder = 2 : 3)

Sphere inscribed in a cylinder
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Volumes of solids and “the Method”

“The Method”: Discovery vs. proof
■ Archimedes wrote a treatise called The

Method, discovered in 1906 (the
Archimedes Palimpsest)

■ In it, he revealed how he discovered many
of his results: by mechanical means, using
principles of levers and centres of gravity

■ For example, he imagined slicing shapes
into infinitesimally thin sections and
balancing them on a lever

■ However, he then provided rigorous
proofs (using the method of exhaustion)
for these discoveries in separate works

A master of both heuristics
and rigour: Archimedes
showcased the dual nature of
mathematics: the intuitive,
experimental path to discovery,
followed by the rigorous,
logical path to proof
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Mathematics in the Hellenistic era

The library of Alexandria

The Hellenistic period (∼323–30 BCE):
■ Followed Alexander the Great’s conquests,

leading to the spread of Greek culture
■ New intellectual centres emerged, notably

Alexandria, Egypt, with its famous
Library and Museum

■ Mathematics became more specialised,
moving beyond fundamental geometry
into specific applications and new areas

■ Focus often shifted from pure, abstract
geometry to areas with practical utility
(astronomy, optics, mechanics)
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Mathematics in the Hellenistic era

Key figures and fields:
■ Apollonius of Perga: Conic sections
■ Hipparchus & Ptolemy: Astronomy and trigonometry
■ Eratosthenes: Geography and Earth measurement
■ Diophantus of Alexandria: Proto-algebra and number theory
■ Pappus of Alexandria: Compiler and commentator

A period of consolidation and innovation: While pure geometry reached
its zenith with Euclid and Archimedes, the Hellenistic period saw the
application of these powerful tools to complex problems, and the beginnings
of algebraic thought.
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Apollonius of Perga

Apollonius of Perga (∼240–190 BCE):
■ Often called “The Great Geometer”.
■ Student of the Alexandrian school
■ His magnum opus: “Conics” (8 books, 7 survive)
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Conic sections

The conic sections:
■ Parabola, ellipse, hyperbola
■ Apollonius showed that these

curves arise from cutting a single
cone (double-napped) at different
angles, unlike earlier methods that
used different cones Conic sections from a double-napped cone

■ He introduced the terms ‘parabola’, ‘ellipse’, and ‘hyperbola’
■ Studied their properties comprehensively, developing the theory in a way

that approaches analytical geometry without coordinates

Later importance: Apollonius’s work on conics became fundamental for
Kepler’s laws of planetary motion and Newton’s law of universal gravitation,
centuries later
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Astronomy, trigonometry

Trigonometry for Astronomy:
■ Greek astronomers needed to calculate distances and angles in the

celestial sphere
■ Hipparchus of Nicaea (∼190–120 BCE):

□ Considered the “father of trigonometry”.
□ Created the first known table of chords (equivalent to sine values) for

various angles
□ Used these to construct precise astronomical models

■ Ptolemy (∼100–170 CE):
□ His “Almagest” (mathematical treatise on astronomy) codified Greek

trigonometry and astronomical models (geocentric)
□ His chord table extended Hipparchus’s work
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Global measurements

Eratosthenes of Cyrene (∼276–195 BCE):
■ Chief librarian at the Library of Alexandria
■ Pioneer in geography and cartography
■ Calculated the circumference of the Earth with remarkable accuracy

Eratosthenes’ method (simplified):
■ Noted that at noon on the summer solstice, sunlight directly illuminated

a deep well in Syene (modern Aswan)
■ At the same time in Alexandria, a vertical stick cast a shadow, indicating

the sun was 7.2 degrees from vertical
■ Assuming the sun’s rays are parallel and Earth is a sphere, the angle 7.2◦

represents the angle between Syene and Alexandria at the Earth’s centre
■ Calculated the distance between Syene and Alexandria (∼ 5000 stadia)
■ Circumference = (360◦/7.2◦)×5000 stadia= 50×5000= 250,000 stadia
■ This means ∼39,690 km (actual ∼40,075 km)—astounding precision!
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Diophantus of Alexandria

Diophantus of Alexandria
(∼200–284 CE):

■ A Hellenistic mathematician, much
later than the classical geometers

■ His main work: “Arithmetica”
(13 books, 6 survive in Greek, 4
more in Arabic)

■ Diverged significantly from the
traditional Greek geometric
approach

Focus of Arithmetica:
■ Solves hundreds of specific

problems involving rational
solutions to indeterminate
equations (equations with more
variables than equations)

■ These are now known as
Diophantine equations

■ Example: Find three numbers such
that the product of any two added
to the third is a perfect square
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The dawn of algebra

Key innovations: Proto-symbolic algebra
■ While not fully symbolic like modern

algebra, Diophantus used
abbreviations and a kind of
syncopated algebra

■ Example: He would use s for the
unknown (x), ds for x2, cs for x3, etc.

■ This was a radical departure from the
purely rhetorical (word-based) algebra
of earlier periods and the geometric
algebra of Euclid

Significance:
■ Bridges the gap between

Babylonian numerical
problems and later
Arabic/European algebra

■ Showed that abstract
numerical problems could be
solved systematically, not just
geometric ones

■ His work was later influential
for mathematicians like Fermat
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Pappus of Alexandria

Pappus of Alexandria (∼290–350 CE):
■ One of the last great Greek mathematicians of antiquity
■ Most famous work: “Collection” (Synagoge), an 8-book summary of

Greek mathematics
■ Preserved, summarised, and commented on a vast amount of earlier

Greek mathematical knowledge that would otherwise be lost
■ Also contained some original theorems and problems (e.g., Pappus’s

hexagon theorem, Pappus’s centroid theorems)
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The end of an era

The decline of original Greek mathematics:
■ After Pappus (and Hypatia), the pace of original mathematical

contribution slowed significantly
■ Factors contributing to decline:

□ Roman Empire’s focus on practical administration and engineering, not
abstract pure science

□ Political and economic instability (e.g., Sack of Alexandria)
□ Rise of new religious ideologies (Christianity) that sometimes clashed with

pagan philosophical inquiry
□ Destruction of the Library of Alexandria over centuries
□ Loss of institutional support and patronage for pure research

■ Mathematics largely preserved and developed by Islamic scholars in the
centuries that followed
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The end of an era

A legacy that endures: Despite the decline, the rigorous, deductive
framework established by the Greeks, especially by Euclid, Archimedes, and
Apollonius, laid the essential groundwork for all future mathematical
advancements, particularly in Europe during the Renaissance
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The enduring legacy of Greek mathematics

A paradigm shift that shaped all science

■ The birth of deduction and proof:
□ Transition from “how” (recipes, algorithms) to “why” (rigorous, logical

argument)
□ Mathematics established as a science based on axioms, definitions, and

theorems
■ The axiomatic method (Euclid):

□ A revolutionary framework for organising knowledge, serving as a model for
all future scientific inquiry

□ Demonstrated how complex structures can be built from simple,
self-evident truths

■ Confronting the infinite:
□ Zeno’s paradoxes highlighted foundational challenges
□ Eudoxus’s theory of proportion and method of exhaustion provided rigorous

ways to handle continuous magnitudes and limit-like processes
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The enduring legacy of Greek mathematics

A paradigm shift that shaped all science

■ Pinnacle of geometric genius (Archimedes, Apollonius):
□ Masterful treatment of areas, volumes, and conic sections, foreshadowing

integral calculus
□ Unparalleled precision (e.g., π, Earth’s circumference)

■ Foundations for future fields:
□ Early number theory (Euclid, Diophantus)
□ Trigonometry (Hipparchus, Ptolemy) and its astronomical applications
□ Proto-algebra (Diophantus)

Greek mathematics established the intellectual toolkit and the standard of
rigour that would define mathematics for over two millennia, influencing the
scientific revolution and modern thought
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History of Mathematics: Lecture 5

Syllabus:
Ancient Asian Mathematics:

■ The revolutionary contributions of Indian
mathematics

■ The practical and algorithmic power of Chinese
mathematics

■ The unique geometric aesthetics of Japanese
(Wasan) mathematics



Indian mathematics: A conceptual revolution

Context and periods:
■ Rich mathematical tradition spanning millennia

(from Vedic period onwards)
■ Influenced by and influenced astronomy and religious texts
■ Key periods and figures:

□ Gupta period (∼320–550 CE): Aryabhata
□ Classical period (∼6th–12th CE): Brahmagupta, Bhaskara II
□ Kerala school (∼14th–16th CE): Madhava
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Indian mathematics: A conceptual revolution

The greatest contribution:
The decimal place-value system

■ Developed by Indian mathematicians,
likely between 1st and 5th centuries CE

■ Key features:
□ Nine distinct digits (1-9)
□ Positional value: The value of a digit

depends on its position (e.g., ‘2’ in 200
vs. 20)

□ The conceptual innovation of zero as a
placeholder and a number (Shunya)

■ This system vastly simplified arithmetic,
making complex calculations manageable

Global impact: This system,
later adopted by Arab scholars
and then transmitted to
Europe, is the foundation of
modern arithmetic
worldwide
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Algebra and negative numbers

Early concept of negative numbers:
■ Appeared as early as Brahmagupta

(∼598–668 CE) in his
Brahmasphutasiddhanta

■ Treated negative numbers as “debts” or
“losses”, acknowledging their existence
and rules for operations:

□ A debt minus a debt is a debt
□ A fortune minus a debt is a fortune
□ The product of two debts is a fortune,

i.e., (−x)(−y)= xy
■ This predates the full acceptance of

negative numbers in Europe by centuries

Solving quadratic equations:
■ Brahmagupta gave the

general solution to quadratic
equations in the form
ax2 +bx = c

■ He allowed for two roots,
including negative ones
(though he sometimes
discarded negative roots in
practical contexts)
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Indeterminate equations

Indeterminate or Diophantine equations:
■ Indian mathematicians extensively studied equations with integer

solutions (linear and quadratic)
■ Brahmagupta solved linear indeterminate equations of the form

ax +by = c
■ Pell’s equation: The equation Nx2 +1= y2 (where N is an integer)

□ Methods to solve this were developed by Brahmagupta (the “Brahmagupta
identity”) and later extended by Bhaskara II (∼1114–1185 CE) using the
“Chakravala” (cyclic) method

□ This was a highly sophisticated achievement, far more advanced than
anything in Europe until the 17th–18th centuries

Emphasis on algorithms: Indian mathematics often presented solutions as
clear algorithms or rules, similar to Mesopotamian mathematics, but with
greater generality and abstraction
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Trigonometry

Development of trigonometry
(for astronomy):

■ Unlike the Greek use of chords,
Indian mathematicians developed
the concepts of sine and cosine

■ Aryabhata (∼476–550 CE) in his
Aryabhatiya:

□ Created the first sine table (Jya)
and versine table (Koti-jya) at
intervals of 3.75◦

□ His methods for calculating
these values were ingenious

■ These concepts were later
transmitted to the Islamic world
and then to Europe

Mathematical astronomy:
■ Indian mathematicians were also

accomplished astronomers,
developing sophisticated models
and calculations

■ This practical application heavily
influenced their mathematical
developments
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The dawn of infinite series

The Kerala School of Mathematics (∼14th–16th CE):
■ A remarkable school in South India (Kerala region)
■ Figures like Madhava of Sangamagrama (∼1340–1425 CE)
■ Developed infinite series expansions for trigonometric functions:

□ Madhava-Leibniz series for π/4:

π

4 = 1− 1
3 + 1

5 − 1
7 + . . .

□ Madhava-Gregory series for arctan(x):

arctan(x)= x − x3

3 + x5

5 − x7

7 + . . .

□ Madhava’s series for sine and cosine (Taylor series expansions)
■ These discoveries predate European work by more than two centuries!
■ They also worked on geometric series and early ideas of differentiation
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The dawn of infinite series

A proto-calculus? The Kerala School’s work came remarkably close to
developing calculus, though it remained largely localised for centuries

( 124 )



Chinese mathematics

Context and characteristics:
■ Long and continuous tradition,

often driven by needs of
bureaucracy, engineering, and
astronomy

■ Emphasis on algorithms and
methods for computation rather
than formal deductive proofs
(differing from Greeks)

■ Utilised a sophisticated decimal
place-value system (using
counting rods) very early on

Major periods and texts:
■ Han Dynasty

(∼206 BCE–220 CE): The Nine
Chapters on the Mathematical Art

■ Three Kingdoms/Tang Dynasty
(∼3rd–10th CE): Liu Hui, Zu
Chongzhi

■ Song/Yuan Dynasty
(∼10th–14th CE): Jia Xian, Yang
Hui, Qin Jiushao, Li Ye, Zhu
Shijie. Peak of Chinese algebra
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Chinese mathematics

Key tool: Counting rods (筹算, chou suan):
■ Wooden or bamboo rods used for

calculation, arranged in columns for
powers of 10

■ Allowed for representation of positive and
negative numbers, and even zero
(represented by a blank space)

■ Facilitated efficient arithmetic operations
and early forms of matrix manipulation

Chinese counting rods (early place-value system)
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The Nine Chapters and linear systems

Jiǔzhāng Suànshù (九章算術): The Nine Chapters on the Mathematical Art

■ Compiled likely in the Han Dynasty (∼1st Century CE), with later
commentaries (Liu Hui, 3rd CE)

■ A collection of 246 problems divided into nine chapters, covering
practical applications

■ Each problem provides a statement, an answer, and a detailed algorithm
for solving it

■ Wide range of topics: surveying, engineering, taxation, agriculture,
commerce, geometry
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The Nine Chapters and linear systems

Solving systems of linear equations:
■ Chapter 8, “Fangcheng” (方程1, “Rectangular Arrays” or “The Way of

Calculation”)
■ Describes a method for solving systems of linear equations with multiple

unknowns
■ This method is strikingly similar to modern Gaussian elimination or

matrix methods
■ Utilised counting rods arranged on a counting board to represent

coefficients in a rectangular array

1In modern Chinese it translates to “equation”
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The Nine Chapters and linear systems

Example problem (from Chapter 8):
■ “There are 3 types of corn: 3 bundles of the first type, 2 of the second, 1

of the third, sum to 39 dou of grain. 2 of the first, 3 of the second, 1 of
the third, sum to 34 dou. 1 of the first, 2 of the second, 3 of the third,
sum to 26 dou. Find the amount of grain in one bundle of each type.”

■ Corresponds to the system:

3x +2y +z = 39
2x +3y +z = 34
x +2y +3z = 26

■ The Chinese method involved systematically manipulating the columns of
the rod array to eliminate variables

Advanced for its time: This method predates its independent rediscovery in
the West by many centuries, showcasing remarkable algebraic intuition
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Geometry and π approximations

■ Chapter 1 of “Nine Chapters” deals with areas
■ Liu Hui (∼3rd century CE, commentator on “Nine Chapters”)

□ Used the method of inscribed polygons to approximate π
□ Calculated π≈ 3.14159
□ Described his “circle area algorithm” (割圆术, “cutting the circle method”)

similar to Archimedes’
■ Zu Chongzhi (∼5th century CE):

□ Calculated π to be between 3.1415926 and 3.1415927
□ Gave the famous fractions 22/7 (milü, “rough ratio”) and 355/113 (miqie,

“close ratio”).
□ 355/113 is remarkably accurate (correct to 6 decimal places), unsurpassed

for nearly 1000 years
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Advanced algebra

Higher-degree equations (Song/Yuan dynasty):
■ Chinese mathematicians developed numerical methods to find roots of

polynomial equations of degrees up to 10
■ Qin Jiushao (∼13th century CE): Applied a method similar to

Ruffini-Horner’s method (known in China as the tian yuan shu,
“celestial element method” or “horn method”)

■ This method could find numerical approximations for roots to any desired
degree of accuracy
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Advanced algebra

Pascal’s (Yang Hui’s) Triangle:
■ For binomial coefficients of (a+b)n

■ Depicted by Jia Xian (∼11th century CE) and
then Yang Hui (∼13th century CE), centuries
before Pascal.

■ Used for solving polynomial equations

Yang Hui’s Triangle

A diverse and deep tradition: Chinese mathematics developed a unique and
powerful algorithmic approach that yielded impressive results in numerical
methods and algebra
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Japanese mathematics (Wasan)

Wasan (和和和算算算): Japanese Mathematics
■ Developed in Japan, distinct from Western mathematics
■ Heavily influenced by Chinese mathematics (via Korea), especially in its

early stages
■ Flourished primarily during the Edo period (1603–1868), a time of

national isolation (Sakoku policy)
■ This isolation allowed Wasan to develop along its own unique trajectory,

focusing on specific types of problems and methodologies
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Japanese mathematics (Wasan)

Characteristics of Wasan:
■ Emphasis on geometric problems, often

very intricate
■ Solutions usually presented as algorithms,

often without formal proofs as in Greek
tradition

■ Often highly competitive, with
mathematicians challenging each other

Kokon sankan, Mathematical Library,
Department of Mathematics, Kyoto University

Key figures:
■ Seki Takakazu (∼1642–1708): Often called the “Newton of Japan”
■ Takebe Katahiro (∼1664–1739): Pupil of Seki
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Sangaku

Sangaku (算算算額額額): Temple Geometry
■ Beautiful wooden tablets hung in Shinto

shrines and Buddhist temples
■ Contained intricate geometric problems

and their solutions (sometimes just the
problem statement as a challenge)

■ Offered by individuals to deities as
offerings, or as intellectual challenges to
others

■ Showcases a unique blend of mathematics,
art, and spirituality

■ Problems often involved circles, ellipses,
and other curves tangent to each other
within larger shapes

Examples of Sangaku problems
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Seki Takakazu

Seki Takakazu’s advanced contributions:
■ Developed a new algebraic notation system
■ Pioneered the concept of determinants (around 1683), used for solving

systems of linear equations, predating Leibniz’s work
■ Discovered Bernoulli numbers independently (used in sums of powers)
■ Developed methods for calculating definite integrals and volumes,

including early ideas akin to calculus, (he introduced a form of
infinitesimal calculus using “enri” or circle principle)

■ His work remained largely unknown outside Japan due to the period of
isolation

A path diverted: Wasan showcased a highly sophisticated mathematical
culture, but its isolation meant its innovations did not directly influence the
global mathematical mainstream until much later
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Global contributions to early mathematics

Diverse paths, universal principles
■ Indian Mathematics:

□ The revolutionary decimal place-value system and the concept of zero
□ Advanced algebra (negative numbers, Pell’s equation)
□ Origins of sine/cosine functions and the remarkable Kerala School’s

infinite series (proto-calculus)
■ Chinese Mathematics:

□ Highly practical and algorithmic approach.
□ Sophisticated methods for solving linear systems (Gaussian elimination)
□ Accurate π approximations and solutions for higher-degree equations
□ Independent discovery of Pascal’s triangle

■ Japanese (Wasan) Mathematics:
□ Unique development during isolation, often in the form of elegant

geometric puzzles (Sangaku).
□ Advanced concepts like determinants and early calculus methods (enri) by

Seki Takakazu
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Global contributions to early mathematics

These rich and diverse traditions demonstrate that fundamental mathematical
ideas emerged independently across different cultures, often driven by unique
intellectual and practical needs, contributing immensely to the global tapestry
of mathematical knowledge
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History of Mathematics: Lecture 6

Syllabus:
The Islamic Golden Age

■ A bridge of knowledge and innovation



The Islamic Golden Age

A period of unprecedented intellectual flourishing:
■ Spanning roughly the 8th to the 14th centuries CE
■ Characterised by the collection, translation, and vigorous advancement of

knowledge from diverse cultures
■ Mathematics was a central pillar, fuelled by religious (e.g., qibla,

inheritance), administrative (e.g., taxation, land division), and scientific
(e.g., astronomy) needs
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The historical context

The rise of the Islamic empire:
■ Rapid expansion from the 7th century CE, connecting vast regions from

Spain to India
■ This created a unique cultural melting pot, bringing together Persian,

Indian, Greek, and other intellectual traditions
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The Abbasid caliphate

The Abbasid Caliphate (∼750–1258 CE):
■ Shifted political power eastward from

Damascus to Baghdad
■ Patronised learning, science, and the

arts as a matter of state policy
■ Sought to consolidate knowledge from

across their vast empire and beyond The Abbasid Caliphate at its height
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Baghdad

Baghdad: The intellectual capital
■ Founded in 762 CE, it quickly became the largest city in the world and a

centre of commerce and learning
■ Home to scholars from diverse backgrounds and faiths, fostering an

environment of open inquiry

A civilisation built on knowledge: The political stability and active
patronage created fertile ground for intellectual pursuits, particularly in
mathematics and astronomy
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The House of Wisdom

The House of Wisdom (Bayt al-Hikmah):
■ Established in Baghdad by Caliph Harun

al-Rashid, expanded significantly under
Caliph al-Ma’mun (∼early 9th century CE)

■ More than just a library: it was an
academy, translation bureau, and research
centre

■ Attracted scholars (mathematicians,
astronomers, physicians, philosophers)
from across the empire and beyond

The House of Wisdom
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The translation movement

■ A massive, systematic effort to translate ancient texts into Arabic
■ Greek texts: Euclid’s “Elements”, Ptolemy’s “Almagest”, Archimedes’

works, Diophantus’s “Arithmetica”
■ Indian texts: Siddhantas (astronomical treatises), mathematical works

on decimal system and algebra
■ Persian texts; Astronomical tables and other scientific works
■ Funded lavishly; translators were highly respected and well-paid

More than just translation: Scholars didn’t just translate; they
commented, critiqued, synthesised, and expanded upon the ancient
knowledge, often correcting errors and resolving inconsistencies. This was the
start of original research
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The Hindu-Arabic numeral system

The power of a symbol system:
■ Recall the Indian invention of the

decimal place-value system and the
concept of zero

■ Islamic scholars recognised its
immense superiority over existing
numeral systems (e.g., Roman
numerals, Greek alphabetic numerals)

■ Allowed for vastly more efficient
arithmetic operations (addition,
subtraction, multiplication, division)

Evolution of Hindu-Arabic Numerals (via Islamic scholarship)
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The Hindu-Arabic numeral system

Adoption and transmission:
■ Introduced to the Islamic world primarily

through translations of Indian
astronomical and mathematical texts (e.g.,
Brahmagupta’s works)

■ Al-Khwarizmi’s text, Book on Addition
and Subtraction after the Method of the
Hindus (∼825 CE), was crucial

■ This system was then transmitted to
Europe through trade, scholarship, and
conquest (e.g., through Islamic Spain,
Sicily)

■ It took centuries for Europe to fully adopt
it over Roman numerals

Impact on calculation:
■ Made long multiplication

and division practical
■ Facilitated the

development of
commercial arithmetic and
advanced astronomical
calculations

■ Paved the way for decimal
fractions
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Muhammad ibn Musa al-Khwarizmi

A scholar of the House of Wisdom (∼780–850 CE):
■ Persian mathematician and astronomer, active in the House of Wisdom in

Baghdad
■ His two most influential works profoundly shaped global mathematics:

1. Kitāb al-mukhtas.ar f̄ı h. isāb al-jabr wa’l-muqābala
(The Compendious Book on Calculation by Completion and Balancing)

2. Kitāb al-Jam wa’l-tafr̄ıq bi-h. isāb al-Hind
(Book on Addition and Subtraction after the Method of the Hindus)
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Muhammad ibn Musa al-Khwarizmi

The origin of algebra:
■ The term “Algebra” comes from the Arabic title of his first book, al-jabr
■ Al-jabr : “completion” or “restoration”, referring to transposing negative

terms to the other side of an equation to make them positive, e.g.,
x −2= 5 =⇒ x = 5+2

■ Al-muqābala: “balancing” or “reduction”, referring to combining like
terms on opposite sides of an equation, e.g., 2x +5= x +7 =⇒ x +5= 7
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Muhammad ibn Musa al-Khwarizmi

The origin of algorithms:
■ The term “Algorithm” derives from the Latinisation of Al-Khwarizmi’s

name: “Algorismi”
■ It refers to any systematic procedure for solving a mathematical problem
■ His second book, describing arithmetic with Indian numerals, was

foundational for teaching these “algorithms”

A new mathematical discipline: Al-Khwarizmi defined algebra as a distinct
mathematical discipline, systematically solving linear and quadratic equations,
moving beyond specific problems to general methods
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Systematic approach to quadratic equations

Classification of quadratics:
■ Al-Khwarizmi recognised three canonical forms of quadratic equations (all

terms positive, as negative numbers were not yet fully accepted in this
context for solutions):

1. “Squares equal to roots”: ax2 = bx , e.g., x2 = 5x
2. “Squares equal to numbers”: ax2 = c, e.g., x2 = 9
3. “Roots equal to numbers”: bx = c. e.g., 3x = 12

■ And three mixed cases:
4. “Squares and roots equal to numbers”: ax2 +bx = c, e.g., x2 +10x = 39
5. “Squares and numbers equal to roots”: ax2 +c = bx , e.g., x2 +21= 10x
6. “Roots and numbers equal to squares”: bx +c = ax2, e.g., 3x +4= x2
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Systematic approach to quadratic equations

Solution Method (Example: x2 +10x = 39):
■ His methods were described in words (rhetorical algebra), not symbols
■ He provided geometric proofs for the solutions
■ For x2 +10x = 39:

1. “Halve the number of roots, which is 5. Multiply this by itself, 25. Add this
to 39, which is 64. Take the root, 8. Subtract half the number of roots, 5.
The result is 3”

2. Thus, x = 3. (Equivalent to x =
q

(10/2)2 +39− (10/2))
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Systematic approach to quadratic equations

Geometric justification
(completing the square):

■ Represent x2 as a square, 10x as two
rectangles (5x each)

■ “Complete the square” by adding a
square of area 52 = 25

■ The total area is
x2 +10x +25= (x +5)2 = 39+25= 64

■ So, x +5=
p

64= 8 =⇒ x = 3
Al-Khwarizmi’s geometric method for x2 +10x = 39
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Advanced algebra: Beyond the quadratic

Omar Khayyam (∼1048–1131 CE):
■ Persian polymath: mathematician, astronomer, philosopher, and poet
■ Wrote Treatise on Demonstration of Problems of Algebra, classifying and

solving cubic equations
■ His method was primarily geometric: finding the roots as the

intersection points of conic sections (parabolas, hyperbolas, circles)
■ Recognised that cubics could have multiple roots and sometimes no

positive
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Advanced algebra: Beyond the quadratic

Example: Solving x3 +bx = a geometrically
■ First, the equation is rewritten as x3 +B2x =B2A

where B =
p

b and A= a/b
■ Khayyam would find the intersection of a parabola

x2 =By and the semi-circle of diameter A as in figure
■ The intersection point individuates the length x in red,

which is a root, and the height z = x2/B
■ Then (A−x)/z = z/x because the diameter and the

intersection point form a right triangle
■ Hence B(A−x)/x2 = x/B, i.e., x3 +B2x =B2A

This linked algebra to geometry in a powerful way, extending methods from
the Greeks.
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Advanced algebra: Beyond the quadratic

Sharaf al-D̄ın al-Tūs̄ı (∼1135–1213 CE):
■ Persian mathematician
■ Developed a truly algebraic method for solving cubic equations that

involved finding the maximum value of a cubic polynomial
■ This implied an early understanding of derivatives and polynomial roots,

a significant step towards algebraic calculus

Bridging geometry and algebra: These methods pushed the boundaries of
algebra by employing both geometric visualisation and new analytical
techniques to solve problems previously intractable
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Number theory and combinatorics

Thabit ibn Qurra (∼826–901 CE): Amicable numbers
■ A prominent scholar of the House of Wisdom
■ Made significant contributions to number theory, geometry, and

astronomy
■ Discovered a theorem for finding amicable numbers
■ Amicable numbers Two different numbers such that the sum of the

proper divisors of each equals the other
□ Example: 220 and 284
□ Proper divisors of 220: 1, 2, 4, 5, 10, 11, 20, 22, 44, 55, 110. Sum = 284
□ Proper divisors of 284: 1, 2, 4, 71, 142. Sum = 220

■ Thabit’s formula: If p = 3 ·2n−1 −1, q = 3 ·2n −1, r = 9 ·22n−1 −1 are all
prime numbers for n > 1, then 2npq and 2nr are amicable numbers
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Number theory and combinatorics

Combinatorics: Binomial coefficients and Pascal’s triangle
■ Recall the “Yang Hui’s triangle” from Chinese mathematics
■ Islamic mathematicians also studied arrangements and combinations,

essential for cryptography, grammar, and astronomy
■ Al-Karaji (∼953–1029 CE): Extended algebraic operations to powers and

roots, using a form of the binomial theorem for integer exponents
■ Al-Samaw’al (∼1130–1180 CE): Further developed work on polynomial

division and negative powers
■ Al-Kashi (∼1380–1429 CE): Explicitly presented a version of Pascal’s

triangle for calculating binomial coefficients, long before Pascal

From number patterns to general rules: These contributions demonstrate
a sophisticated understanding of number theory and combinatorial principles
that anticipated later European developments
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The full development of trigonometry

Beyond chords: From India to a
complete system

■ Recall Greek trigonometry
(chords) and Indian
trigonometry (sine/cosine)

■ Islamic scholars translated and
absorbed both traditions, then
significantly expanded upon
them

■ Driven by the needs of
astronomy (celestial navigation,
calculating qibla direction), they
systematised and generalised
trigonometric concepts

Key figures and innovations:
■ Al-Battani

(∼858–929 CE, “Albategnius”):
□ Introduced the use of the sine and

tangent functions systematically
□ Created the first tables for all sine

and tangent values from 0◦ to 90◦
at 1◦ intervals

□ Used trigonometric ratios in his
astronomical calculations

■ Abu al-Wafa’ al-Buzjani
(∼940–998 CE):

□ Introduced the secant and
cosecant functions

□ Developed improved methods for
constructing sine tables
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The full development of trigonometry

Modern trigonometry emerges:
■ By the 10th century, Islamic

mathematicians had defined all six
trigonometric functions (sine,
cosine, tangent, cotangent, secant,
cosecant)

■ They established the fundamental
relationships between these
functions (e.g.,
tanx = sinx/cosx)

■ Developed highly accurate
trigonometric tables

Spherical trigonometry:
■ Crucial for astronomy and

calculating directions on the
Earth’s surface (e.g., direction to
Mecca, the qibla)

■ Developed the law of sines for
spherical triangles and the laws
of cosines for spherical triangles

■ Nasir al-Din al-Tusi
(∼1201–1274 CE): Wrote the first
treatise on trigonometry
independent of astronomy

A foundation for modern calculation; The complete system of trigonometry
developed in the Islamic world was a direct precursor to the European rebirth
of the field and enabled precise calculations in navigation and astronomy
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Constructions and insights into Euclid

Refining Euclidean geometry:
■ Islamic scholars rigorously

studied, translated, and
commented on Euclid’s
“Elements”

■ Many mathematicians
attempted to “prove” Euclid’s
controversial Parallel
postulate

The parallel postulate and its
implications:

■ “If a straight line falling on two
straight lines makes the interior angles
on the same side less than two right
angles, the two straight lines, if
produced indefinitely, meet on that
side on which are the angles less than
the two right angles”

■ Attempts to prove it led to defining
what we now call Saccheri
quadrilaterals and exploring
alternatives
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Constructions and insights into Euclid

■ Omar Khayyam (11th CE) and Nasir al-Din al-Tusi (13th CE)
constructed various equivalent statements and explored the consequences
of denying it

■ Their work laid crucial groundwork for the later development of
Non-Euclidean geometries in the 19th century
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Constructions and insights into Euclid

Islamic geometric patterns: mathematics as art

Geometric constructions and transformations:
■ Developed sophisticated geometric

constructions, often using straightedge and
compass

■ Investigated geometric transformations
(rotations, reflections, translations) in relation
to art and architecture (e.g., tessellations,
patterns in mosques)

■ Ibn al-Haytham (∼965–1040 CE, “Alhazen”):
□ Pioneer in optics, solving “Alhazen’s problem” (finding the point on a

spherical mirror where light reflects to a given point). This involved solving
a fourth-degree equation

□ His geometrical work on optics had profound influence
■ Islamic geometry was not only theoretical but also deeply integrated into

art, architecture, and practical engineering
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Astronomy

Astronomy as a scientific
imperative:

■ Religious obligations (prayer
times, qibla direction, lunar
calendar) provided strong
motivation for accurate
astronomy

■ Navigational needs for trade
and pilgrimage

■ Islamic astronomers built upon
Greek (Ptolemy) and Indian
(Siddhantas) models, making
extensive new observations

New observatories and instruments:
■ Established sophisticated observatories

(e.g., Maragha, Samarkand), funded
by rulers

■ Developed highly accurate
instruments:

□ Astrolabe: Used for solving
astronomical problems (e.g., finding
time, latitude, positions of stars)

□ Quadrant and sextant: For
measuring angles of celestial bodies

■ These required advanced mathematical
understanding for their design and use
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Astronomy

Refining astronomical models:
■ Critiqued and improved Ptolemaic models, sometimes

proposing alternatives to geocentric models
■ Al-Biruni (∼973–1048 CE):

□ Polymath, made significant contributions to
geography (measured Earth’s radius accurately),
astronomy, and mapping

□ Discussed Earth’s rotation
■ Al-Tusi’s couple: A geometric construction that

explained the linear motion from two circular motions,
used to replace the equant in Ptolemaic models

An intricately crafted Islamic
astrolabe

Mathematics as the language of the cosmos: Mathematical tools were
indispensable for unravelling the mysteries of the universe, leading to
increasingly precise understanding of celestial mechanics
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A global catalyst for mathematics

From preservation to illumination and transmission
■ Guardians of ancient knowledge:

□ Preserved, translated, and critically engaged with Greek (Euclid, Ptolemy,
Archimedes) and Indian (decimal system, algebra) mathematical texts

□ Acted as the vital intellectual bridge between antiquity and the European
Renaissance

■ Revolutionary innovations:
□ Algebra established as a distinct field (Al-Khwarizmi)
□ Widespread adoption and spread of the Hindu-Arabic numeral system

and zero
□ Development of the full system of trigonometry (all six functions,

spherical trigonometry)
□ Advances in number theory (amicable numbers, Thabit ibn Qurra) and

methods for solving higher-degree equations (Omar Khayyam, Sharaf
al-Din al-Tusi)

□ Proto-concepts of non-Euclidean geometry and calculus
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A global catalyst for mathematics

From preservation to illumination and transmission
■ Interdisciplinary excellence:

□ Deep integration of mathematics with astronomy, engineering, optics, and
architecture

□ Development of advanced scientific instruments and observatories

The mathematical achievements of the Islamic Golden Age were not merely a
re-telling of past ideas, but a dynamic crucible of original thought, refinement,
and transmission that fundamentally shaped the course of global scientific
progress for centuries
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History of Mathematics: Lecture 7

Syllabus:
■ The Middle Ages
■ The Renaissance



European mathematics: The middle ages

Beyond the “dark ages” myth: preservation and practicality

What was the European middle ages?
■ Period between the fall of the Western Roman empire and the

Renaissance (∼500–1400 CE)
■ Characterised by localised political structures, the rise of Christianity, and

evolving social systems

Mathematics in the “dark ages”?
■ The term “dark ages” is largely a misnomer, especially for intellectual life
■ Original mathematical innovation was limited, particularly compared

to the Islamic world or ancient Greece/India
■ Focus was on preservation, basic utility, and theological interpretation of

classical knowledge
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Medieval mathematical endeavours

Centres of learning:
■ Monasteries and Cathedrals: Key repositories of knowledge, copying

manuscripts (including classical texts)
■ Early universities (11th–12th CE onwards): Formed in Bologna, Paris,

Oxford; initially focused on theology, law, medicine, and the liberal arts
■ Mathematics taught as part of the Quadrivium (arithmetic, geometry,

astronomy, music) within the seven liberal arts

Medieval Scriptorium: Preserving knowledge through copying
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Medieval mathematical endeavours

University of Bologna

Key practical applications:
■ Computus: The complex

calculation of the date of Easter,
requiring astronomical and
arithmetical knowledge

■ Rudimentary arithmetic: For
commerce, accounting, and basic
surveying

■ The abacus: Remained the
primary computational tool, often
using Roman numerals

Limited innovation, vital preservation: While not a period of dramatic
mathematical breakthroughs in Europe, the Middle Ages were crucial for
preserving a fragmented classical heritage and maintaining a foundational
level of mathematical literacy
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Translation from Arabic to Latin

The intellectual gap:
■ After the fall of Rome, much of

the advanced Greek and Indian
mathematical knowledge was lost
to Western Europe

■ Meanwhile, the Islamic world had
preserved, translated, and
significantly advanced this
knowledge (as we’ve seen!)

Translation centres
(11th–13th centuries CE):

■ Toledo, Spain: After its
reconquest from Muslim rule,
became a major hub for
translation

■ Sicily: Another important point of
cultural and intellectual exchange

■ Scholars (often Christian, some
Jewish) travelled to these centres
to learn Arabic and translate texts
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Translation from Arabic to Latin

Key translators:
■ Adelard of Bath (∼1080–1152 CE):

□ Translated Euclid’s “Elements” (first Latin translation from Arabic)
□ Introduced Hindu-Arabic numerals to England

■ Gerard of Cremona (∼1114–1187 CE):
□ The most prolific translator, translating over 70 Arabic books into Latin
□ Included Ptolemy’s “Almagest”, Al-Khwarizmi’s “Algebra”, and works by

Archimedes, Hippocrates, and others

Re-awakening European thought: This massive influx of sophisticated
mathematical, astronomical, and philosophical texts from the Islamic world
was arguably the single most important factor in the subsequent intellectual
awakening of Europe
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The impact of Hindu-Arabic numerals

A slow revolution:
■ The Hindu-Arabic numeral system (including zero and place value) was

known in Europe from the 10th–11th centuries (Gerbert of Aurillac,
Adelard of Bath)

■ However, its adoption was very slow due to:
□ Entrenched use of Roman numerals and abacus
□ Distrust of foreign methods (“devil’s arithmetic”)
□ Lack of a centralised authority to mandate change
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The impact of Hindu-Arabic numerals

Leonardo Fibonacci (∼1175–1250 CE):
■ Born in Pisa, Italy (a major trading centre)
■ Travelled extensively in the Mediterranean (North Africa, Middle East),

learning mathematical methods
■ His most famous work: Liber Abaci , Book of calculation (1202)
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The impact of Hindu-Arabic numerals

Liber Abaci ’s impact:
■ A comprehensive treatise on arithmetic and algebra extensively using

Hindu-Arabic numerals
■ Introduced the system to a wider European audience through numerous

practical examples (commerce, weights, measures, proportions)
■ Demonstrated the system’s superior efficiency compared to Roman

numerals for merchants and bankers
■ Also contained the famous “Fibonacci sequence”

(though not its primary purpose)
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The impact of Hindu-Arabic numerals

A page from Fibonacci’s Liber Abaci

Laying the foundations for modern
arithmetic: Fibonacci’s “Liber Abaci”
was a critical step in the eventual
triumph of the Hindu-Arabic numeral
system in Europe, revolutionising
calculation
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The Renaissance

What was the Renaissance? A new spirit of inquiry (∼14th–17th century)
■ Literally “rebirth” (French)
■ Period of intense cultural, artistic, political, and scientific “rebirth” in

Europe, following the Middle Ages
■ Began in Italy (14th century, Florence), then spread across Europe

A new intellectual climate:
■ Humanism: Renewed focus on human potential, achievements, and the

study of classical (Greek and Roman) texts directly
■ The printing press (Gutenberg, ∼1440): Revolutionised the

dissemination of knowledge, making mathematical texts more widely
available with respect to previous times

■ Emphasis on observation & practicality: Growing interest in describing
and understanding the natural world, engineering, commerce, and art
with precision
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Mathematics in art

The challenge for artists:
■ How to represent three-dimensional space and objects accurately on a

two-dimensional surface?
■ Medieval art often lacked realistic depth

Filippo Brunelleschi
(∼1377–1446 CE):

■ Florentine architect and engineer
■ Credited with demonstrating the

principles of linear perspective
around 1415

■ Used mathematical principles
(geometry, optics) to create a
consistent illusion of depth

Piero della Francesca
(∼1415–1492 CE):

■ Painter and mathematician
■ Applied rigorous mathematical

principles to his paintings,
showcasing perfect perspective

■ Wrote treatises on perspective and
solid geometry
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Mathematics in art

Leon Battista Alberti (∼1404–1472 CE):
■ Architect and theorist
■ Codified the rules of linear perspective in

his treatise De pictura (On Painting, 1435)
■ Described how to use a single “vanishing

point” to create proportional recession

Albrecht Dürer (∼1471–1528 CE):
■ German painter, print maker, and theorist
■ Wrote influential books on geometry and

perspective, making these ideas accessible
■ Developed methods for drawing various

objects in perspective

Diagram illustrating principles of linear perspective

A practical Renaissance for
geometry: The quest for
realistic representation in art
directly spurred a renewed
interest in and practical
application of geometry,
laying groundwork for later
advancements in projective
geometry
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The Italian algebra school

The Mathematical challenge:
■ For centuries, mathematicians had

systematically solved linear and
quadratic equations (e.g., from
Babylonians, Greeks, Islamic
scholars)

■ The cubic equation
(ax3 +bx2 +cx +d = 0) remained
intractable

■ No general algebraic formula was
known for its roots.

The “Scuola d’Algebra”
(School of Algebra):

■ Flourished in 16th century Italy,
driven by public challenges and
intellectual rivalry

■ These mathematicians were often
independent scholars, teachers,
and sometimes associated with
universities

■ The quest to solve the cubic
became a highly competitive secret
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The Italian algebra school

Key cities of the Italian Algebra School

Why the secrecy?
■ Knowing how to solve cubics

offered prestige and financial
advantage (e.g., solving problems
for patrons, winning public
debates)

■ Formulas were kept secret to
maintain competitive edge

A period of intense discovery: The 16th century in Italy saw a dramatic
shift in algebra, moving beyond classical geometric methods to seek general
algebraic solutions

( 184 )



The cubic equation

Scipione del Ferro (∼1465–1526 CE):
The first solver

■ Professor at the University of Bologna
■ Secretly discovered a general method to solve one

form of the cubic equation: x3 +px = q
■ Did not publish his method, but shared it with a

few students, including Antonio Fiore
Niccolò Fontana Tartaglia (∼1500–1557 CE):
The public solver

■ Re-discovered the solution to the cubic
x3 +px = q (and x3 +q = px)

■ Famous for winning public mathematical contests,
notably against Fiore, by solving cubics

■ Initially refused to share his secret formula

Niccolò Fontana Tartaglia
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The cubic equation

Gerolamo Cardano (∼1501–1576 CE):
The publisher

■ Physician, astrologer, and brilliant mathematician
■ Persuaded Tartaglia to share his secret formula

under an oath of secrecy
■ Later discovered (through del Ferro’s papers) that

Tartaglia was not the first, feeling released from
his oath

■ Published the formula in his groundbreaking book,
Ars Magna (The Great Art), in 1545 Gerolamo Cardano
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The cubic equation

Cardano’s formula (for x3 +px = q):

x = 3

vuutq
2 +

s³q
2

´2
+
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3

´3
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+
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This formula revealed a profound, complex challenge for numbers!
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The quartic equation

Ludovico Ferrari (∼1522–1565 CE):
The quartic solver

■ Cardano’s student
■ Building on the cubic solution,

he discovered a method to solve
the quartic equation
(ax4 +bx3 +cx2 +dx +e = 0)

■ His method involved reducing
the quartic to a cubic, thus
relying on Cardano’s formula

■ This was also published in
Cardano’s Ars Magna

The “irreducible case” of the cubic:
■ A major problem arose when

applying Cardano’s cubic formula to
equations like x3 −15x = 4

■ The formula yields:
x = 3p2+

p
−121+ 3p2−

p
−121

■ This involves square roots of
negative numbers, even though the
equation has three real roots
(x = 4,x =−2+

p
3,x =−2−

p
3)

■ This forced mathematicians to
confront these “imaginary”
quantities
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The quartic equation

Rafael Bombelli (∼1526–1572 CE):
Embracing the impossible

■ Engineer and mathematician
■ In his L’Algebra (1572), he systematically introduced and operated with

square roots of negative numbers
■ He showed how these “impossible” numbers could combine to yield real

solutions for the cubic equation
■ Example: He demonstrated that ( 3p2+

p
−121) could be expressed in

terms of (2+
p
−1) and its conjugate

■ This was the true birth of complex numbers as a necessity for algebra

From algebraic necessity to new numbers: The solution of the cubic
equation, paradoxically, forced mathematicians to acknowledge and work with
numbers previously deemed impossible, fundamentally expanding the concept
of “number”
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The dawn of symbolic algebra

François Viète

François Viète (∼1540–1603 CE):
■ Lawyer and advisor to French kings, but a

dedicated mathematician
■ Recognised the limitations of rhetorical

(word-based) and syncopated
(abbreviated) algebra

■ His major work: In Artem Analyticam
Isagoge (Introduction to the Analytical
Art, 1591)
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The dawn of symbolic algebra

The revolution of symbolic algebra:
■ Introduced the use of letters for both known quantities (coefficients)

(vowels: A, E, I, O, U) and unknown quantities (variables) (consonants:
B, C, D. . . )

■ Allowed for the expression of general formulas and theorems, not just
solutions to specific numerical problems

■ Example: Instead of “the cube plus six times the side equals twenty”,
write B3 +6B = 20 (if B is the unknown)

■ This was a massive conceptual leap, abstracting algebra from specific
numbers and from a strict geometrical interpretation
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The dawn of symbolic algebra

Viète’s contributions beyond notation:
■ He developed a number of relationships between the roots and

coefficients of polynomial equations
■ Used his new notation to simplify and systematise many algebraic and

trigonometric problems
■ He is also known for his work on computing π using infinite products

(Viète’s formula)

A foundation for modern algebra: Viète’s symbolic notation was pivotal. It
transformed algebra into a powerful abstract tool, enabling the work of
Descartes, Fermat, and the later development of calculus
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Renaissance geometry

Beyond perspective:
Other geometric explorations

■ While linear perspective was a major driver,
Renaissance mathematicians also continued to
study classical Euclidean geometry

■ Albrecht Dürer (∼1471–1528 CE):
□ Beyond art, his books (Underweysung der

Messung, 1525) systematically explored
practical geometry

□ Covered polygons, curves, solids, and methods
for projections (descriptive geometry)

■ Emphasis shifted from purely abstract proofs
(though still valued) to precise construction and
application

Albrecht Dürer’s geometric constructions
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Early scientific connections

Mathematics: The language of the universe
■ A profound philosophical shift occurred: the belief that the universe was

ordered mathematically
■ This idea, present in ancient Greece, was powerfully re-asserted
■ Mathematicians were central to the new science
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Early scientific connections

Early scientific revolution figures:
■ Nicolaus Copernicus (∼1473–1543 CE): Used advanced geometry and

trigonometry to develop his heliocentric model
■ Johannes Kepler (∼1571–1630 CE): Derived his laws of planetary

motion from astronomical observations using geometric and algebraic
methods

■ Galileo Galilei (∼1564–1642 CE): Applied mathematical principles to
physics, describing motion with algebraic formulas and geometric
diagrams

From abstract to applied: Mathematics was increasingly seen as the
essential tool for understanding and describing the physical world, driving a
convergence of theory and experiment

( 195 )



The invention of logarithms

The problem: Astronomical calculations
■ By the late Renaissance, astronomical data and calculations

(multiplication of large numbers, division, finding roots) were becoming
incredibly complex and time-consuming

■ The need for a way to simplify these computations was immense

( 196 )



The invention of logarithms

John Napier, inventor of logarithms

John Napier (∼1550–1617 CE):
The Scottish Baron

■ Published his work Mirifici
Logarithmorum Canonis Descriptio
(Description of the Wonderful Canon
of Logarithms) in 1614

■ Developed logarithms based on a
mechanical concept of points moving
along lines

■ His initial logarithms were “Napierian”
(base 1/e)
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The invention of logarithms

Jost Bürgi (∼1552–1632 CE):
The Swiss clock maker

■ Independently developed logarithms
around the same time as Napier

■ His tables were published later (1620)

Henry Briggs (∼1561–1630 CE):
Towards base 10

■ Collaborated with Napier to
convert his logarithms to the
more practical base 10

■ This form became the
standard for practical
computation

The ultimate calculator of its time: Logarithms transformed calculation,
making complex multiplication and division into simple addition and
subtraction. They were indispensable for astronomy, navigation, and
engineering for centuries
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Conclusion: From recovery to revolution

Laying the groundwork for modern mathematics
■ The Middle Ages:

□ A period of crucial preservation of classical texts
□ The vital translation movement from the Islamic world re-introduced

advanced knowledge to Europe
□ Gradual adoption of Hindu-Arabic numerals (Fibonacci)

■ The Renaissance:
□ Fostered by a new spirit of humanism, observation, and practicality

(printing press)
□ Linear perspective in art spurred geometric advancements
□ Dramatic breakthroughs in algebra: solving cubic and quartic equations

(Italian School)
□ The necessary emergence of complex numbers (Bombelli)
□ The invention of symbolic algebra (Viète), a fundamental conceptual leap
□ The revolutionary computational tool of logarithms (Napier)
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Conclusion: From recovery to revolution

Laying the groundwork for modern mathematics
■ Mathematics as the Language of Science:

□ Became central to understanding the natural world, fuelling the nascent
Scientific Revolution (Copernicus, Kepler, Galileo)

This period transformed mathematics from a fragmented heritage into a
vibrant, abstract, and powerfully applied discipline, ready for the explosion of
analytical geometry and calculus in the 17th century
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History of Mathematics: Lecture 8

Syllabus:
Mathematics in the 17th century

■ The dawn of modernity



Revolutionary ideas and foundational tools

A pivotal era:
■ The 17th century (roughly 1600–1700 CE) stands as a watershed moment

in the history of mathematics
■ It saw the invention of radically new mathematical fields and powerful

tools that remain central to science and engineering today
■ It was an era marked by profound intellectual shifts and unprecedented

scientific discovery
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The scientific revolution

Astronomical transformation:
■ Building on Copernicus: Johannes

Kepler’s laws of planetary motion
(early 17th century)

□ Described elliptical orbits and
variable speeds

□ Required more sophisticated
mathematical tools Key figures of the Scientific Revolution: Kepler, Newton, Galileo

■ Galileo Galilei’s telescopic observations and work on mechanics
□ Challenged Aristotelian physics
□ Emphasised observation and mathematical description of natural phenomena
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The scientific revolution

The birth of modern physics:
■ The century culminates with Isaac

Newton’s Principia Mathematica
(1687)

□ Unified celestial and terrestrial
mechanics under universal laws

□ Expressed these laws in the
language of mathematics

■ This required tools to describe
change, motion, rates, and
accumulation — setting the
stage for calculus

Philosophical currents:
■ Rationalism (e.g., René

Descartes): Emphasised reason,
deduction, and mathematical
clarity as paths to knowledge

■ Empiricism (e.g., Francis Bacon,
John Locke): Stressed observation
and experimentation, often leading
to data that needed mathematical
analysis

■ These philosophies promoted
mathematics as the fundamental
language of nature
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The rise of scientific societies

The Royal Society of London

Accademia del Cimento in Florence

Institutionalisation of Science:
■ Establishment of formal scientific societies across

Europe: for example
□ Accademia del Cimento (Florence, 1657)
□ Royal Society of London (1660)
□ Académie des Sciences (Paris, 1666)

■ Provided platforms for collaboration, publication, peer
review, and funding

■ Fostered a competitive yet collaborative environment
for mathematical and scientific discovery
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The need for computation

The growing demand for calculation:
■ The new astronomy and physics required increasingly complex and precise

calculations (e.g., planetary orbits, trajectories)
■ Navigation and commerce also demanded better tools for calculation
■ While logarithms were a great leap, there was a drive for even more

efficient methods and theoretical foundations for understanding
continuous change

■ This practical need, plus philosophical inquiry, set the stage for calculus

A century primed for mathematical revolution: The intellectual climate,
scientific challenges, and institutional support of the 17th century created an
unprecedented environment for mathematical innovation
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René Descartes

A giant of thought (∼1596–1650 CE):
■ French philosopher, scientist, and

mathematician
■ Often called the “Father of Modern

Philosophy”.
■ His famous dictum: “Cogito, ergo

sum” (“I think, therefore I am”)
■ Emphasised rationalism and the

pursuit of certainty through clear and
distinct ideas, often inspired by
mathematics

René Descartes
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René Descartes

The Discourse on Method (1637):
■ His seminal philosophical work
■ Included three appendices, one of

which was La Géométrie (The
Geometry)

■ This appendix, just 100 pages,
profoundly transformed
mathematics

Motivation for La Géométrie:
■ To demonstrate the power of his

new philosophical method by
applying it to mathematics

■ To solve classical geometric
problems using algebraic
techniques

■ To make geometry more
systematic and less reliant on
individual ingenuity
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René Descartes

Descartes’ vision:
■ To unify all scientific knowledge under a single, universal method based

on mathematical reasoning
■ Algebra, with its precise rules, offered the perfect tool for analysing and

solving geometric problems

The power of methodical thought: Descartes sought to bring the clarity
and certainty of arithmetic and algebra into geometry, creating a new way to
understand shapes and spaces
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The Cartesian coordinate system

Illustrating the Cartesian coordinate system

The revolutionary idea:
■ Descartes’ key insight: Any point

in a plane can be precisely located
by a pair of numbers (coordinates)

■ Any curve or geometric shape can
then be represented by an
algebraic equation

■ Conversely, any algebraic equation
in two variables can be represented
as a geometric curve
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Unifying algebra and geometry

Setting up the system
(Descartes’ approach):

■ Started with a single reference line
(the x-axis).

■ Distinguished lengths (variables
x ,y ,z) from fixed magnitudes
(constants a,b,c)

■ Used equations to define curves.
For example, a circle centred at
the origin: x2 +y2 = r2

■ While not identical to modern
orthogonal coordinates (he often
used oblique axes), the
fundamental principle was there

Example: Solving a geometric
problem algebraically

■ Instead of complex geometric
constructions, problems could be
translated into equations

■ Find the intersection of two lines:
Solve their two algebraic equations
simultaneously

■ Determine properties of a curve:
Analyse its defining equation
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Unifying algebra and geometry

Impact of this unification:
■ Allowed for the application of powerful algebraic techniques to solve

geometric problems that were previously very difficult or impossible
■ Provided a systematic, analytical method for geometry, reducing reliance

on visual intuition for complex cases
■ Laid the essential groundwork for the development of calculus, which

inherently deals with curves and their properties (tangents, areas)

A synthesis that defined modern mathematics: Analytical geometry
bridged the gap between two previously distinct branches of mathematics,
creating a powerful new analytical tool
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Pierre de Fermat

A contemporary genius (∼1601–1665 CE):
■ French lawyer and amateur mathematician
■ Often called the “Prince of Amateurs” due to his

profound contributions despite not being a
professional academic

■ Worked in relative isolation, communicating
primarily through letters

Pierre de FermatIndependent discovery of analytical geometry:
■ Developed similar ideas to Descartes regarding the relationship between

equations and curves
■ His manuscript, Ad locos planos et solidos isagoge (Introduction to Plane

and Solid Loci), was written around 1636, roughly concurrent with
Descartes’ work

■ It was published posthumously in 1679
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Pierre de Fermat

Fermat’s other contributions (prelude to calculus):
■ Developed a method for finding the maxima and minima of functions by

setting the derivative to zero (a precursor to differential calculus)
■ Found methods for calculating areas under curves (a precursor to

integral calculus)
■ His work on tangents and quadratures directly influenced Newton
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Pierre de Fermat

Fermat’s legacy beyond analytical geometry:
■ Number theory: Famously known for “Fermat’s Last Theorem” and his

work on prime numbers and divisibility
■ Probability theory: Co-founded probability theory with Pascal through

their correspondence on gambling problems
■ Optics: Fermat’s principle of least time

A quiet giant whose ideas resonated: Fermat’s isolated brilliance led to
discoveries that paralleled and often anticipated those of his contemporaries,
profoundly influencing the trajectory of 17th century mathematics
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The problems leading to calculus

The mathematical challenges of change and accumulation:
■ The Scientific Revolution demanded tools to describe:

□ Rates of change (e.g., velocity, acceleration)
□ Slopes of curves at any point (e.g., trajectory of a projectile)
□ Accumulation of quantities (e.g., total distance travelled)
□ Areas and volumes of complex shapes

■ Traditional Euclidean geometry and algebra were insufficient for these
dynamic problems
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The problems leading to calculus

The Problem of Tangents
(Differential Calculus):

■ How to find the slope of a curve at any
given point?

■ For a circle, it was known, but for a
parabola, ellipse, or any arbitrary curve?

■ This problem relates directly to
instantaneous rate of change The challenge of finding the tangent to a curve
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The problems leading to calculus

The challenge of finding the area under a curve

The Problem of Areas or
Quadratures (Integral Calculus):

■ How to find the area bounded by a
curve (or curves)?

■ For simple shapes (rectangles,
triangles), formulas existed, but
for complex or irregular curves?

■ This problem relates to
accumulation and total quantity

■ Ancient Greek methods (like
Archimedes’ method of
exhaustion) were limited and
cumbersome
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Early precursors to calculus

Bonaventura Cavalieri (∼1598–1647 CE):
Method of indivisibles

■ Italian mathematician, influenced by
Archimedes

■ His Geometria Indivisibilibus Continuorum
Nova Quadam Ratione Promota (1635)
introduced the method of indivisibles Cavalieri’s principle for volumes

■ Conceived of areas as made up of an infinite number of parallel line
segments and volumes as made up of an infinite number of parallel planes

■ Enabled calculation of areas and volumes for complex shapes (e.g., area
under a parabola, volume of a sphere)

■ A powerful heuristic, though lacked the rigour of later calculus
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Early precursors to calculus

Pierre de Fermat (revisited): Maxima, minima, and tangents
■ As mentioned before, Fermat developed a method for finding maxima and

minima of polynomial functions
■ His technique involved considering a small change in the variable, similar

to the idea of a derivative
■ He also used this method to find tangents to curves
■ His work was very close to the concept of differentiation
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Early precursors to calculus

Isaac Barrow (∼1630–1677 CE): Newton’s teacher
■ English mathematician and theologian, first Lucasian Professor of

Mathematics at Cambridge (position later held by Newton)
■ Made significant progress on the problems of tangents and areas
■ Crucially, he observed that finding the area under a curve and finding the

tangent to a curve were inverse operations
■ This insight was a precursor to the Fundamental Theorem of Calculus

From heuristic methods to systematic theory: These early contributions
demonstrated powerful techniques, paving the way for the generalised,
systematic framework of calculus

( 222 )



Isaac Newton

An unparalleled genius
(∼1643–1727 CE):

■ English physicist, mathematician,
astronomer, alchemist, theologian

■ Began developing his version of
calculus, which he called fluxions,
during the plague years (1665–1666),
in isolation

■ Very reluctant to publish his
mathematical methods; insights
appeared in his physics works

Isaac Newton
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Isaac Newton

Newton’s conceptual framework:
■ Viewed quantities as generated by continuous motion (e.g., a line

generated by a moving point, an area by a moving line)
■ Fluents: The flowing quantities (e.g., x ,y)
■ Fluxions: The instantaneous rates of change of these fluents (e.g., .x , .y)
■ Used infinite series extensively

The Fundamental Theorem of Calculus:
■ Newton rigorously proved the inverse relationship between differentiation

(finding fluxions) and integration (finding fluents from fluxions)
■ This formalised Barrow’s earlier insight
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Isaac Newton

Application to Physics: Principia Mathematica (1687):
■ His magnum opus, describing universal gravitation and laws of motion
■ The entire work is built upon his new mathematical methods (fluxions

and geometrical arguments)
■ Used calculus to:

□ Explain planetary orbits
□ Model the motion of objects under forces
□ Predict phenomena like tides

Calculus as the engine of the universe: Newton’s calculus provided the
mathematical language to describe the dynamic, changing universe, ushering
in modern physics
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Gottfried Wilhelm Leibniz

Gottfried Wilhelm Leibniz

A universal thinker (∼1646–1716 CE):
■ German philosopher, mathematician,

logician, and diplomat
■ Independently developed his version of

calculus from 1673 onwards, inspired
by reading Pascal’s work

■ Published his first paper on differential
calculus in 1684 (Nova Methodus pro
Maximis et Minimis. . . )
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Gottfried Wilhelm Leibniz

Leibniz’s conceptual framework and notation:
■ Focused on infinitesimals (infinitely small quantities) and differences
■ His notation is still used today and is often considered more intuitive

□ dy
dx : For differentiation (rate of change of y with respect to x)

□
R

y dx : For integration (summing up infinitesimal areas)
■ Emphasised the “algorithm” and rules of manipulation, making calculus

more accessible

( 227 )



Gottfried Wilhelm Leibniz

The calculus priority dispute:
■ A bitter and prolonged controversy erupted between supporters of

Newton and Leibniz over who invented calculus first
■ Modern historical consensus: Both invented calculus independently
■ Newton’s discovery was earlier (1660s), but Leibniz’s publication was

earlier (1684) and his notation superior

The dual birth of a transformative tool: The independent development by
Newton and Leibniz underscores the readiness of the mathematical world for
calculus, which provided the essential tool for the new physics and beyond
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The birth of probability theory

From gambling to mathematics:
■ The formal study of probability

arose not from scientific inquiry,
but from gambling problems

■ Antoine Gombaud, Chevalier de
Méré, a French writer and avid
gambler, posed questions about
fair division of stakes in
interrupted games

The problem of points:
■ If two players agree to play a

series of games, and the game is
interrupted before completion,
how should the stakes be divided
fairly, based on the current score?

■ This problem had puzzled
mathematicians for centuries
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Blaise Pascal

Blaise Pascal (∼1623–1662 CE):
■ French mathematician, physicist,

inventor, writer, and theologian
■ Independently developed his ideas

on probability
■ Also known for Pascal’s Triangle

(again!), which relates to binomial
coefficients and combinations,
foundational for probability

Blaise Pascal
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The birth of probability theory

Correspondence with Pierre de Fermat (1654):
■ Pascal and Fermat exchanged a series of letters discussing the Problem of

Points and its solution
■ This correspondence laid the foundations of modern probability theory
■ They introduced concepts like expected value and combinatorial analysis

to solve the problem systematically
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The birth of probability theory

Christian Huygens (∼1629–1695 CE):
■ Dutch mathematician, physicist, astronomer
■ Wrote the first formal treatise on probability: De ratiociniis in ludo aleae

(On Reasoning in Games of Chance, 1657), based on the Pascal-Fermat
correspondence

From chance to science: Probability theory, born from practical gambling
questions, would grow into an indispensable tool for statistics, risk assessment,
science, and social sciences
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Other 17th century advances

Number theory: Fermat’s unproven theorems
■ Pierre de Fermat (revisited again!): A key figure in number theory,

posing many theorems without publishing proofs
■ Fermat’s Last Theorem: “No three positive integers a,b,c satisfy the

equation an +bn = cn for any integer value of n greater than 2”.
□ Famously stated in a margin with a note that he had a “truly marvellous

proof. . . which this margin is too narrow to contain!.
□ Remained unproven for over 350 years, until Andrew Wiles in 1994

■ Also worked on prime numbers, divisibility, and integer solutions to
equations (Diophantine equations)
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Other 17th century advances

Projective geometry:
■ Gérard Desargues (∼1591–1661 CE): French architect and engineer
■ Laid the foundations of projective geometry, focusing on properties of

figures that are invariant under projection (relevant to perspective)
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Other 17th century advances

Refining logarithms & computation:
■ After Napier and Briggs, logarithm tables were refined and widely adopted
■ William Oughtred (∼1574–1660 CE): Invented the slide rule (1622), a

mechanical analog computer based on logarithms

■ Blaise Pascal (revisited): Invented
the Pascaline (1642), an early
mechanical calculator

■ These tools drastically reduced the
labour of complex arithmetic for
scientists and engineers

Pascal’s mechanical calculator, the Pascaline

A century of tools and concepts: The 17th century provided not only
powerful new branches of mathematics but also practical computational aids,
setting the stage for industrial and scientific revolutions
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Conclusion: A transformative century

From ancient problems to modern analytical power
■ Intellectual context: Fuelled by the Scientific Revolution and new

philosophical paradigms (Rationalism, Empiricism)
■ The unification of mathematics:

□ Analytical geometry (Descartes, Fermat) merged algebra and geometry,
creating a systematic framework for curves and equations

■ The mathematics of change:
□ The independent invention of Calculus (Newton, Leibniz) provided the

indispensable tools for understanding rates of change, motion, and
accumulation

□ Solved the “Problem of Tangents” and “Problem of Areas”
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Conclusion: A transformative century

From ancient problems to modern analytical power
■ New fields emerge:

□ The formal birth of Probability theory (Pascal, Fermat, Huygens).
□ Advances in number theory and projective geometry

■ Practical impact: Development of computational aids (slide rule,
Pascaline) and the application of mathematics as the core language of
physics

The 17th century fundamentally reshaped mathematics, transitioning it into
its modern analytical form, equipped with the tools and concepts to tackle
the most complex scientific and engineering challenges for centuries to come
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History of Mathematics: Lecture 9

Syllabus:
Mathematics in the 18th century

■ The age of Euler



The reign of analysis

The 18th century: An era of rapid mathematical growth
■ Follows the foundational discoveries of the 17th century (analytical

geometry, calculus, probability)
■ Characterised by the rapid development and systematisation of

calculus and its applications
■ Often referred to as the Age of Analysis

Key focus for this lesson:
■ The legacy of the Bernoulli family
■ The unparalleled contributions of Leonhard Euler, who dominated the

century
■ The consolidation and widespread application of calculus

( 240 )



The Enlightenment and its impact

The age of reason:
■ A powerful intellectual and

cultural movement across Europe
■ Emphasised reason,

individualism, and scepticism
over tradition and faith

■ Belief in the power of human
intellect to understand and
improve the world

Enlightenment thinkers valuing reason and science
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The Enlightenment and its impact

Mathematics as the ultimate rational endeavour:
■ The success of Newton’s mathematically formulated laws of physics

profoundly influenced Enlightenment thinkers
■ Mathematics was seen as the purest form of rational thought, capable of

uncovering universal truths
■ Led to a strong push for systematisation, clarity, and logical

deduction in all fields, including mathematics
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The Enlightenment and its impact

The role of academies and patronage:
■ Royal Academies (Paris, Berlin, St. Petersburg) became dominant centres

of research and publication
■ Provided salaried positions for leading mathematicians, as it was the case

for Euler and Lagrange
■ Organised prize competitions for solving challenging mathematical problems
■ Fostered international communication and collaboration (despite rivalries)

A fertile ground for mathematical growth: The Enlightenment’s belief in
reason, coupled with institutional support, created an environment ripe for
rapid mathematical advancement and application
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The Bernoulli family

Expanding the boundaries of calculus: A family affair:
■ A remarkable family from Basel, Switzerland, that produced numerous

outstanding mathematicians over several generations
■ Most prominent: Jacob Bernoulli (1654–1705), Johann Bernoulli

(1667–1748), and Johann’s son Daniel Bernoulli (1700–1782)
■ Key figures in the early 18th century, extending and applying the newly

invented calculus
■ Known for both collaboration and intense rivalry!

Their role in the age of analysis:
■ Active in the European academies, contributing to prize problems
■ Applied calculus to a wide range of physical problems
■ Pushed the boundaries of differential equations, probability, and geometry
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Jacob Bernoulli

Probability Theory:
■ Published Ars Conjectandi (The Art of

Conjecturing) posthumously in 1713
■ Contained the first substantial treatise

on probability theory since Huygens
■ Introduced the Law of Large

Numbers, formally proving that as
the number of trials increases, the
observed frequency of an event
approaches its theoretical probability

Jacob Bernoulli
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Jacob Bernoulli

Infinite Series:
■ Pioneered the study of convergence of infinite series
■ Introduced Bernoulli Numbers (Bn), which appear in the Taylor series

expansion of trigonometric functions and in formulas for sums of powers
of integers
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Jacob Bernoulli

The logarithmic spiral (Spira Mirabilis):
■ Famously studied the properties of the logarithmic spiral (also known as

the growth spiral or spira mirabilis)
■ Discovered that its shape is invariant under changes in scale (dilations)
■ Was so fascinated by its properties that he requested it be engraved on

his tombstone with the inscription Eadem mutata resurgo (“Though
changed, I rise again the same”)

■ Related to the Fibonacci sequence and the golden ratio.

A pioneer in many fields: Jacob Bernoulli’s work laid critical groundwork for
modern probability and the study of infinite processes
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Johann Bernoulli

Johann Bernoulli

A prolific and influential teacher:
■ Younger brother of Jacob, and

perhaps even more influential
through his teaching and extensive
correspondence (e.g., with Leibniz)

■ Mentored many great
mathematicians, including his son
Daniel and Leonhard Euler
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Johann Bernoulli

The brachistochrone problem (1696):
■ Posed as a challenge problem:

“What is the curve along which a particle, acted on only by gravity, will
fall in the shortest time between two points”?

■ This problem was crucial for the development of the calculus of
variations (finding functions that optimise integrals)

■ The solution is a cycloid (the curve traced by a point on the rim of a
rolling wheel)
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Johann Bernoulli

L’Hôpital’s Rule (and the controversy):
■ Johann taught calculus to Guillaume de l’Hôpital, under an agreement

that he could publish Bernoulli’s discoveries
■ L’Hôpital published the first calculus textbook: Analyse des Infiniment

Petits pour l’Intelligence des Lignes Courbes (1696)
■ This book included “L’Hôpital’s Rule” for evaluating limits of

indeterminate forms (like 0/0 or ∞/∞)
■ It was later revealed that the rule (and much of the book) was a direct

result of Johann Bernoulli’s work and lessons

A master of analytical problem-solving: Johann Bernoulli pushed the
boundaries of calculus and inspired the next generation of analysts, despite his
contentious nature
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Daniel Bernoulli

Daniel Bernoulli

Son of Johann, and a universal scientist:
■ One of the most prominent scientists of

his time, winning 10 Grand Prizes from
the Paris Academy of Sciences (often in
competition with his father and brother!)

■ Known for applying mathematical
principles to a wide range of physical
problems
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Daniel Bernoulli

Hydrodynamics (1738):
■ His magnum opus, laying the foundation for modern fluid mechanics
■ Introduced Bernoulli’s Principle, which describes the relationship

between fluid velocity and pressure (e.g., how an aeroplane wing
generates lift)

■ Applied calculus to describe the flow of water and other fluids

Probability in physics and statistics:
■ Applied probability to questions of risk and expectation

(e.g., the St. Petersburg Paradox)
■ Made early contributions to mathematical statistics, particularly in

modelling errors and combining observations
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Daniel Bernoulli

Other areas of influence:
■ Vibrating strings: Pioneering work on the mathematics of vibrating

strings, contributing to the development of Fourier series
■ Kinetic theory of gases: Early ideas on the microscopic nature of gases

and their pressure
■ Medicine: Applied statistical methods to smallpox inoculation, an early

example of medical statistics

Bridging mathematics and the physical world: Daniel Bernoulli
exemplified the Enlightenment ideal of applying rigorous mathematical
analysis to understand and explain natural phenomena
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Leonhard Euler

Life and career (1707–1783):
■ Born in Basel, Switzerland, just like the

Bernoullis (and a student of Johann Bernoulli)
■ Spent most of his career in St. Petersburg,

Russia, and Berlin, Prussia, at the respective
Academies of Sciences

■ Lost sight in one eye early in his career, and
became almost completely blind in his later
years, yet his productivity barely slowed

■ Published over 800 books and papers,
encompassing almost every field of
mathematics and much of physics. His
collected works fill over 80 volumes!

Leonhard Euler
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Leonhard Euler

A unifying force in 18th century mathematics:
■ Took the ideas of Newton and Leibniz and developed them into the

modern form of calculus and analysis
■ Systematised vast areas of mathematics that were previously disparate or

underdeveloped
■ Authored highly influential textbooks that shaped mathematical education

for centuries
His enduring legacy:

■ His work profoundly influenced mathematics, physics, and engineering
■ Much of the notation and many of the methods we use today stem

directly from Euler
■ Considered by many to be one of the greatest mathematicians of all time

The architect of modern mathematics: Euler’s unique blend of insight,
analytical power, and incredible productivity laid the bedrock for
mathematical analysis as we know it
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Euler’s standardised notation

Euler’s clarity in mathematical expression

Clarity and consistency:
■ Before Euler, mathematical notation was

often inconsistent and varied between
mathematicians

■ Euler’s clear, logical, and expressive
notation rapidly gained widespread
adoption, significantly aiding
communication and development
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Euler’s standardised notation

Some of his enduring notational contributions:
■ π: For the ratio of a circle’s circumference to its diameter (adopted 1736)
■ e (Euler’s number): For the base of the natural logarithm (adopted 1727,

widely used by 1748)
■ i : For the imaginary unit (

p
−1) (adopted 1777)

■ f (x): For function notation (adopted 1734)
■

P: For summation (adopted 1755)
■ ∆: For finite differences
■ Standard notation for trigonometric functions (sin,cos,tan)
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Euler’s standardised notation

Why notation matters:
■ Good notation simplifies ideas, making them easier to grasp and manipulate
■ It reduces ambiguity and errors
■ It facilitates teaching, learning, and further research
■ Euler’s choices were so effective that they became universal, forming the

bedrock of modern mathematical language

A universal language: Euler’s standardisation of mathematical notation was
a gift to all mathematicians, enabling unprecedented clarity and progress
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Euler’s dominance in calculus and analysis

Differential Calculus
(Institutiones calculi differentialis, 1755):

■ Provided the first comprehensive and
systematic treatment of differential
calculus

■ Clarified concepts like limits (though not
rigorously by modern standards) and
differentials

■ Developed techniques for higher-order
derivatives, implicit differentiation, and
the chain rule

■ Pioneered the use of partial derivatives
for functions of multiple variables

Title page of Euler’s Institutiones calculi differentialis
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Euler’s dominance in calculus and analysis

Integral Calculus
(Institutiones calculi integralis, 1768–1770):

■ Provided the first comprehensive textbook
on integral calculus.

■ Developed standard techniques of
integration, including integration by parts
and substitution

■ Introduced and explored various types of
integrals, including improper integrals and
definite integrals

Title page of Euler’s Institutiones calculi differentialis
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Euler’s dominance in calculus and analysis

Differential equations:
■ Made immense contributions to the theory and solution of ordinary and

partial differential equations
■ Developed methods for solving linear differential equations with constant

coefficients
■ Applied differential equations to a vast array of problems in physics and

mechanics (e.g., fluid flow, celestial mechanics, vibrating strings)

Systematiser and expander: Euler transformed calculus from a collection of
powerful techniques into a coherent, organised discipline, ready for its
widespread application
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Euler and complex numbers

From “Impossible” to indispensable:
■ Recall Bombelli’s early work with

p
−1 from the Renaissance

■ Euler rigorously defined and manipulated complex numbers, proving their
immense utility

■ Used i for
p
−1, making operations clearer.
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Euler and complex numbers

Euler’s formula:
■ One of the most beautiful and profound

formulas in mathematics:

eix = cosx + i sinx

■ Connects exponential functions (from
growth/decay) with trigonometric
functions (from circles/oscillations) via
the imaginary unit Visualising Euler’s formula on the complex plane

■ It shows that the natural exponential function can be extended to complex
exponents via trigonometric functions

■ Derived from the power series expansions of ex , sinx , and cosx
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Euler and complex numbers

Euler’s identity: The “Most Beautiful Equation”:
■ A special case of Euler’s Formula, when x =π:

eiπ+1= 0

■ Unites five fundamental mathematical constants (e, i ,π,1,0) using the
three basic arithmetic operations (addition, multiplication,
exponentiation) exactly once

■ A testament to the deep interconnectedness of mathematical concepts

The power of complex analysis: Euler’s work with complex numbers
opened up the entirely new field of complex analysis, which became vital in
physics, engineering, and pure mathematics
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Euler’s other contributions

Number theory:
■ Euler was a monumental figure in reviving and advancing number theory,

building on Fermat’s work
■ Euler’s totient function (φ(n)): Counts the number of positive integers

up to a given integer n that are relatively prime to n. Crucial in
cryptography today

■ Euler’s criterion: Used to determine whether an integer is a quadratic
residue modulo a prime number

■ Proved many of Fermat’s theorems, including Fermat’s Little Theorem
■ Studied partitions of integers
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Euler’s other contributions

The Königsberg bridge problem

Graph theory:
The Königsberg bridge problem (1735):

■ The birth of graph theory
■ Problem: Can one walk through the city of

Königsberg (now Kaliningrad, Russia) and
cross each of its seven bridges exactly once?

■ Euler proved it was impossible, abstracting the
problem into a network of vertices
(landmasses) and edges (bridges)

■ Introduced the concept of degree of a vertex
(number of bridges connected to a landmass)

■ His solution laid the foundation for an entirely
new branch of mathematics
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Euler’s other contributions

Mechanics and physics:
■ Applied his powerful analytical tools to various physical problems
■ Fluid dynamics: Developed fundamental equations for fluid flow (Euler

equations)
■ Rigid body dynamics: Laid the groundwork for the dynamics of rigid

bodies
■ Lunar theory: Significant contributions to understanding the moon’s

complex orbit, crucial for navigation
■ Optics and acoustics: Also made advances in these fields, often

translating physical phenomena into mathematical models

A universal genius: Euler’s work not only expanded existing fields but also
founded entirely new ones, demonstrating the power of mathematical
abstraction and its applicability across diverse domains
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The consummation of calculus

Laying the bedrock of modern mathematical analysis
■ The Enlightenment’s push: The Age of Reason and the rise of

Academies created a fertile ground for mathematical expansion
■ The Bernoulli legacy: A family dynasty that significantly extended and

applied calculus, pushing boundaries in probability, series, and physical
problems

■ Leonhard Euler: The colossus of the century:
□ His revolutionary standardisation of mathematical notation remains with

us today
□ His systematic development of differential and integral calculus

(including partial derivatives, differential equations) made it a truly
powerful and coherent tool

□ His profound work on complex numbers (Euler’s Formula) opened up
entirely new fields of analysis

□ His pioneering contributions to number theory and the very birth of graph
theory showcased his universal genius
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The consummation of calculus

Euler and his contemporaries transformed calculus into the universal language
for describing change and motion, setting the stage for even deeper analytical
inquiries and the development of analytical mechanics in the latter half of the
18th century
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History of Mathematics: Lecture 10

Syllabus:
Mathematics in the 18th century

■ Further analytical depths



Beyond Euler

Building on Euler’s legacy:
■ While Euler dominated the century, other brilliant minds pushed

mathematical frontiers
■ Focus shifts to deeper theoretical understanding and more complex

applications
■ Key figures: Joseph-Louis Lagrange and Pierre-Simon Laplace

Key focus for this lesson:
■ The birth of analytical mechanics
■ Development of the calculus of variations
■ Refinement of probability theory
■ Early stirrings of the need for greater mathematical rigour
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Recap: The age of Euler

Consolidation and explosion of calculus:
■ Context: The Enlightenment and the rise of scientific academies

propelled mathematical research
■ The Bernoulli Family: Early pioneers who extended calculus, explored

probability (law of large numbers), and posed challenging problems
(brachistochrone)

■ Leonhard Euler: The century’s colossus
□ His unmatched productivity across all mathematical fields
□ His enduring standardisation of notation (π,e, i , f (x),

P)
□ His systematic development of differential and integral calculus, including

differential equations
□ His profound work on complex numbers. His formula: eix = cosx + i sinx
□ His pioneering work in number theory and the very birth of graph theory

The previous lesson established calculus as the dominant tool for science.
Now, let’s see where it leads!
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Joseph-Louis Lagrange

Early life and rise to prominence:
■ Born in Turin, Italy, of French and

Italian descent
■ Largely self-taught in mathematics,

inspired by Newton and Euler
■ Became a professor at the Royal

Artillery School in Turin at just 19
■ Close collaborator and

correspondent with Euler, who
recognised his genius

■ Succeeded Euler as the director of
mathematics at the Berlin
Academy (1766-1787)

Joseph-Louis Lagrange (1736-1813)
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Joseph-Louis Lagrange

A focus on pure analysis:
■ Unlike many of his contemporaries, Lagrange had a strong inclination

towards abstract, purely analytical methods
■ Sought to express mathematical and physical laws in their most general

and elegant analytical form
■ His work emphasised algebraic techniques over geometric intuition

Key areas of contribution:
■ Calculus of variations: A new branch of calculus for optimising functions
■ Analytical mechanics: Re-founding mechanics purely on analytical

principles
■ Number theory: Significant advancements in the theory of numbers
■ Early steps towards rigour in calculus

The embodiment of analytical elegance: Lagrange’s work epitomised the
18th century’s drive for analytical power, systematically deriving results from
first principles
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Calculus of variations

The “brachistochrone” problem revisited:
■ Recall Johann Bernoulli’s challenge: finding the curve of fastest descent
■ This was one of many problems (e.g., shortest path between points on a

surface, minimal surface area) that could not be solved by standard
differential calculus (which finds optima of functions, not paths or curves)

■ These problems require optimising a functional (a function whose input is
another function)
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Calculus of variations

Euler and Lagrange’s development:
■ Euler made significant early contributions

to this field
■ Lagrange, however, provided a more

systematic and general approach
■ Developed the Euler-Lagrange equation:

a differential equation whose solutions are
the functions for which a given functional
is stationary (i.e., local extrema)

∂L
∂y − d

dx

µ
∂L
∂y ′

¶
= 0

where L is the integrand, y is the function,
y ′ its derivative

The brachistochrone problem solution (a cycloid)
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Calculus of variations

Impact of calculus of variations:
■ Essential tool in physics for principles of least action (e.g., Fermat’s

principle of least time, Hamilton’s principle)
■ Used in engineering, economics, and optimal control theory
■ Showcased the growing power of analytical methods to solve complex

optimisation problems that transcended traditional calculus

Optimising functions of functions: The calculus of variations extended the
idea of optimisation from single variables to entire functions, leading to
profound applications in physics
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Analytical mechanics

Mécanique analytique
(Analytical Mechanics, 1788):

■ Lagrange’s masterpiece, a synthesis of all
knowledge of mechanics up to his time

■ Its revolutionary aspect: It contains no
diagrams or geometrical constructions

■ All mechanics, from statics to dynamics, is
presented entirely through analytical
formulas and algebraic operations

■ Reduced mechanical problems to the
solution of differential equations derived
from a single principle Lagrange’s Mécanique analytique
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Analytical mechanics

Lagrangian mechanics:
■ Introduced concepts like generalised coordinates (any set of

independent parameters describing a system’s configuration)
■ Developed the Lagrangian (L=T −V , kinetic minus potential energy)

and Lagrange’s equations of motion
■ Provided a powerful, elegant, and unified framework for classical

mechanics, simpler for complex systems than the previous Newton’s
force-based approach
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Analytical mechanics

Impact and legacy:
■ Transformed mechanics into a branch of pure mathematics, amenable to

abstract analysis
■ Influenced all subsequent theoretical physics, forming the basis for

Hamiltonian mechanics (19th century) and ultimately quantum mechanics
and relativity.

■ Demonstrated the predictive and explanatory power of mathematics in
the natural world

Mechanics as pure algebra: Lagrange’s monumental work showcased the
power of abstract analysis to describe the physical universe without resorting
on geometric crutches
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Pierre-Simon Laplace

Pierre-Simon Laplace (1749–1827)

Life and career:
■ Born in Normandy, France
■ A protégé of d’Alembert (who

we’ll touch on later)
■ Became a leading figure in French

science during the tumultuous
revolutionary and Napoleonic eras

■ Known for his immense intellectual
ambition to unify and perfect all
knowledge of the universe,
particularly through mathematics

■ Served in various political roles
under Napoleon, though his
primary focus remained science
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Pierre-Simon Laplace

The systematiser:
■ Like Lagrange, Laplace was a master systematiser, aiming to provide

comprehensive treatments of entire fields
■ Sought to demonstrate the power of analysis in explaining and predicting

phenomena in physics and probability

Key areas of contribution:
■ Celestial mechanics: Applying calculus to the solar system’s stability

and dynamics
■ Probability theory: Formally establishing its principles and applications
■ Partial differential equations: Developing tools like the Laplace

operator

A synthesis of knowledge: Laplace aimed to create a unified,
mathematically consistent model of the universe, demonstrating the ultimate
triumph of reason
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Probability theory: From games to science

Théorie analytique des probabilités
(Analytic Theory of Probability, 1812):

■ Laplace’s most influential work in
probability

■ A massive, comprehensive treatise that
brought together all previous work and
introduced many new ideas

■ Consolidated probability theory as a
rigorous mathematical science, moving it
far beyond its gambling origins

Laplace’s seminal work on probability
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Probability theory: From games to science

Key concepts and contributions:
■ Classical definition of probability: (Number of favourable outcomes) /

(Total number of equally likely outcomes)
■ Bayes’ theorem: Though Bayes originated it, Laplace independently

rediscovered it and gave it a more general formulation
■ Central limit theorem (implicitly): Laid the groundwork for this

fundamental theorem of statistics, showing that sums of many
independent random variables tend towards a normal distribution

■ Applications to statistics, error analysis, population studies, and even
jurisprudence
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Probability theory: From games to science

The “Philosophical Essay on Probabilities” (1814):
■ A popular introduction to his probability theory, explaining the underlying

philosophical ideas
■ Argued that probability is simply “common sense reduced to calculation”.
■ Emphasised the predictive power of probability in situations of uncertainty

Quantifying uncertainty: Laplace transformed probability from a collection
of isolated problems into a powerful, unified mathematical discipline essential
for modern science
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Celestial mechanics

Traité de mécanique céleste
(Treatise on Celestial Mechanics, 1799–1825):

■ A five-volume magnum opus that applied the
full power of calculus (especially differential
equations) to the movements of planets,
moons, and comets

■ Built upon Newton’s laws of gravitation but
extended them significantly using advanced
analytical methods

■ Answered long-standing questions about the
stability of the solar system, proving that
planetary eccentricities and inclinations would
remain stable over long periods

Laplace’s analytical view of the cosmos
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Celestial mechanics

Key mathematical innovations:
■ Developed the Laplace operator (∇2) and Laplace’s equation

(∇2V = 0), fundamental in physics (potential theory, electromagnetism)
■ Introduced Laplace transforms, a powerful tool for solving differential

equations (though fully developed later)
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Celestial mechanics

Laplace’s demon: The ultimate determinism:
■ A famous philosophical thought experiment from his 1814 essay:

We may regard the present state of the universe as the
effect of its past and the cause of its future. An intellect which
at a given moment knew all the forces that animate nature
and the reciprocal positions of the beings that compose it, if
this intellect were moreover vast enough to submit these data
to analysis, would embrace in a single formula the movements
of the greatest bodies of the universe and those of the lightest
atom; for it, nothing would be uncertain and the future, as
the past, would be present to its eyes.

■ Embodies the peak of Enlightenment scientific rationalism
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Celestial mechanics

A universe as a solvable equation: Laplace’s work represented the triumph
of analytical methods in describing and predicting the complex workings of
the cosmos, solidifying the Newtonian world-machine
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Other key figures

Brook Taylor (1685–1731):
The power of series expansions

■ English mathematician, contemporary of Newton
■ Published Methodus Incrementorum Directa et Inversa (1715)
■ Introduced Taylor series for expanding functions into infinite sums of

power terms:

f (x)= f (a)+ f ′(a)(x −a)+ f ′′(a)
2! (x −a)2 + . . .

■ A special case, the Maclaurin series (a = 0), is also widely used
■ These series are fundamental for approximating functions and solving

differential equations
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Other key figures

Jean le Rond d’Alembert (1717–1783)

Jean le Rond d’Alembert (1717–1783):
PDEs and rigour’s call

■ French mathematician, physicist, philosopher,
and co-editor of the Encyclopédie

■ Pioneering work on partial differential
equations (PDEs), deriving the
one-dimensional wave equation

■ Investigated the foundations of calculus,
expressing limits using the concept of ϵ−δ

type arguments (though not fully formalised)
■ Questioned the logic of “infinitesimals”,

contributing to the growing unease about
calculus’s lack of rigour
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Other key figures

Descriptive Geometry (Gaspard Monge, 1746–1818):
■ French mathematician, founder of descriptive geometry
■ Developed methods for representing three-dimensional objects on a

two-dimensional plane using projections, crucial for engineering and
architecture
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Emerging themes

Emerging need for rigour:
■ Despite the success of calculus, its foundations were somewhat shaky
■ Concepts like “infinitesimals” and “infinity” were used intuitively but

lacked precise definitions
■ Problems arose with the convergence of infinite series and the behaviour

of functions
■ Mathematicians like d’Alembert, and later Lagrange, began to voice

concerns and make early attempts at more rigorous definitions of limits
and continuity

■ This intellectual tension would explode with full strength into a major
focus in the 19th century
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Emerging themes

Setting the stage for the 19th century: The 18th century, while expanding
calculus applications, also began to identify foundational gaps, hinting at the
need for greater abstraction and rigour
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The pinnacle of classical analysis

From calculation to a universal language of science
■ Explosive growth: The 18th century witnessed an unparalleled expansion

and application of calculus, earning it the title “Age of Analysis”
■ Systematisation & notation: Euler’s genius unified disparate ideas,

standardised notation (π,e, i , f (x),
P), and produced comprehensive

textbooks, making mathematics accessible and consistent
■ Mastery of mechanics: Lagrange’s “Mécanique analytique”

transformed classical mechanics into a purely analytical discipline,
leveraging the calculus of variations to solve optimisation problems

■ Probability’s maturity: Laplace established probability theory as a
rigorous science, applying it to vast problems like celestial mechanics and
statistical inference
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The pinnacle of classical analysis

From calculation to a universal language of science
■ Foundations questioned: Despite immense success, mathematicians like

d’Alembert began to highlight the intuitive (and sometimes imprecise)
nature of calculus’s foundations, paving the way for the age of rigour in
the 19th century

■ Interdisciplinary impact: Mathematics became the indispensable
language for physics, astronomy, engineering, and emerging fields like
statistics

The 18th century built a robust, powerful analytical edifice, providing the
tools and confidence to tackle the grand challenges of science, while
simultaneously recognising the need for deeper foundational scrutiny that
would define the revolutions of the 19th century
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History of Mathematics: Lecture 11

Syllabus:
Mathematics in the 19th century:

■ The pursuit of rigour and new geometries



Revolutions

The 19th century: A paradigm shift
■ A period of unprecedented conceptual revolution in mathematics
■ Driven by a demand for rigour in analysis and the exploration of abstract

structures
■ Response to foundational questions raised implicitly in the 18th century

(e.g., convergence of series, nature of functions)

Key focus for this lesson:
■ The quest for rigour: Establishing solid foundations for calculus (Cauchy,

Bolzano)
■ The revolution in geometry: Discovery and development of

Non-Euclidean geometries
■ Seeds of abstract algebra: Galois and group theory
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Historical context

The industrial revolution’s impact on science and technology

The industrial revolution:
■ Profound societal, economic, and

technological changes
■ Creation of new industries

(railways, telegraphs, steam
power) leading to new engineering
and scientific challenges

■ Increased demand for precise
scientific and mathematical
methods
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Historical context

Rise of the modern university and research culture:
■ Shift from Academies (18th century) to research-oriented universities as

primary centres of mathematical innovation
■ Germany (especially Göttingen) becomes a dominant force in

mathematical research and education
■ Emphasis on systematic, rigorous education and original research
■ Creation of professional mathematical societies and journals
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Historical context

From calculation to conception:
■ While the 18th century focused on powerful calculational techniques, the

19th century increasingly emphasised the conceptual foundations of
mathematics

■ A shift towards abstraction and logical consistency
■ Mathematics began to be viewed not just as a tool for science, but as an

independent discipline with its own internal logic and beauty

An era of deep inquiry: The 19th century saw mathematics mature into a
rigorous, abstract, and internally driven science, profoundly influencing future
intellectual thought
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Augustin-Louis Cauchy

Life and influence:
■ Born in Paris, a brilliant student who

thrived in the post-Revolutionary French
academic system

■ A profoundly influential and prolific
mathematician, second only to Euler in his
output during his lifetime

■ Taught at the École Polytechnique, a key
institution for engineering and science

■ Known for his strict adherence to logical
deduction and the need for rigorous proofs

■ His work dramatically changed the way
mathematics was taught and practised

Augustin-Louis Cauchy (1789–1857)
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Augustin-Louis Cauchy

The need for foundations:
■ 18th century calculus, though powerful, relied heavily on intuition and

geometric reasoning
■ Concepts like “limit”, “continuity”, and “infinite series” lacked precise

definitions
■ This led to paradoxes and incorrect results (e.g., issues with Fourier series)

Key areas of contribution:
■ Formalisation of limits, continuity, and derivatives
■ Rigorous treatment of infinite series and their convergence
■ Early development of complex analysis
■ Contributions to differential equations, group theory, and optics

Bringing order to analysis: Cauchy’s systematic approach provided the
missing logical bedrock for calculus, transforming it into the rigorous subject
we know today
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Cauchy’s definitions

The limit (1821):
■ Before Cauchy, a limit was often described loosely as “approaching

indefinitely”
■ Cauchy provided a precise arithmetical definition, though not explicitly

using ϵ−δ notation as we do today (that came later, notably from
Weierstrass)

■ His definition for a limit of a function f (x) as x → a is L:
When the successive values attributed to a variable ap-

proach indefinitely a fixed value so as to end by differing from
it by as little as one wishes, this last is called the limit.

(Translated from his Cours d’Analyse)
■ This moved calculus away from infinitesimals towards a language of

inequalities
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Cauchy’s definitions

Continuity (1821):
■ Defined a continuous function as one where a small change in x produces

a small change in f (x)
■ Formally: A function f (x) is continuous at a if for every quantity ϵ (no

matter how small), one can find a quantity δ such that |f (x)− f (a)| < ϵ

whenever |x −a| < δ

■ This precise definition eliminated ambiguity
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Cauchy’s definitions

Convergence of infinite series (1821):
■ Prior to Cauchy, convergence was often assumed or poorly defined
■ Cauchy provided the modern definition: an infinite series Pan converges if

the sequence of its partial sums Sn = a1 +·· ·+an approaches a finite limit
■ Introduced the Cauchy criterion for convergence: A sequence

converges if and only if its terms become arbitrarily close to each other
(i.e., for every ϵ> 0, there exists an integer N such that for all m,n >N,
|am −an| < ϵ)

■ Sequences satisfying this criterion are now called Cauchy sequences.
They are fundamental for defining the completeness of the real numbers
(e.g., in Dedekind’s construction)

■ This was crucial for avoiding fallacies with series (e.g., those highlighted
by Fourier)
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Cauchy’s definitions

The Cauchy mean value theorem:
■ A generalisation of Lagrange’s mean value theorem, linking the

derivatives of two functions over an interval
■ Important in the rigorous development of calculus

Building on solid ground: Cauchy’s rigorous definitions of fundamental
concepts transformed calculus from an art of calculation into a precise science
of inequalities
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Cauchy and early complex analysis

Building on Euler’s foundations:
■ Euler had already established complex numbers as valuable tools
■ Cauchy, however, began to develop a rigorous theory of functions of a

complex variable
■ This field, complex analysis, became one of the most powerful branches

of mathematics, with applications in physics and engineering
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Cauchy and early complex analysis

Key concepts:
■ Complex functions: Functions f (z) where z = x + iy
■ Analytic functions: Functions that are differentiable in the complex

plane
■ Cauchy-Riemann equations: Conditions that determine if a complex

function is analytic

∂u
∂x = ∂v

∂y and ∂u
∂y =−∂v

∂x

(where f (z)= u(x ,y)+ iv(x ,y))
■ Cauchy’s integral theorem and Cauchy’s integral formula:

Fundamental results relating integrals of analytic functions along closed
paths to their values inside the path. These revolutionised the evaluation
of real integrals
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Cauchy and early complex analysis

Impact of Cauchy’s complex analysis:
■ Provided powerful new methods for solving problems in real analysis and

applied mathematics
■ Laid the groundwork for later developments by Riemann and Weierstrass
■ Showed that rigour could be applied to complex numbers, not just real

ones

A new dimension of analysis: Cauchy transformed complex numbers from a
mathematical curiosity into a fertile ground for deep and powerful analytical
theory

( 312 )



Further steps in rigour

Bernard Bolzano

Bernard Bolzano (1781–1848):
Early insights into continuity

■ Bohemian mathematician, philosopher,
and theologian

■ Independently developed rigorous
definitions of continuity and limits even
before Cauchy, though his work was not
widely known until much later

■ Bolzano’s theorem (Intermediate Value Theorem): If a continuous
function takes on two values, it must take on every value in between. He
provided the first rigorous proof

■ Pioneering ideas about continuous but nowhere differentiable
functions, a concept that challenged intuition and highlighted the need
for strict definitions. (Weierstrass later constructed the first formal
example)
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Further steps in rigour

Niels Henrik Abel (1802–1829):
Rigour in series and elliptic functions

■ Brilliant Norwegian mathematician,
tragically short-lived.

■ Emphasised the importance of rigorous
proof for series convergence

■ Provided the first rigorous proof of the
binomial theorem for complex exponents

■ Abel’s theorem on binomial series:
Proved its convergence conditions

■ Pioneering work on elliptic functions
(generalising trigonometric functions) and
Abelian integrals

Niels Henrik Abel
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Further steps in rigour

Peter Gustav Lejeune Dirichlet

Peter Gustav Lejeune Dirichlet (1805–1859):
Functions and Fourier series

■ German mathematician, a student of Poisson
and later taught at Göttingen (succeeding
Gauss)

■ Provided the modern, formal definition of a
function: a correspondence that assigns to
each element in a set (domain) exactly one
element in another set (codomain)

■ Made fundamental contributions to the convergence of Fourier series,
specifying the conditions under which such series converge to the function
they represent. This resolved issues faced by earlier mathematicians (e.g.,
Fourier, Poisson)

■ Important work in analytic number theory (e.g., Dirichlet’s theorem on
arithmetic progressions)

( 315 )



Further steps in rigour

Broadening the reach of rigour: These mathematicians built upon
Cauchy’s foundations, tackling complex analytical problems and further
refining the conceptual tools of calculus
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Challenging Euclid’s fifth postulate

Euclid’s Elements and its fifth postulate:
■ For over 2000 years, Euclid’s Elements stood as the unparalleled model of

deductive reasoning
■ Its five postulates (axioms) formed the basis of all geometric theorems
■ The first four were considered self-evident (e.g., “All right angles are

equal to one another”)
■ The fifth postulate (parallel postulate) was different:

If a straight line falling on two straight lines makes the
interior angles on the same side less than two right angles, the
two straight lines, if produced indefinitely, meet on that side
on which the angles are less than the two right angles.
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Challenging Euclid’s fifth postulate

A long history of doubts and attempts to prove:
■ From ancient Greece (Ptolemy) through the Islamic Golden Age (Omar

Khayyam) to the Renaissance (Saccheri, Lambert), mathematicians tried
to prove the fifth postulate from the first four

■ All attempts failed, often leading to bizarre or contradictory conclusions,
hinting that it might be independent
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Challenging Euclid’s fifth postulate

The 19th century breakthrough:
■ Instead of proving it, a few brilliant minds began to explore the

consequences of denying the fifth postulate
■ This led to the astonishing discovery of consistent, alternative geometries

where Euclid’s fifth axiom did not hold
■ This revolutionised not only geometry but also the very understanding of

axiomatic systems and the nature of mathematical truth

Questioning the obvious: The perceived flaw in Euclid’s perfect system led
to one of the most profound conceptual shifts in mathematical history,
opening up unforeseen new worlds of geometry
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Carl Friedrich Gauss

Carl Friedrich Gauss

The Prince of Mathematicians:
(1777–1855)

■ German mathematician and scientist,
considered one of the greatest of all time

■ Made fundamental contributions to almost
every field of mathematics and science
(number theory, algebra, statistics,
analysis, differential geometry, geodesy,
astronomy, optics, electromagnetism)

■ Famously precocious: independently
discovered the Fundamental Theorem of
Algebra (at age 18) and constructed the
17-gon with ruler and compass (at age 19)
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Carl Friedrich Gauss

Early doubts about the fifth postulate:
■ As early as the late 1790s, Gauss began to doubt the provability of the

parallel postulate
■ He secretly developed his own version of what we now call hyperbolic

geometry
■ He was convinced of its consistency but never published his findings,

fearing “the clamour of the Boeotians” (i.e., public misunderstanding and
ridicule)
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Carl Friedrich Gauss

Other relevant contributions (brief mention):
■ Differential geometry: Pioneering work on the intrinsic geometry of

surfaces (Theorema Egregium). This laid groundwork for Riemann
■ Complex numbers: Showed they were a natural extension of real

numbers, and used them geometrically
■ Least squares: Fundamental in statistics and error theory

A secret revolutionary: Gauss’s unshared insights into non-Euclidean
geometry underscore his visionary genius and the profound paradigm shift
occurring in mathematics
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Lobachevsky and Bolyai

Nikolai Lobachevsky (1792–1856): Russian maverick
■ Professor at Kazan University.
■ Published his work on “imaginary geometry” in 1829.
■ He allowed that through a point not on a given line, there can be more

than one parallel line to the given line
■ Developed the consistent logical consequences of this assumption,

creating what we now call hyperbolic geometry

János Bolyai (1802–1860): Hungarian pioneer
■ Son of Farkas Bolyai, a friend of Gauss
■ Independently developed similar ideas around the same time
■ Published his work as an appendix to his father’s textbook in 1832,

calling it “The absolute science of space”
■ His father shared his son’s work with Gauss, who famously replied: “To

praise it would be to praise myself”
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Hyperbolic geometry

Visualising hyperbolic geometry: Poincaré disk model

The nature of hyperbolic geometry:
■ Key difference: Through a point not on

a line, infinitely many lines can be drawn
parallel to the given line

■ Triangles in hyperbolic space have the sum
of their angles less than 180 degrees

■ The geometry of a saddle surface or
hyperbolic paraboloid

■ Initially met with scepticism, but later
understood as equally consistent as
Euclidean geometry

A bold departure: Lobachevsky and Bolyai’s independent publications
shattered the belief that Euclidean geometry was the only possible geometry,
opening the door to revolutionary new ways of understanding space

( 324 )



Bernhard Riemann

A visionary student of Gauss:
■ German mathematician, one of Gauss’s

last and most brilliant students
■ Known for his profound and highly

abstract contributions to geometry,
complex analysis, and number theory

■ His 1854 habilitation lecture, On the
Hypotheses which Lie at the Bases of
Geometry, revolutionised the concept of
space itself

Bernhard Riemann (1826–1866)
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Bernhard Riemann

Riemannian geometry: The geometry of curved manifolds
■ Instead of just negating a postulate, Riemann generalised geometry to

allow for spaces with variable curvature at every point
■ Introduced the concept of an n-dimensional manifold: a space that

locally resembles Euclidean space but can be globally curved
■ Defined the Riemannian metric: a way to measure distances and angles

on these curved spaces, using differential calculus
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Bernhard Riemann

Elliptic geometry (A special case):
■ In this geometry, through a point not on a given line, there are no

parallel lines
■ The sum of angles in a triangle is greater than 180 degrees
■ Can be visualised as the geometry on the surface of a sphere (e.g., lines

are great circles, triangles formed by meridians and equator)
■ Has constant positive curvature

Impact on physics of 20th century: Riemannian geometry provided the
mathematical framework for Einstein’s theory of general relativity, where
gravity is understood as the curvature of spacetime itself
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Évariste Galois

Évariste Galois (1811–1832)

A brief, tragic life:
■ French mathematician whose genius was

largely unrecognised during his lifetime
■ A republican activist during a turbulent

political period in France, leading to arrests
and imprisonment

■ Died in a duel at the age of 20, leaving behind
revolutionary mathematical manuscripts

■ His work was only fully understood and
published posthumously (by Liouville in 1846)
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Évariste Galois

Solvability of polynomial equations:
■ For centuries, mathematicians sought formulas to solve polynomial

equations using radicals (square roots, cube roots, etc.)
■ Quadratic formula (2nd degree): ax2 +bx +c = 0
■ Cubic (3rd degree) and quartic (4th degree) formulas were found in the

16th century (Cardano, Tartaglia, Ferrari)
■ A long-standing quest was to find a general formula for the quintic

equation (5th degree) and higher
■ Abel-Ruffini theorem (Ruffini, 1799; Abel, 1824): Proved that no

general formula exists for solving quintic or higher-degree polynomial
equations using only radicals
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Évariste Galois

Galois’s revolutionary insight: Symmetry and groups
■ Instead of looking for a formula, Galois asked: Under what conditions can

a polynomial equation be solved by radicals?
■ His answer lay in the symmetries of the roots of the polynomial

equation
■ He invented group theory to describe these symmetries. A group is a set

with a binary operation satisfying certain axioms (closure, associativity,
identity, inverse)

■ He showed that a polynomial equation is solvable by radicals if and only if
its associated Galois group has a specific structure (it must be
“solvable”)

The dawn of abstract algebra: Galois’s work introduced abstract algebraic
structures (groups) to solve a concrete problem, opening up an entirely new
way of doing mathematics based on the study of abstract systems and their
symmetries
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Foundations rebuilt, universes reimagined

A new era of rigour, abstraction, and conceptual freedom
■ The quest for Rigour: Driven by the need to resolve paradoxes and

establish certainty, mathematicians like Cauchy provided the precise,
arithmetical definitions of limits, continuity, and convergence that
underpin modern analysis. Bolzano, Abel, and Dirichlet further refined
these foundations

■ Revolutionary geometries: The long-standing parallel postulate was
finally understood as independent, leading to the astonishing discoveries
of consistent Non-Euclidean geometries by Lobachevsky, Bolyai, and
implicitly Gauss. Riemann’s work generalised geometry to curved
manifolds, laying the groundwork for modern physics
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Foundations rebuilt, universes reimagined

A new era of rigour, abstraction, and conceptual freedom
■ Birth of abstract algebra: Galois’s brilliant work on the solvability of

polynomial equations introduced the revolutionary concept of group
theory, marking the beginning of abstract algebra and the study of
symmetries as fundamental mathematical objects

The first half of the 19th century shattered centuries-old assumptions about
numbers, space, and algebraic structures, replacing them with a newfound
rigour and a powerful embrace of abstract thinking. This intellectual freedom
opened doors to even more profound and surprising discoveries yet to come
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Without knowing what futurism is like, Johansen achieved something
very close to it when he spoke of the city; for instead of describing any
definite structure or building, he dwells only on broad impressions of
vast angles and stone surfaces — surfaces too great to belong to any
thing right or proper for this earth, and impious with horrible images
and hieroglyphs. I mention his talk about angles because it suggests
something Wilcox had told me of his awful dreams. He had said that
the geometry of the dream-place he saw was abnormal, non-Euclidean,
and loathsomely redolent of spheres and dimensions apart from ours.
Now an unlettered seaman felt the same thing whilst gazing at the
terrible reality.

( 333 )



History of Mathematics: Lecture 12
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Mathematics in the 19th century:

■ Deepening analysis and new abstractions



Deepening analysis and new abstractions

Building on a century of revolution:
■ Recall previous lesson: The seismic shifts in foundations (rigour),

geometry (non-Euclidean), and algebra (groups)
■ This lesson continues the trend of abstraction and deeper inquiry
■ Mathematicians now had a clearer understanding of what proof meant

Key focus for this lesson:
■ The arithmetisation of analysis: Establishing real numbers and

functions on a purely numerical basis (Weierstrass, Dedekind)
■ The expansion of abstract algebra: Beyond groups to new algebraic

structures (Hamilton, Cayley, Grassmann)
■ The revolutionary world of set theory: Confronting the nature of infinity

(Cantor)
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Foundations rebuilt, universes reimagined

Rigour, non-Euclidean worlds, and group symmetries
■ The quest for rigour: Cauchy provided precise, arithmetical definitions

for limits, continuity, and convergence, laying the modern foundation for
analysis. Figures like Bolzano, Abel, and Dirichlet further contributed

■ Revolutionary geometries: Challenging Euclid’s fifth postulate led to
the discovery of consistent non-Euclidean geometries (e.g., hyperbolic
geometry by Lobachevsky and Bolyai, with Gauss’s earlier, unshared
insights). Riemann generalised geometry to curved manifolds,
foreshadowing relativity

■ Birth of abstract algebra; Galois’s work on polynomial solvability
introduced the concept of group theory, inaugurating the study of
abstract algebraic structures and symmetries

Previous lesson revealed that mathematics was not static but a dynamic field
capable of fundamental conceptual shifts.
Now, let’s explore how these shifts deepened!
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Karl Weierstrass

From high school teacher to “Father of
Modern Analysis”:

■ German mathematician, initially studied
law and finance, later mathematics

■ Spent years as a gymnasium (high school)
teacher before his extraordinary research
was recognised, leading to a professorship
in Berlin

■ Renowned for his meticulous and
systematic approach, and his insistence on
absolute rigour

■ His influential teaching at Berlin shaped a
generation of mathematicians

Karl Weierstrass (1815–1897)
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Karl Weierstrass

Beyond Cauchy: The ϵ−δ formalism:
■ While Cauchy began the process of rigour, his definitions still had some

ambiguities (e.g., in the distinction between pointwise and uniform
convergence)

■ Weierstrass provided the definitive, completely arithmetical definitions of
fundamental concepts

■ He fully formalised the ϵ−δ definition of a limit and continuity:
□ L= limx→a f (x) if for every ϵ> 0, there exists a δ> 0 such that if

0< |x −a| < δ, then |f (x)−L| < ϵ

■ This precise language eliminated reliance on “infinitesimals” or geometric
intuition
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Karl Weierstrass

Key contributions to rigorous analysis:
■ Uniform convergence: Crucial for interchanging limit operations (e.g.,

integral of a limit, derivative of a series)
■ Continuous, nowhere differentiable functions: Constructed the first

formal example (1872) of a function that is continuous everywhere but
differentiable nowhere, challenging classical intuition

■ Foundation of real numbers: His program aimed to base all of analysis
on properties of integers, leading to Dedekind’s work

■ Analytic functions through power series: Believed that analytic
functions (representable by power series) should be the fundamental
objects of study in analysis

The pinnacle of rigour: Weierstrass completed the arithmetisation of
analysis, establishing the rigorous framework that continues to define
mathematical analysis today
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Richard Dedekind

Richard Dedekind (1831–1916)

The missing foundation:
■ Even with Cauchy’s and Weierstrass’s rigour

for limits and continuity, the real numbers
themselves lacked a precise, logical
foundation

■ What exactly is an irrational number? How do
we define continuity of the real line?

■ This foundational gap needed to be addressed
to truly “arithmetise” analysis
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Richard Dedekind

Dedekind cuts (1872):
■ Dedekind, a student of Gauss, provided a

rigorous construction of the real numbers
from the rational numbers
■ A Dedekind cut is a partition of the rational numbers Q into two

non-empty sets, A and B, such that:
1. Every rational number is in either A or B
2. Every element of A is less than every element of B
3. A contains no greatest element

■ This cut uniquely defines a real number (rational if B has a least element,
irrational otherwise)

■ This concept precisely captured the “completeness” of the real number
line, ensuring there are “no gaps”
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Richard Dedekind

Impact of Dedekind’s work:
■ Provided the logical bedrock for all of analysis by rigorously defining the

numbers used
■ Showed that the continuum of real numbers could be constructed purely

from the simpler rational numbers
■ Cemented the arithmetisation program by placing analysis on an

unshakeable numerical foundation

Defining the continuum: Dedekind’s construction of the real numbers
removed the last major intuitive ambiguity from the foundations of analysis,
completing its arithmetisation
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William Rowan Hamilton

The quest for numbers in 3D:
■ Irish mathematician, physicist, and

astronomer. A child prodigy, fluent in many
languages

■ Professor of Astronomy at Trinity College
Dublin at 22, while still an undergraduate

■ Fascinated by extending complex numbers
(which model 2D rotations and scaling) to
represent points or transformations in 3D
space

■ Spent years trying to define a consistent
“multiplication” for triplets of numbers
(a+bi +cj) that behaved like standard
numbers

William Rowan Hamilton (1805–1865)
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William Rowan Hamilton

The eureka moment (1843):
The non-commutative quaternions:

■ While walking with his wife along Dublin’s Royal Canal, the solution
suddenly struck him. He carved the famous relations onto Brougham
Bridge:

i2 = j2 = k2 = ijk =−1
■ This led to the discovery of quaternions, a number system of the form

a+bi +cj +dk, where a,b,c ,d are real numbers, and i , j ,k are imaginary
units

■ The crucial insight: multiplication for quaternions is non-commutative
(ij = k but ji =−k)
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William Rowan Hamilton

Impact and legacy:
■ A radical departure from traditional arithmetic, where multiplication was

always assumed to be commutative
■ Demonstrated that new, consistent algebraic systems could be created by

relaxing an axiom (commutativity in this case)
■ Initially seen as a powerful tool for 3D rotations in physics, though later

largely superseded by vector algebra (developed by Gibbs and Heaviside
from Grassmann’s ideas)

■ Fundamental for the development of modern abstract algebra,
particularly the study of non-commutative rings and algebras

■ Still used in computer graphics, aerospace engineering (for orientation),
and quantum mechanics

Algebra’s new freedom: Hamilton’s quaternions broke the shackles of
arithmetic, revealing that algebra could explore entirely new structures, not
just generalise existing ones
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Arthur Cayley

Arthur Cayley (1821–1895)

English polymath and legal professional:
■ English mathematician, one of the most

prolific of the 19th century, publishing over
900 papers

■ Held a prestigious fellowship at Trinity
College, Cambridge, but also pursued a
career as a lawyer for 14 years, practising
conveyancing

■ His legal work provided him with financial
independence, allowing him to pursue
mathematics without academic pressures

■ Later became the first Sadlerian Professor
of Pure Mathematics at Cambridge
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Arthur Cayley

The birth of matrix theory (1850s):
■ While matrices appeared implicitly earlier (e.g., in Gauss’s work on

quadratic forms), Cayley was the first to develop the algebra of
matrices explicitly

■ Defined matrix addition, scalar multiplication, and most importantly,
matrix multiplication (which is also non-commutative, like Hamilton’s
quaternions, but in a different context)

■ Realised that matrices could represent linear transformations (rotations,
scaling, shears) in a concise and general way

■ Cayley-Hamilton theorem: Every square matrix satisfies its own
characteristic polynomial (proved by Cayley for 2×2 and 3×3, later
generalised)

( 347 )



Arthur Cayley

Broader impact on abstract algebra:
■ Laid the foundation for linear algebra as an abstract subject,

independent of specific coordinates or geometric interpretations
■ Contributed to the development of group theory, providing concrete

examples of groups as collections of permutations (Cayley’s Theorem
states every group is isomorphic to a group of permutations)

■ Pioneering work on invariant theory, studying properties that remain
unchanged under transformations

The language of transformations: Cayley’s abstract formulation of matrices
provided a powerful new language for studying linear transformations and
ushered in the era of modern linear algebra, foundational to physics, computer
science, and engineering
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Hermann Grassmann

A visionary ahead of his time:
■ German linguist, physicist, and

mathematician
■ Primarily a high school teacher

(gymnasium), his radical mathematical
ideas were initially largely ignored or
misunderstood by his contemporaries

■ His work was far too abstract for its
time, only gaining significant
recognition in the late 19th and early
20th centuries

Hermann Grassmann (1809–1877)
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Hermann Grassmann

The Ausdehnungslehre (Theory of Extension, 1844/1862):
■ His most significant work, attempting to create a universal algebraic

language for all of geometry and physics
■ Introduced concepts now fundamental to linear algebra and differential

geometry:
□ Vector spaces: Abstract spaces where elements (vectors) can be added

and scaled, without reliance on coordinates
□ Linear independence and dimension
□ Inner product (dot product) for measuring angles and lengths

■ Developed exterior algebra (or Grassmann algebra): A system for
manipulating higher-dimensional quantities like areas (2-vectors) and
volumes (3-vectors) in an abstract, coordinate-free way. This involves the
“wedge product” (∧)
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Hermann Grassmann

Impact and legacy:
■ His ideas were a crucial conceptual precursor to modern vector calculus

and tensor analysis
■ Provided the abstract framework that underpins much of 20th century

physics (e.g., electromagnetism, general relativity) and computer graphics
■ Demonstrated that geometry could be studied algebraically, not just

visually or axiomatically
■ Emphasised the power of abstract definition, allowing for structures far

removed from physical intuition

The foundation of modern geometry and physics: Grassmann’s highly
abstract theories provided the conceptual tools to describe geometric and
physical quantities in any number of dimensions, paving the way for manifold
theory and modern physics
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The universe of abstract algebraic structures

The hierarchy of algebraic structures

From concrete to abstract:
■ Starting with Galois’s groups

(symmetries of roots)
■ Moving to Hamilton’s quaternions

(non-commutative numbers)
■ And Cayley’s matrices

(non-commutative transformations)
■ Further abstract notions of vector spaces

by Grassmann (sets with addition and
scalar multiplication)

■ The 19th century saw a gradual but
definitive shift from studying specific
numbers or operations to defining general
sets with operations that satisfy certain
axioms
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The universe of abstract algebraic structures

Emergence of other structures:
■ While formal definitions came later, the groundwork for other

fundamental algebraic structures was laid
□ Rings: Sets with two operations (like addition and multiplication) that

satisfy certain properties (e.g., integers, polynomials). The concept was
implicit in number theory (Dedekind, Kronecker)

□ Fields: Rings where every non-zero element has a multiplicative inverse
(e.g., rational numbers, real numbers, complex numbers). Important for
Galois theory

■ The focus moved to understanding the properties of these abstract
systems rather than just calculating with specific numbers
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The universe of abstract algebraic structures

Why this abstraction? Theoretical power:
■ Generalisation: Theorems proven for an abstract group (or ring, or

vector space) apply to all concrete examples of that structure
■ Unified framework: Different areas of mathematics (number theory,

geometry, analysis) could be seen to share underlying algebraic structures
■ New problems: The study of these structures became a rich field of

research in itself, leading to deep questions about classification and
properties

From solving equations to building worlds: The 19th century transformed
algebra from the science of equations into the science of abstract structures,
providing a universal language for patterns and symmetries across
mathematics
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Georg Cantor

A pioneer of the infinite:
■ German mathematician, born in Russia.

Studied at Zürich and Berlin (under
Weierstrass)

■ Began his research trying to understand
the convergence of Fourier series, which
led him to questions about the nature of
point sets

■ His work on infinity was highly original,
deeply philosophical, and initially met with
strong resistance and controversy

■ He faced significant personal struggles and
professional opposition, notably from
Leopold Kronecker

Georg Cantor (1845–1918)
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Georg Cantor

The problem: What is infinity?
■ Ancient Greek mathematicians (e.g., Zeno’s paradoxes) avoided the

actual infinite, dealing only with “potential infinity”
■ 18th century calculus used infinity informally (e.g., infinite series, limits

approaching infinity)
■ Cauchy and Weierstrass formalised limits using finite quantities, but the

nature of infinite sets remained vague
■ Cantor dared to ask: Can there be different sizes of infinity?
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Georg Cantor

Key concepts introduced:
■ Set theory: The fundamental theory of collections of objects
■ One-to-one correspondence: A method for comparing the “size” of sets

(cardinality), even infinite ones
■ Cardinal numbers: A way to quantify the size of sets (e.g., ℵ0)
■ Transfinite numbers: Numbers representing different levels of infinity

Redefining the foundations of mathematics: Cantor’s set theory provided
a new language and framework for all of mathematics, forcing a re-evaluation
of fundamental concepts like number, quantity, and space
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Different infinities!

Countable infinity (ℵ0):
■ A set is countably infinite if its elements can be put into a one-to-one

correspondence with the set of natural numbers N= {0,1,2,3, . . . }
■ Examples:

□ The set of integers Z= {. . . ,−2,−1,0,1,2, . . . } (can be “counted” as
0,1,−1,2,−2, . . .)

□ The set of rational numbers Q (Cantor showed this is also countable using
a diagonalisation argument, pairing numerators and denominators)

■ The cardinality of these sets is denoted by ℵ0 (aleph-null or aleph-zero)
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Different infinities!

Uncountable infinity (c):
■ Cantor’s groundbreaking discovery: Some infinite sets are “larger” than

others
■ The set of real numbers R is uncountably infinite
■ Cantor’s diagonalisation argument (1874): Proved that for any

assumed list of real numbers between 0 and 1, one can always construct a
new real number not on the list

■ This demonstrated that the continuum of real numbers cannot be put
into one-to-one correspondence with the natural numbers
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Different infinities!

The continuum hypothesis:
■ Cantor hypothesised that there is no set whose cardinality is strictly

between that of the natural numbers (ℵ0) and the real numbers (c)
■ That is, c=ℵ1 (the next cardinal number after ℵ0)
■ This problem remained unsolved for over a century and was later shown

to be independent of the standard axioms of set theory (Gödel 1940,
Cohen 1963)
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Different infinities!

Cantor’s theorem (power set):
■ For any set A, the power set P (A) (the set of all subsets of A) has a

strictly greater cardinality than A itself
■ This implies an infinite hierarchy of infinities: ℵ0 < 2ℵ0 < 22ℵ0 < . . .

A universe of infinities: Cantor’s work unveiled a rich and complex structure
within the realm of the infinite, forever changing our understanding of
quantity and laying the groundwork for mathematical logic
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Towards a new mathematical universe

From arithmetisation to the abstract and the infinite
■ The arithmetisation of analysis: The foundations of calculus were fully

solidified by Weierstrass’s rigorous ϵ−δ definitions and Dedekind’s
construction of the real numbers, removing all remaining ambiguities and
intuitive leaps

■ Expanding abstract algebra: The bold steps taken by Hamilton
(quaternions), Cayley (matrices), and Grassmann (vector spaces,
multilinear algebra) demonstrated the power and freedom of defining
abstract algebraic structures beyond traditional arithmetic

■ The revolution of set theory: Cantor’s groundbreaking work unveiled
the hierarchy of different infinities (countable vs. uncountable), laying
the groundwork for a new fundamental theory but also stirring controversy
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Towards a new mathematical universe

The 19th century transformed mathematics from a science of quantity and
calculation into a rigorous, abstract discipline centred on the study of
structures, patterns, and the very nature of mathematical objects. This
unprecedented level of abstraction, while powerful, also led to unforeseen
challenges and paradoxes, setting the stage for a dramatic foundational
re-evaluation at the turn of the 20th century
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History of Mathematics: Lecture 13
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Foundations in crisis, logic reborn

A period of profound transition:
■ Following the revolutionary 19th century, mathematics reached new

heights of abstraction and rigour
■ This period, roughly 1890–1930, was marked by both a synthesis of prior

achievements and a critical examination of mathematical foundations
■ Question: Has mathematics achieved absolute certainty, or are there

cracks in the bedrock
Key focus for this lesson:

■ Foundational crises: The emergence of paradoxes in set theory
(Russell’s Paradox)

■ The program for mathematics: Hilbert’s Problems and the quest for
consistency

■ Birth of mathematical logic: Attempts to formalise and axiomatise
mathematics (Frege, Peano, Russell, Whitehead)

■ New fields emerge: Measure theory (Lebesgue) and topology (Poincaré)
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The 19th century’s legacy

Rigour, abstraction, and the untamed infinite
■ Rigorous analysis: Weierstrass and Dedekind built calculus on solid

arithmetical foundations, eliminating intuition. But did this make
mathematics absolutely safe?

■ Abstract algebra: Galois, Hamilton, Cayley, and Grassmann showed
the power of abstract structures (groups, quaternions, matrices, vector
spaces). This led to immense generalisation but also questions: What is a
mathematical object?

■ Set theory and the infinite: Cantor’s groundbreaking work revealed
different sizes of infinity and made the infinite an actual, manipulable
mathematical object. This was revolutionary but also deeply unsettling
and led to its own internal difficulties

The very tools that brought unprecedented power and clarity to 19th century
mathematics also revealed its latent vulnerabilities, particularly in the realm of
set theory, sparking a profound crisis of confidence
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Unsettling paradoxes in set theory

The unforeseen consequence of abstraction:
■ The 19th century’s drive for rigour and abstraction, especially Cantor’s set

theory, led to unprecedented conceptual power
■ However, it also exposed hidden vulnerabilities in the underlying

assumptions about sets and logic
■ A paradox in mathematics is not just a tricky problem, but a seemingly

valid deduction from accepted axioms that leads to a contradiction
■ Such contradictions threatened the very consistency and reliability of

mathematics

Naive set theory’s premise:
■ Cantor’s implicit assumption (and initially, that of others): Any

“well-defined collection of objects” can form a set
■ This seemingly intuitive idea was the fertile ground for paradoxes
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Unsettling paradoxes in set theory

Key paradoxes emerged:
■ Burali-Forti paradox (1897): Concerns the set of all ordinal numbers.

Its existence leads to a contradiction
■ Cantor’s paradox (1899): Concerns the “set of all sets”. If such a set

exists, its power set must have a greater cardinality, yet it must already
contain all sets

■ Russell’s paradox (1901): Perhaps the most famous and impactful,
demonstrating a flaw in the very definition of a set

A jolt to certainty: These paradoxes revealed that even seemingly simple
and intuitive concepts, when pushed to their logical limits, could lead to
fundamental inconsistencies, demanding a re-evaluation of mathematical
foundations

( 369 )



Russell’s paradox

The simple, devastating contradiction:
■ Formulated by Bertrand Russell (1901)
■ It exposed a fatal flaw in naive set theory’s unrestricted comprehension

axiom (that any well-defined property defines a set)
■ Consider the set R of all sets that are not members of themselves

□ R = {x | x ∉ x }

■ Now, ask the question: Is R a member of itself (R ∈R)?
□ If R ∈R, then by definition of R, R ∉R. (Contradiction!)
□ If R ∉R, then by definition of R, R ∈R. (Contradiction!)

■ This leads to a logical contradiction, meaning the set R cannot exist
under the naive assumption
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Russell’s paradox

Analogy: the barber paradox
■ In a village, there is a barber who shaves all and only those men in the

village who do not shave themselves
■ Who shaves the barber?

□ If the barber shaves himself, then by definition, he does not shave himself
□ If the barber does not shave himself, then by definition, he shaves himself

■ This simple analogy captures the essence of Russell’s paradox

The impact: Devastating to foundational programs Russell’s paradox
immediately undermined the nascent logicist program of Gottlob Frege, who
was attempting to derive all of mathematics from logic and naive set theory.
It showed that fundamental assumptions were flawed
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Competing philosophies

Three main schools of thought emerged:
■ Logicism: Aimed to reduce all of mathematics to logic. Mathematics is

seen as a branch of logic
□ Proponents: Gottlob Frege, Bertrand Russell, Alfred North Whitehead
□ Challenge: Undermined by Russell’s Paradox (as discussed)

■ Intuitionism: Argued that mathematics is fundamentally a mental
construction, and only constructively proven objects exist. Rejected the
Law of Excluded Middle for infinite sets

□ Proponents: L.E.J. Brouwer
□ Challenge: Very restrictive, much of classical mathematics deemed

non-existent
■ Formalism: Viewed mathematics as a formal game played with symbols

according to strict rules (axioms). The goal was to prove the consistency
of these axiomatic systems

□ Proponent: David Hilbert.
□ Promise: Offered a path to absolute certainty
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David Hilbert

David Hilbert (1862–1943)

The program for mathematics
■ German mathematician, one of the most

influential of the 20th century
■ Believed mathematics could be placed on

a firm, axiomatic foundation
■ His “Program” aimed to:

□ Prove the consistency of arithmetic
using finite, indisputable methods
(finitary methods)

□ Show the completeness of axiomatic
systems (all true statements are provable)

□ Ensure the decidability of mathematical
statements (an algorithm exists to
determine truth/falsity)
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David Hilbert

A grand vision for certainty: Hilbert’s Program was the leading attempt to
establish a definitive, unshakeable foundation for all of mathematics, driven by
the desire to overcome the foundational crises
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Hilbert’s problems

The Paris address:
■ At the International Congress of

Mathematicians in Paris in 1900, David
Hilbert delivered a seminal address

■ He presented a list of 23 unsolved
mathematical problems that he believed
would be central to the development of
mathematics in the coming century

■ This list became an immense driving force
for research, shaping the direction of
mathematics for decades

■ Many problems have since been solved,
some partially, and a few remain open

Hilbert’s 23 problems for the 20th century
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Hilbert’s problems

Problems related to foundations:
■ Problem 1: The continuum hypothesis: Is there a set whose

cardinality is strictly between that of the natural numbers and the real
numbers? (Cantor’s problem)

■ Problem 2: The consistency of arithmetic: Is the system of axioms
for elementary arithmetic free from contradiction? Can this consistency
be proven using only finitary means? (Central to Hilbert’s program)

■ Problem 10: Diophantine equations: Given a Diophantine equation
with any number of unknown quantities and with rational integral
coefficients, to devise a process by which it can be determined in a finite
number of operations whether the equation has a solution in rational
integers. (The “decidability” aspect, later shown to be impossible by
Matiyasevich’s theorem)
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David Hilbert

The axiomatic method:
■ Hilbert championed the axiomatic method: defining mathematical

structures (like geometry or numbers) through a small set of basic
assumptions (axioms) and logically deriving all theorems

■ This approach aimed to bring rigour and clarity to every branch of
mathematics

■ Example: His work on the foundations of geometry, showing its
consistency if arithmetic is consistent

A blueprint for progress and a battle for truth: Hilbert’s problems not
only directed research but also formalised the grand challenge of the early
20th century: to establish the absolute certainty and self-consistency of
mathematics
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Towards mathematical logic

The roots of symbolic logic:
■ The formal, symbolic approach to logic began earlier with figures like

George Boole (mid-19th century), who developed Boolean algebra
■ This provided an algebraic system for logical operations (AND, OR, NOT)
■ However, to formalise mathematics itself and its internal structure, a

more expressive system (like predicate logic) was needed, leading to
Frege’s work
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Gottlob Frege

A vision of logic as the foundation of
mathematics:

■ German mathematician, logician, and
philosopher

■ Largely ignored during his lifetime, his
work was tragically undermined by
Russell’s paradox

■ His ultimate goal (the logicist
program) was to demonstrate that
arithmetic could be derived entirely
from logic, without recourse to
intuition or empirical observation

Gottlob Frege (1848–1925)
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Gottlob Frege

Key innovations in formal logic:
■ Begriffsschrift (Concept-script, 1879): His groundbreaking work,

arguably the most important single work in logic after Aristotle
■ Invented predicate logic (or quantifier logic):

□ Introduced quantifiers (∀ “for all”, ∃ “there exists”) to express generality
and existence precisely

□ Distinguished between concepts (predicates) and objects, moving beyond
the simple subject-predicate structure of traditional Aristotelian logic

■ Developed a rigorous formal symbolic language for logic, allowing for
unambiguous and mechanical derivation of proofs

■ Pioneered the idea of a formal system with axioms and rules of inference
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Gottlob Frege

Grundgesetze der Arithmetik (Basic Laws of Arithmetic, 1893, 1903):
■ His ambitious attempt to execute the logicist program
■ In Volume I (1893), he set out axioms from which he believed all of

arithmetic could be derived
■ Just as Volume II (1903) was going to press, he received a letter from

Bertrand Russell, pointing out the devastating paradox in his system
(Russell’s Paradox)

A masterpiece undermined: Frege’s work revolutionised logic, but his grand
project to derive mathematics from it was tragically incomplete due to
unforeseen paradoxes, requiring future mathematicians to rebuild the
foundations of set theory
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Giuseppe Peano

Giuseppe Peano (1858–1932)

Italian mathematician and pioneer
of axiomatics:

■ Italian mathematician, logician,
and linguist

■ Focused on rigorously formalising
existing mathematical theories,
particularly arithmetic

■ Advocated for the clear and
precise use of symbolic language
in mathematics
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Giuseppe Peano

Peano axioms (1889):
■ A set of five axioms that formally define the natural numbers (N) and

their properties (addition, multiplication)
■ These axioms are the standard foundation for arithmetic today

1. 0 is not the successor of any natural number
2. If two natural numbers have the same successor, then they are equal
3. The inductive definition of addition
4. The inductive definition of multiplication
5. (Principle of mathematical induction): If a property holds for 0, and holds

for the successor of any number for which it holds, then it holds for all
natural numbers

■ This provided a concrete, consistent axiomatic basis for the most
fundamental numbers
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Giuseppe Peano

Contributions to symbolic logic and notation:
■ Developed much of the notation that became standard in mathematical

logic (e.g., ∈ for “is an element of”, ⊂ for “is a subset of”, ∃ “there
exists”, ∀ “for all”)

■ His notation significantly improved the clarity and conciseness of logical
expressions

■ Founded the journal Rivista di Matematica and compiled the Formulario
Mathematico, an ambitious project to express all known mathematics in a
symbolic language

The architect of formal systems: Peano demonstrated how foundational
mathematical structures could be rigorously defined by a few axioms, and his
notation became indispensable for formalising mathematics
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Russell & Whitehead

Bertrand Russell (1872–1970) & Alfred North Whitehead (1861–1947):
■ Russell: British philosopher, logician, mathematician, and social critic.

His discovery of Russell’s paradox directly challenged Frege’s work
■ Whitehead: British mathematician and philosopher. Initially Russell’s

teacher, then collaborator
■ Shared the logicist belief: all of mathematics, particularly arithmetic,

could be derived from fundamental logical principles and definitions, with
set theory as an intermediary
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Russell & Whitehead

The monumental Principia Mathematica
(1910–1913):

■ A three-volume work, over 2,000 pages,
representing the zenith of the logicist
program

■ Its primary goal was to provide a unified,
formal, and axiomatic foundation for
all of mathematics based purely on
logical primitives

■ Introduced a vast array of new logical
symbols and a precise, step-by-step
derivation of mathematical concepts

■ Famously, it took until page 362 of
Volume I to prove that 1+1= 2 Principia Mathematica by Russell and Whitehead
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Russell & Whitehead

Addressing the paradoxes: Theory of types
■ To avoid Russell’s Paradox and similar contradictions, they introduced the

theory of types
■ This theory restricts how sets can be formed and how properties can be

applied, preventing “self-referential” definitions (e.g., a set cannot contain
itself, and properties can only be applied to objects of a lower “type”)

■ While successful in preventing known paradoxes, it made the system very
complex and somewhat counter-intuitive

The pinnacle and pitfalls of logicism: Principia Mathematica was an
extraordinary intellectual feat, demonstrating the possibility of formalising
mathematics. However, its immense complexity and reliance on non-obvious
axioms (like the Axiom of Reducibility) highlighted the challenges of the
logicist ambition, paving the way for further foundational inquiries
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Gödel’s incompleteness theorems

Kurt Gödel (1906–1978)
The unforeseen answer to Hilbert’s dream:

■ Austrian-American, arguably the most important logician since Aristotle
■ His work profoundly impacted mathematical logic, philosophy of

mathematics, and theoretical computer science
■ While chronologically slightly after the “turn of the century” period

(published 1931), his theorems directly addressed and fundamentally
altered the goals of Hilbert’s program
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Gödel’s incompleteness theorems

Gödel’s first incompleteness theorem:
■ For any consistent axiomatic system capable of encoding basic arithmetic,

there will always be true statements within that system that cannot
be proven within that system

■ In simpler terms: No single consistent axiomatic system can capture all
mathematical truths about numbers

■ This directly struck at Hilbert’s goal of completeness

Gödel’s second incompleteness theorem:
■ A consistent axiomatic system cannot prove its own consistency.
■ This delivered another blow to Hilbert’s program, particularly his goal of

proving the consistency of arithmetic using finitary methods within the
system itself
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Gödel’s incompleteness theorems

A profound paradigm shift: Gödel’s theorems demonstrated inherent
limitations to formal axiomatic systems, showing that mathematics, despite
its rigour, contains irreducible aspects of truth that cannot be fully captured
by any single, consistent formal framework. This led to a re-evaluation of the
nature of mathematical truth and proof
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Henri Lebesgue

The limitations of Riemann integration:
■ The Riemann integral (developed by Bernhard Riemann in the mid-19th

century) works well for continuous or “nicely behaved” functions
■ However, with the rise of increasingly complex and “pathological”

functions (e.g., Dirichlet function, continuous nowhere differentiable
functions from Weierstrass), its limitations became apparent

■ Key problem: For some functions, the Riemann integral might not exist,
or the order of integration and limits could not be interchanged reliably

■ It summed areas of vertical “rectangles” under the curve
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Henri Lebesgue

Henri Lebesgue (1875–1941)

Lebesgue’s breakthrough:
Measuring sets (1902):

■ French mathematician, a student of Émile Borel
(who pioneered measure theory in more general
contexts)

■ Instead of slicing the domain (x-axis), Lebesgue
conceived of slicing the range (y-axis) of the
function

■ He introduced the concept of measure: a
systematic way to assign a size (length, area,
volume) to subsets of space, including very
complex ones

■ The Lebesgue integral defines the integral of a function by partitioning
its range into tiny intervals and summing the “measure” of the sets in
the domain that map into those intervals
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Henri Lebesgue

The power of Lebesgue integration:
■ Allows for the integration of a far broader class of functions than the

Riemann integral
■ Provides a robust framework for interchanging limits and integrals (e.g.,

Lebesgue’s dominated convergence theorem)
■ Absolutely foundational for:

□ Functional analysis (study of function spaces)
□ Probability theory (defining continuous probability distributions)
□ Harmonic analysis and partial differential equations

A new foundation for analysis: Lebesgue’s measure theory provided a
powerful, flexible, and rigorous generalisation of integration, becoming the
standard for 20th century analysis and beyond
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Henri Poincaré

The “Last Universalist”:
■ French mathematician, theoretical

physicist, engineer, and philosopher of
science

■ Often described as “the last
universalist” for his contributions
across nearly all branches of
mathematics and physics of his time

■ His work on celestial mechanics (the
three-body problem) led him to
entirely new mathematical concepts

Henri Poincaré (1854–1912)
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Henri Poincaré

The birth of modern topology:
■ Topology is the study of properties of spaces that are preserved under

continuous deformations (stretching, bending, but not tearing or gluing)
■ Poincaré’s seminal work, Analysis Situs (1895–1904), is considered the

foundational text of algebraic topology
■ He introduced key concepts:

□ Homology and homotopy: Tools to distinguish spaces by their “holes” or
“connectedness”

□ The fundamental group: A way to capture the “loops” in a space
■ Unlike geometry (which studies rigidity) or analysis (which studies

change), topology studies qualitative properties of shape
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Henri Poincaré

Other major contributions:
■ Dynamical systems theory: His work on the three-body problem

pioneered chaos theory and qualitative analysis of differential equations
■ Special relativity: Independent, near-simultaneous insights into relativity

theory (Lorentz transformations)
■ Philosophy of science: Argued for the conventional nature of geometry

and the importance of intuition
■ Poincaré conjecture: One of the most famous problems in topology

(solved in 2003 by Perelman)

A new lens for space: Poincaré’s invention of topology provided
mathematics with a powerful new lens to understand shape and
connectedness, independent of size or rigidity, opening up vast new areas of
research
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A foundation re-examined, a future unveiled

From crises to new realms of inquiry
■ Foundational reckoning: The seemingly robust mathematics of the 19th

century faced its first major crisis with the discovery of paradoxes in set
theory (e.g., Russell’s Paradox), prompting a deep re-evaluation of its
logical underpinnings

■ The axiomatic imperative: Hilbert’s Program provided an ambitious
vision for a consistent and complete mathematics, driving the
development of mathematical logic (Frege, Peano, Russell &
Whitehead’s Principia Mathematica)

■ Limits and new paradigms: Gödel’s incompleteness theorems, while
coming slightly later, revealed inherent limitations to formal systems,
profoundly shifting the understanding of mathematical truth

■ Seeds of new disciplines: Simultaneously, groundbreaking work by
Lebesgue (measure theory) and Poincaré (topology) established entirely
new branches of mathematics that would flourish in the coming century

( 397 )



A foundation re-examined, a future unveiled

The turn of the century was a period of intense intellectual ferment.
Mathematics emerged from this foundational turmoil not broken, but
profoundly transformed, armed with new tools and a deeper understanding of
its own nature. It was now ready to embark on its most explosive century of
growth, expanding into an incredibly diverse and interconnected landscape of
theories and applications
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History of Mathematics: Lecture 14

Syllabus:
The 20th century in Mathematics:

■ Consolidation, abstraction, and new structures



Consolidation and abstraction

From foundations to vast new landscapes
The dawn of a new era:

■ The 20th century witnessed an unparalleled expansion and diversification
of mathematical knowledge

■ Building on the rigour and abstraction of the 19th century, and the
foundational debates of the turn of the century

■ Mathematics becomes increasingly abstract, interconnected, and essential
to other sciences
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Consolidation and abstraction

Key focus for this lesson (Early 20th century):
■ Consolidation and axiomatisation: Establishing secure foundations

(ZFC, Bourbaki)
■ Rise of functional analysis: Extending calculus to infinite-dimensional

spaces
■ Algebraic geometry takes off: From classical curves to abstract

varieties
■ Deepening group theory: Exploring symmetries further
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The turn of the century’s legacy

■ Foundational crisis resolved? Russell’s Paradox exposed flaws in naive
set theory. The quest for solid axioms began

■ Hilbert’s grand program: A vision for a consistent, complete, and
decidable mathematics, driving much research

■ Mathematical logic takes shape: Frege, Peano, Russell & Whitehead
provided the formal languages and axiomatic methods

■ Gödel’s profound limits: Incompleteness theorems showed that Hilbert’s
full dream was unattainable, leading to a deeper understanding of
mathematical truth

■ New fields emerging: Measure theory (Lebesgue) and topology
(Poincaré) pointed to novel ways of understanding space and quantity

The early 20th century inherited a paradox-stricken but highly formalised
mathematical landscape. The task now was to use these new logical tools to
rebuild foundations rigorously, while simultaneously exploring the vast new
abstract spaces that the 19th century had only just glimpsed
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Rebuilding foundations: Axiomatic set theory

The need for restricted set formation:
■ Russell’s Paradox (and others) demonstrated that the “naive” idea that

any definable collection forms a set leads to contradictions
■ The problem lay in allowing “too large” or “self-referential” sets
■ The solution: Restrict the ways in which sets can be formed using a

carefully chosen set of axioms

Ernst Zermelo (1871–1953) and Abraham Fraenkel (1891–1965):
■ Zermelo (1908) proposed the first rigorous axiomatic system for set

theory to avoid the known paradoxes
■ Fraenkel (1922) and Thoralf Skolem independently proposed refinements,

leading to what is now known as Zermelo-Fraenkel (ZF) set theory
■ The inclusion of the axiom of choice gives us ZFC, the standard

axiomatic system for mathematics today
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Rebuilding foundations: Axiomatic set theory

Key principles of ZFC:
■ Axiom of Separation: Allows forming subsets from existing sets using a

property. This prevents Russell’s paradox by disallowing the “set of all
sets not containing themselves”

■ Axiom of union/power set: Allows building larger sets from smaller ones
■ Axiom of infinity: Guarantees the existence of at least one infinite set

(e.g., the natural numbers)
■ Axiom of choice: States that for any collection of non-empty sets, it is

possible to choose exactly one element from each set, even if there’s no
rule for choosing. (Controversial for its non-constructive nature)

The default foundation: ZFC provides a powerful, widely accepted, and (as
far as we know) consistent framework for almost all of modern mathematics,
effectively resolving the paradoxes that plagued naive set theory
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The structuralist program

A fictional name, a real revolution:
■ Nicolas Bourbaki is the collective

pseudonym of a group of mostly French
mathematicians, formed in 1935

■ Included influential figures like André Weil,
Claude Chevalley, Jean Dieudonné, and
Henri Cartan

■ Their original aim was to write a rigorous,
comprehensive treatise presenting the
whole of modern mathematics from an
axiomatic, foundational point of view

A volume from Bourbaki’s Éléments de mathématique
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The structuralist program

The structuralist approach:
■ Mathematics is viewed as the study of abstract structures
■ These structures are defined axiomatically (e.g., groups, rings, fields,

topological spaces, vector spaces)
■ Emphasised the relationships and analogies between different

mathematical areas through shared underlying structures
■ Their influential Éléments de mathématique series systematically built up

mathematics from set theory, using a highly formal and abstract style
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The structuralist program

Impact and legacy:
■ Immense influence on university mathematics curricula globally,

emphasising abstract algebra, topology, and functional analysis
■ Popularised the axiomatic method and the concept of “structure” as

central to mathematics
■ Standardised notation and terminology (e.g., ; for empty set, R for real

numbers, terms like “injective”, “surjective”, “bijective”)
■ While sometimes criticised for excessive abstraction and lack of intuition,

their project fundamentally shaped the landscape of modern pure
mathematics

The architects of modern mathematics’ structure: Bourbaki’s systematic,
axiomatic, and structuralist approach provided a unified framework and a
common language for diverse mathematical fields, defining how much of 20th

century mathematics would be organised and taught
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General topology

Beyond metric spaces:
■ The 19th century saw the development of metric spaces (e.g., by

Fréchet, Hausdorff, Hilbert), where a distance function (metric) defines
“closeness”

■ However, not all notions of “closeness” or “convergence” require a
specific distance

■ The goal was to generalise the concepts of continuity, limits, and
convergence to the most abstract possible setting
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General topology

Felix Hausdorff

Maurice Fréchet (1878–1973) and Felix
Hausdorff (1868–1942):

■ Fréchet (French) in his 1906 thesis
defined abstract metric spaces and also
initiated the study of general topological
spaces, though his definition was not yet
the modern one

■ Hausdorff (German) in his 1914 classic
textbook Grundzüge der Mengenlehre
(Foundations of Set Theory) gave the first
formal definition of a topological space
using axioms for “neighbourhoods” or
“open sets”

■ This established topology as an
independent mathematical discipline
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General topology

The axioms of a topological space:
■ A set X with a collection of subsets T (called “open sets”) satisfying:

1. The empty set ; and X itself are in T

2. Any (finite or infinite) union of sets in T is in T

3. Any finite intersection of sets in T is in T

■ This simple set of axioms allows for a highly general study of continuity,
compactness, and connectedness

■ Many different “topologies” can be defined on the same set.

The ultimate abstraction of proximity: General topology provided the
most abstract and flexible framework for studying notions of closeness and
continuity, becoming fundamental for functional analysis, geometry, and many
other areas of 20th century mathematics
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Functional analysis

Extending concepts from finite dimensions:
■ Recall linear algebra: the study of vector spaces (like Rn) and linear

transformations (matrices)
■ Functional analysis extends these ideas to spaces where “vectors” are

functions, and these spaces can have infinite dimensions
■ Key idea: Functions can be viewed as points in an abstract vector space
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Functional analysis

Origins and motivations:
■ Arose from the study of integral equations (e.g., Volterra, Fredholm) and

problems in mathematical physics (e.g., calculus of variations)
■ The need to understand infinite series, Fourier analysis, and solutions to

differential equations more deeply
■ The development of abstract measure theory and general topology

provided the necessary rigorous framework

Central objects of study:
■ Function spaces: Collections of functions with specific properties (e.g.,

continuous functions, square-integrable functions)
■ Linear operators: Transformations between function spaces (generalising

matrices)
■ Concepts like continuity, convergence, and completeness generalised to

these abstract spaces
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Functional analysis

Why infinite dimensions? Example: Fourier Series
■ A function f (x) can be represented as an infinite sum of sines and cosines:

f (x)= a0 +
∞X

n=1
(an cos(nx)+bn sin(nx))

■ Each cos(nx) and sin(nx) can be seen as a “basis vector” in an
infinite-dimensional space

■ The coefficients an,bn are the “coordinates” along these basis vectors
■ This representation is only possible in an infinite-dimensional setting

Bridging analysis and algebra: Functional analysis provides powerful tools
to solve problems in diverse areas, from quantum mechanics to signal
processing, by abstracting analytical problems into the language of linear
algebra in infinite dimensions
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Hilbert spaces

Generalising Euclidean space:
■ In finite-dimensional Euclidean space (Rn), we have notions of:

□ Vectors and vector addition
□ Scalar multiplication
□ Dot product (inner product) for length and angle
□ Distance and completeness

■ A Hilbert space is an abstract vector space that extends all these
geometric notions to infinite dimensions

■ It’s a complete inner product space
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Hilbert spaces

Key features:
■ Inner product: Allows defining length (norm) and angle between vectors

(functions)
■ Completeness: Guarantees that sequences that “should” converge, do

converge within the space. This is crucial for calculus-like operations
■ Separability: Often means there’s a countable “basis” of functions

Example: L2 space
■ The space of square-integrable functions (functions f such thatR |f (x)|2dx <∞)
■ The inner product is defined as 〈f ,g〉=R

f (x)g(x)dx
■ This space is a central example of a Hilbert space
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Hilbert spaces

Profound importance in physics:
■ Quantum mechanics: The state space of a physical system in quantum

mechanics is represented by a Hilbert space
■ Wave functions (describing particles) are elements of a Hilbert space
■ Observables (like position, momentum, energy) are represented by linear

operators on this space
■ The “probability interpretation” relies heavily on the inner product

(measuring amplitudes)

The mathematical home of quantum mechanics: Hilbert spaces provided
the robust mathematical framework for quantum mechanics, allowing for the
rigorous treatment of wave functions, operators, and quantum phenomena
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Banach spaces and linear operators

Beyond Hilbert spaces: Banach spaces
■ While Hilbert spaces are crucial for their

geometric structure (inner product), not all
important function spaces possess one

■ A Banach space is a complete normed vector
space

□ It has a norm (a concept of “length” or “size” for
vectors/functions)

□ It is complete (all Cauchy sequences converge
within the space, preventing “holes”)

■ Unlike Hilbert spaces, it does not necessarily have
an inner product or a notion of angle

■ Stefan Banach (1892–1945), a leading figure of
the Lwów School of Mathematics, was central to
developing this theory

Stefan Banach
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Banach spaces and linear operators

Examples of Banach spaces:
■ Lp spaces (for p ≥ 1): Spaces of functions whose p-th power of their

absolute value is integrable. (L2 is a special case that is also a Hilbert
space)

■ C [a,b]: The space of continuous functions on an interval [a,b], with the
supremum norm (||f || =max |f (x)|)
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Banach spaces and linear operators

Linear operators: The “matrices” of infinite dimensions
■ A linear operator is a linear transformation between vector spaces (e.g.,

from one Banach space to another)
■ They generalise matrices from finite to infinite dimensions
■ Many fundamental operations in analysis are linear operators:

□ Differentiation: D(f )= f ′
□ Integration: I(f )=Rx

a f (t)dt
■ Spectral theory: The study of eigenvalues and eigenvectors of linear

operators, generalising diagonalising matrices. This is crucial for
understanding the behaviour of operators and has applications in
quantum mechanics, differential equations, and signal processing

A universal language for analysis: Banach spaces and the theory of linear
operators provided a powerful and abstract framework for tackling a vast
range of problems, expanding the scope and generality of analytical methods

( 420 )



Algebraic geometry

Classical roots: Geometry from polynomials
■ Algebraic geometry traditionally studies geometric shapes (curves,

surfaces, and their higher-dimensional analogues) that are defined by
systems of polynomial equations

■ Example: A circle (x2 +y2 = 1), a parabola (y = x2), or a sphere
(x2 +y2 +z2 = 1)

■ Problems often involved classifying these shapes, understanding their
intersections, and identifying their singular points

■ This field dates back to ancient Greece (conic sections) and flourished
with Descartes’ analytical geometry in the 17th century
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Algebraic geometry

The 19th century and early abstraction:
■ Great progress in the 19th century (e.g.,

Riemann surfaces in complex analysis,
projective geometry)

■ Introduction of complex numbers and
projective space simplified many
classical theorems

■ However, the tools were often ad-hoc,
relying on intuition or specific
coordinate systems

■ The desire for a more rigorous, general,
and coordinate-free approach grew

An algebraic curve defined by a polynomial equation
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Algebraic geometry

The 20th century transformation: Abstraction and algebraisation
■ The foundational crises and the success of axiomatic methods (like ZFC)

inspired a push for deeper abstraction
■ Focus shifted from geometric intuition alone to the underlying algebraic

structures (rings, fields, ideals) associated with geometric objects
■ The goal became to define “spaces” (called varieties and later schemes)

purely algebraically, then to study their geometric properties through their
algebraic structure

■ This allowed for the study of “geometry” over any field (finite fields,
p-adic numbers), not just real or complex numbers

A symphony of abstraction: Algebraic geometry transformed into a highly
abstract and powerful field, creating deep connections between commutative
algebra, number theory, topology, and complex analysis, becoming a central
pillar of modern pure mathematics
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Hilbert’s algebraic foundations for geometry

Setting the stage for abstract algebraic geometry:
■ While not strictly an “algebraic geometer” in the modern sense, David

Hilbert’s work in invariant theory and commutative algebra provided
crucial foundational theorems

■ His axiomatic approach and insistence on rigorous proof profoundly
influenced the field
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Hilbert’s algebraic foundations for geometry

Key theorems with geometric ramifications:
■ Hilbert’s basis theorem (1890):

□ States that every ideal in a polynomial ring over a field (or a Noetherian
ring) is finitely generated

□ Geometrically: This means that any algebraic variety (set of zeros of
polynomials) can be defined by a finite number of polynomial equations,
even if it initially seems to require an infinite number. This was a critical
finiteness result

■ Hilbert’s nullstellensatz (Zeros theorem, 1893):
□ A fundamental bridge between algebra and geometry
□ It relates ideals in polynomial rings to algebraic varieties. For example, it

establishes a precise correspondence between algebraic sets and radical
ideals

□ Geometrically: If a polynomial vanishes on all the common zeros of a set of
other polynomials, then it is “algebraically dependent” on them in a
specific way
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Hilbert’s algebraic foundations for geometry

The twentieth century challenge: Geometry over any field
■ Classical algebraic geometry often focused on complex numbers (C)
■ Questions arose about doing “geometry” over other fields, especially

finite fields (e.g., Zp), which are crucial for number theory and
cryptography

■ Counting the number of points on algebraic varieties over finite fields
became a central, incredibly difficult problem, linking geometry, algebra,
and number theory

Algebra as the foundation: Hilbert’s theorems provided the essential
algebraic machinery that allowed algebraic geometers to move beyond
intuitive geometric reasoning and build the field on a solid, abstract algebraic
bedrock, enabling generalisations to vastly different contexts
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The Weil conjectures

André Weil (1906–1998) and the challenge:
■ French mathematician, one of the founders of

the Bourbaki group
■ In 1949, André Weil formulated three profound

conjectures (and an analogue of the Riemann
Hypothesis) concerning the number of solutions
to polynomial equations over finite fields

■ These conjectures provided a concrete target for
algebraic geometers, promising deep insights
into number theory

■ They connected the counting of points on
varieties over finite fields to complex analysis
and topology, via an analogue of the Riemann
zeta function

André Weil
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The Weil conjectures

A catalyst for new theories:
■ Proving these conjectures required the development of entirely new,

highly abstract mathematical theories
■ The existing “classical” tools of algebraic geometry were insufficient
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The Weil conjectures

Alexandre Grothendieck

The revolutionary work of
Alexandre Grothendieck (1928–2014):

■ A visionary French-German mathematician,
considered one of the greatest in 20th century

■ To prove the Weil conjectures, Grothendieck
single-handedly revolutionised algebraic
geometry, introducing the theory of schemes

■ Schemes: An extreme generalisation of
algebraic varieties, allowing for “geometric”
intuition to be applied to a much broader class
of objects (e.g., prime ideals in rings), creating
bridges to number theory

■ He developed étale cohomology, a
sophisticated cohomology theory necessary to
prove the conjectures
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The Weil conjectures

Pierre Deligne (1944–): The final proof
■ Building on Grothendieck’s vast

framework, Pierre Deligne (1974)
successfully proved the last and most
difficult of the Weil conjectures (the
Riemann Hypothesis analogue)

A triumph of abstraction and interconnectedness: The Weil conjectures,
and their eventual proofs, exemplify the power of extreme abstraction in 20th

century mathematics, demonstrating how deep problems can drive the
creation of entirely new theories that ultimately connect disparate fields like
number theory, geometry, and topology
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Group theory deepens

Building blocks of symmetry: Finite simple groups
■ Recall group theory (from Galois to Klein) as the study of symmetry
■ Just as prime numbers are the building blocks for integers, simple groups

are the fundamental, irreducible building blocks for all finite groups
■ The classification of finite simple groups (CFSG):

□ A monumental, collaborative effort spanning over 50 years (roughly
1955–2004) by hundreds of mathematicians

□ Resulting in a proof spanning thousands of journal pages
□ It classifies all finite simple groups into several families (e.g., cyclic groups

of prime order, alternating groups, groups of Lie type) and 26 “sporadic”
groups (which don’t fit into obvious families, like the “Monster Group”)

■ This was one of the largest mathematical projects in history,
demonstrating the power of collaborative, systematic classification
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Group theory deepens

Continuous symmetries: Lie groups and Lie algebras
■ Named after Norwegian mathematician Sophus Lie (1842–1899)
■ Lie groups are groups that are also smooth manifolds, meaning they

describe continuous symmetries
■ Examples: Rotations in 3D space (SO(3)), Lorentz transformations in

special relativity
■ The study of Lie groups often involves their associated Lie algebras,

which are simpler, linear algebraic objects that capture the local structure
of the Lie group

■ Profound connections:
□ Differential geometry: Symmetries of manifolds
□ Physics: Fundamental to quantum mechanics (e.g., symmetries of

particles), particle physics (e.g., standard model’s gauge symmetries), and
general relativity
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Group theory deepens

Symmetry: From building blocks to fundamental forces The 20th century
saw group theory provide an exhaustive catalogue of finite symmetries and a
robust framework for understanding continuous symmetries, becoming
indispensable for both pure mathematics and theoretical physics.

( 433 )



Expanding abstraction

From rigour to unforeseen realms
■ Solidifying the base: The early 20th century successfully provided

rigorous foundations for mathematics with axiomatic set theory (ZFC)
and the structuralist approach of Bourbaki

■ Generalising space: The concept of “space” was profoundly abstracted
with the development of General topology (Hausdorff), providing a
universal framework for continuity

■ Infinite dimensions of analysis: Functional analysis emerged as a
powerful tool to study functions as “vectors” in infinite-dimensional
spaces (Hilbert and Banach spaces), crucial for physics and PDEs

■ Abstracting geometry: Algebraic geometry underwent a deep
transformation, using sophisticated algebraic tools (Hilbert’s theorems,
Weil conjectures driving Grothendieck’s schemes) to study geometric
objects over various fields
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Expanding abstraction

From rigour to unforeseen realms
■ Symmetries categorised: Group theory continued to flourish,

culminating in the monumental Classification of Finite Simple Groups and
the development of Lie groups for continuous symmetries, with vital
applications in physics

The early 20th century was defined by a drive for ultimate rigour and
abstraction. Mathematicians successfully rebuilt logical foundations and
developed entirely new, sophisticated languages — functional analysis, modern
algebraic geometry, and advanced group theory — to explore structures
previously unimaginable. This period of deep theoretical construction laid the
groundwork for the explosion of interconnected research fields and grand
problem-solving efforts that would characterise the mid-to-late 20th century
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History of Mathematics: Lecture 15

Syllabus:
The 20th century in Mathematics:

■ Interconnections and problem solving



Interconnections and problem solving

Mathematics as a web of theories
The mid-to-late 20th century landscape:

■ Building on the rigorous foundations and abstract structures from the
early 20th century

■ A period characterised by a flourishing of deep connections between
seemingly disparate fields

■ Mathematics becomes a powerful tool for solving long-standing problems
and driving scientific progress

Key focus for this lesson:
■ Algebraic topology flourishes: Using algebraic tools to study geometric

shapes
■ Number theory’s grand challenges: Tackling ancient and modern

problems with new techniques
■ Differential geometry and physics: The profound and often surprising

interplay between geometric structures and the laws of the universe
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Early 20th century foundations

Tools acquired, structures defined
■ Solid axioms: ZFC set theory and Bourbaki’s structuralism provided a

unified, rigorous language
■ Generalised spaces: General topology defined abstract notions of

closeness and continuity
■ Infinite-dimensional analysis: Functional analysis (Hilbert, Banach

spaces, operators) opened new analytical avenues
■ Abstract algebra & geometry: Algebraic geometry’s transformation

(Hilbert, Weil, Grothendieck) and deep group theory (CFSG, Lie Groups)
laid powerful algebraic groundwork

The first half of the 20th century provided mathematics with a robust,
abstract framework. The mid-to-late century would see these sophisticated
tools applied to tackle profound problems, revealing unexpected symmetries
and connections across the mathematical landscape
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Algebra to the rescue of geometry

Building on Poincaré’s vision:
■ Recall Poincaré’s foundational work in Analysis Situs (1895–1904),

introducing concepts like homology and the fundamental group
■ Algebraic topology is the study of topological spaces using tools from

abstract algebra
■ The core idea: Associate algebraic invariants (groups, rings, modules) to

topological spaces. These invariants don’t change if the space is
continuously deformed
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Algebra to the rescue of geometry

Why algebra for geometry?
■ Geometric objects can be incredibly complex (e.g., high-dimensional

manifolds)
■ Pure intuition often fails beyond 3 dimensions
■ Algebraic structures (like groups) are often easier to compute with and

classify
■ If two spaces have different algebraic invariants, they cannot be

topologically equivalent
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Algebra to the rescue of geometry

The mid-20th century flourishing:
■ Rapid development, particularly

after World War II, fuelled by the
needs of other fields (differential
geometry, number theory, even
physics)

■ Major figures: Emmy Noether
(earlier, but influence on
cohomology), Heinz Hopf, Norman
Steenrod, Samuel Eilenberg,
Saunders Mac Lane

Topological space and its algebraic representation
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Algebra to the rescue of geometry

Key algebraic invariants (Conceptual):
■ Homotopy groups Generalise the fundamental group (Poincaré) to

higher dimensions (πn). They capture how n-dimensional spheres can be
continuously mapped into the space

■ Homology & cohomology theories:
□ Provide algebraic descriptions of the “holes” in a space in various

dimensions
□ Cohomology groups often have a richer algebraic structure (e.g., a ring

structure) than homology groups, making them more powerful
■ These theories allow mathematicians to classify and understand highly

complex shapes like knots, surfaces, and higher-dimensional manifolds

The power of translation: Algebraic topology acts as a powerful dictionary,
translating complex geometric problems into manageable algebraic questions,
which then yield profound insights into the structure and properties of spaces
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Fixed-point theorems

Interconnections across mathematics:
■ Algebraic topology is not just about abstract spaces; its tools are vital

across many fields:
□ Differential geometry: Classifying manifolds, characteristic classes
□ Algebraic geometry: The cohomology theories (e.g., étale cohomology

mentioned with Grothendieck) used to solve the Weil conjectures have
topological roots

□ Number theory: Connecting to arithmetic properties
□ Functional analysis: Studying properties of operators
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Fixed-point theorems

A major class of results: Fixed-point theorems
■ A fixed point of a function f (x) is a value x such that f (x)= x
■ Fixed-point theorems provide conditions under which a continuous

function must have at least one fixed point
■ These theorems are incredibly powerful for proving the existence of

solutions to equations, especially in areas where direct computation is
impossible
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Fixed-point theorems

L.E.J. Brouwer (1881–1966) and the
first theorem:

■ Dutch mathematician, also a key
figure in intuitionism (a school of
thought on foundations of math,
briefly mentioned earlier)

■ Brouwer fixed-point theorem
(1911): Any continuous function
from a closed disk (or solid ball)
to itself must have at least one
fixed point

■ Intuitive example: If you stir a cup
of coffee, there’s always at least
one point in the coffee that ends
up in its original position

Brouwer’s fixed-point theorem in 2D
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Fixed-point theorems

Solomon Lefschetz (1884–1972) and generalisation:
■ American mathematician of Russian-Jewish origin
■ Lefschetz fixed-point theorem (1926): A much more general theorem

that uses homology groups to count fixed points (with multiplicity)
■ It applies to a broader class of spaces and provides a criterion involving

algebraic invariants

Beyond intuition: guaranteed existence: Fixed-point theorems, born from
algebraic topology, are not just elegant results; they are fundamental tools
guaranteeing the existence of solutions in diverse fields from economics (e.g.,
existence of market equilibrium) to differential equations
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Diophantine equations

Diophantine equations: Ancient puzzles,
enduring mysteries

■ Equations where we seek only integer
solutions

■ Named after Diophantus of Alexandria
(3rd century CE)

■ Examples:
□ Pythagorean triples: x2 +y2 = z2 (e.g.,

32 +42 = 52)
□ Fermat’s Last Theorem: xn +yn = zn for

n > 2 (no non-trivial integer solutions)
■ Finding solutions or proving their

non-existence can be incredibly difficult
Diophantus of Alexandria
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Diophantine equations

Hilbert’s tenth problem (1900): The decidability question
■ One of David Hilbert’s famous 23 problems posed at the 1900

International Congress of Mathematicians
■ It asked for an algorithm (a general process) that could determine, in a

finite number of steps, whether a given Diophantine equation has integer
solutions

■ Hilbert believed such an algorithm must exist (a testament to his
formalist optimism)
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Diophantine equations

The surprising resolution: Yuri Matiyasevich (1970)
■ Decades of work by Julia Robinson, Martin Davis, and Hilary Putnam laid

the groundwork
■ In 1970, Soviet mathematician Yuri Matiyasevich proved that no such

general algorithm exists
■ This means Hilbert’s Tenth Problem is undecidable
■ Connection to computability theory: Matiyasevich’s proof relied

fundamentally on concepts from computability theory (e.g., Turing
machines, recursively enumerable sets), a field that developed much later
than Hilbert posed his problem

Limits of computability: A profound interconnection: The resolution of
Hilbert’s Tenth Problem demonstrated an inherent limitation to what
algorithms can achieve and exemplified the unexpected connections between
seemingly disparate fields — number theory and the nascent field of
theoretical computer science
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Modular forms

What are modular forms?
(A conceptual view):

■ They are complex analytic functions that
are defined on the upper half-plane of
complex numbers

■ Their defining characteristic is an
incredible amount of symmetry under a
specific group of transformations (the
modular group, related to translations and
inversions)

■ They have a specific growth condition and
a ‘nice’ behaviour at “infinity”

Symmetry in the domain of the modular group

■ Despite their abstract definition, their Fourier coefficients (the numbers
appearing in their series expansion) encode profound arithmetic information
about integers
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Modular forms

Mysterious connections emerge:
■ Discovered in the 19th century by Dedekind, Riemann, Poincaré, and

Klein, their deeper significance became apparent in the 20th century
■ They initially seemed to be fascinating but isolated objects
■ However, mathematicians began to notice mysterious and surprising links

between their coefficients and various number-theoretic quantities (e.g.,
partition functions, number of ways to write an integer as a sum of
squares)

■ One of the most unexpected links was to elliptic curves
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Modular forms

Elliptic curves: Another bridge
■ An elliptic curve is a curve defined by an equation of the form

y2 = x3 +ax +b (with certain conditions)
■ They are fundamental objects in number theory and cryptography
■ The number of points on an elliptic curve over finite fields (recall our

discussion of Weil conjectures) holds deep arithmetic information

The Taniyama-Shimura-Weil conjecture (later theorem):
■ This incredibly profound conjecture, dating back to the 1950s, proposed

that every elliptic curve over the rational numbers is associated
with a unique modular form

■ It was a speculative idea, suggesting a deep, hidden connection between
two seemingly unrelated branches of mathematics
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Modular forms

From abstract symmetry to arithmetic truths: Modular forms, initially
studied for their rich symmetries, emerged as a Rosetta Stone, translating
deep arithmetic properties of numbers and elliptic curves into the language of
complex analysis, setting the stage for a grand resolution
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Fermat’s last theorem

The Problem: Simple to state, impossible to prove (for centuries)
■ Recall Fermat’s last theorem (FLT): No three positive integers a,b,c

can satisfy an +bn = cn for any integer value of n greater than 2
■ Posed by Pierre de Fermat in 1637, famously claimed he had a “truly

marvellous proof” but no room to write it
■ For 350 years, it stood as a tantalising challenge, resisting all attempts by

the greatest mathematicians
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Fermat’s last theorem

The crucial link: From elliptic curves to
modular forms

■ In the mid-1980s, mathematicians Ken Ribet
and Gerhard Frey linked FLT to the
Taniyama-Shimura-Weil (TSW)
conjecture

■ Frey suggested that if a counterexample to
FLT existed, it would lead to an elliptic curve
that could not be associated with a modular
form, thus contradicting the TSW conjecture

■ Ribet proved Frey’s “epsilon conjecture” in
1986: if TSW is true, then FLT must be true

Sir Andrew Wiles

■ Suddenly, solving a 350-year-old number theory problem became equivalent
to proving a major conjecture in algebraic geometry and modular forms
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Fermat’s last theorem

Andrew Wiles: The monumental proof
■ Sir Andrew Wiles (1953–), a British mathematician at Princeton

University, embarked on a secret seven-year quest to prove the TSW
conjecture for a large class of elliptic curves

■ He leveraged decades of deep mathematical development in elliptic
curves, modular forms, Galois representations, and Iwasawa theory

■ His initial announcement in 1993 was followed by a small gap, which he
fixed with Richard Taylor, publishing the final proof in 1995

■ Significance: Not only did it prove FLT, but it validated a vast amount
of abstract mathematics and demonstrated profound connections between
seemingly disparate fields

A triumph of interconnectedness: The proof of Fermat’s Last Theorem
stands as one of the great intellectual achievements of the 20th century,
showcasing how deep problems require crossing traditional boundaries and
leveraging the interconnected strength of modern mathematical theories
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The Riemann hypothesis

Recall: The prime numbers and zeta
function

■ From our 19th century discussion:
Bernhard Riemann’s groundbreaking
1859 paper on the distribution of
prime numbers

■ He connected the primes to the
behaviour of the Riemann zeta
function ζ(s)=P∞

n=1
1
ns

■ This function, initially defined for
Re(s)> 1, can be analytically
continued to the entire complex plane

The critical line for the Riemann zeta function
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The Riemann hypothesis

The hypothesis:
■ The Riemann hypothesis (RH)

states that all non-trivial zeros of the
Riemann zeta function lie on the
critical line Re(s)= 1

2
■ (The “trivial” zeros are at negative

even integers: −2,−4,−6, . . .)
The critical line for the Riemann zeta function
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The Riemann hypothesis

Why is it so important?
■ Its truth would imply profound results about the distribution of prime

numbers. For example, it would give very tight bounds on the error term
in the prime number theorem

■ It has deep connections to many other areas of mathematics, including
analysis, number theory, and even physics (e.g., random matrix theory)

■ Thousands of theorems have been proven assuming the Riemann
hypothesis is true. If it were proven false, a significant portion of
mathematics would need re-evaluation
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The Riemann hypothesis

A Millennium prize problem:
■ The Clay Mathematics Institute listed the Riemann hypothesis as one of

its seven Millennium Prize problems in 2000, with a $1 million prize for
its solution

■ It remains one of the most challenging and important unsolved problems
in mathematics

The unsolved heart of number theory: The Riemann hypothesis continues
to drive research in analytic number theory and beyond, serving as a powerful
reminder that fundamental mysteries still lie at the core of mathematics,
inspiring new tools and connections in the quest for truth
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Geometry as gravity

Recap: Geometry beyond flatness (19th century)
■ Recall Gauss’s intrinsic geometry of surfaces and Riemann’s generalisation

to higher dimensions
■ Key idea: Curvature can be an intrinsic property of a space, not just how

it bends in higher dimensions
■ Mathematicians developed tools to study differentiable manifolds and

their metric properties (distances, angles, volumes) using calculus
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Geometry as gravity

Albert Einstein (1879–1955) and
General Relativity (1915):

■ Einstein’s earlier Special Relativity
(1905) unified space and time into
spacetime

■ General Relativity (GR) aimed
to incorporate gravity into this
framework

■ Revolutionary insight: Gravity is
not a force acting across space,
but a manifestation of the
curvature of spacetime itself

■ Mass and energy “tell” spacetime
how to curve, and spacetime “tells”
mass and energy how to move Albert Einstein
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Geometry as gravity

The indispensable role of Riemannian geometry:
■ Einstein realised that the existing tools of physics (Newtonian mechanics,

Maxwell’s electromagnetism) were insufficient to describe this geometric
view of gravity

■ He found his needed mathematical language in the advanced differential
geometry developed by Riemann, Ricci-Curbastro, and Levi-Civita

■ The Riemann curvature tensor became central to GR, quantifying how
spacetime is curved

■ The Einstein Field Equations (EFE), which relate spacetime curvature
to the distribution of energy and momentum, are expressed entirely in the
language of differential geometry
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Geometry as gravity

A perfect symbiosis: General Relativity represents a pinnacle of
interdisciplinary achievement, demonstrating how abstract mathematical
concepts, developed for their own sake, can provide the exact framework
needed to describe the fundamental laws of the universe, fundamentally
reshaping our understanding of reality
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Fiber bundles and connections

Generalising vector fields and curvature:
■ In classical differential geometry, we study vector fields (e.g., wind

velocity across a map) on a manifold
■ But what if the “vectors” or properties at each point are not simple

vectors, but elements of a more complex space (e.g., internal symmetries,
orientations)?

■ This led to the abstract concept of a fiber bundle
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Fiber bundles and connections

Fiber bundles (conceptual):
■ Imagine a manifold (the “base space”, like spacetime)
■ At each point of the base space, attach another space (the “fiber”)
■ Example: A tangent bundle (at each point of a surface, attach the plane

tangent to it). Or, for a circle, a cylinder can be seen as a fiber bundle
where each point on the circle has a line segment as its fiber

■ They provide a rigorous mathematical framework for studying objects
that vary from point to point on a manifold in a structured way
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Fiber bundles and connections

Connections and curvature (generalisations):
■ A connection (or covariant derivative) on a fiber bundle provides a way

to “differentiate” or “compare” objects in different fibers as you move
along the base space

■ It tells you how to “parallel transport” a fiber from one point to another.
■ The curvature of a connection measures the failure of this parallel

transport to close a loop
■ This generalises Riemann’s concept of curvature to more abstract “fiber”

spaces
■ Major figures in this development include Élie Cartan, Charles Ehresmann,

and Shiing-Shen Chern
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Fiber bundles and connections

Beyond the manifold: Structured worlds at every point: Fiber bundles
and connections provided the mathematical language to describe fields with
internal structures, paving the way for a deeper understanding of fundamental
forces beyond gravity
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Gauge theories

Unifying forces through symmetry:
■ In quantum field theory, fundamental forces (electromagnetic, strong,

weak) are understood as arising from “local symmetries”
■ These are symmetries that can be performed independently at each point

in spacetime
■ The mathematical framework for describing these local symmetries and

their associated force fields are gauge theories
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Gauge theories

Yang-Mills theory (1954):
■ Developed by physicists Chen-Ning Yang and Robert Mills
■ It generalised quantum electrodynamics (QED) and provided a framework

for describing non-Abelian local symmetries
■ Initially, its mathematical structure was not fully understood by physicists

The mathematical connection: Fiber bundles as gauge fields:
■ Mathematicians quickly realised that the mathematical structures

underlying Yang-Mills theories were precisely fiber bundles with
connections

■ The “gauge potential” of physics corresponds to the connection, and the
“field strength” corresponds to its curvature

■ The symmetry group of the theory acts on the fiber
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Gauge theories

Profound impact and the standard model:
■ This deep mathematical-physical correspondence was revolutionary
■ It allowed physicists to rigorously formulate and understand the

fundamental forces
■ The Standard model of particle physics, our current best theory of

matter and forces (excluding gravity), is a complex gauge theory based on
specific Lie groups

■ This shows a continuum of geometric thinking, from Riemann’s curvature
for gravity to fiber bundles for other forces

Geometry as the universal language of physics: The development of
gauge theories, using the sophisticated language of fiber bundles and
connections, cemented differential geometry’s role as the indispensable
mathematical framework for understanding the fundamental forces of the
universe, demonstrating a profound, unifying power
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Mathematics as a unified web

From abstraction to interconnected solutions
■ Bridging geometry and algebra: Algebraic topology blossomed, using

algebraic invariants (homotopy, homology, cohomology) to classify and
understand geometric spaces, leading to powerful existence proofs like
Fixed-point theorems

■ Solving ancient puzzles: Number theory’s grand challenges saw the
resolution of Hilbert’s 10th problem (Matiyasevich’s undecidability proof
linking to computability) and the epic triumph of Fermat’s last theorem
(Wiles, through elliptic curves and modular forms). The Riemann
hypothesis stands as an ongoing beacon

■ Geometry explaining reality: Differential geometry provided the
essential language for physics, from General relativity (spacetime
curvature) to Gauge theories (fiber bundles, connections) describing
fundamental forces
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Mathematics as a unified web

From abstraction to interconnected solutions
■ The pinnacle of abstraction: Pushing the boundaries of generalisation

even further, concepts like Alexandre Grothendieck’s toposes emerged,
offering frameworks that unify logic, set theory, and geometry in
unprecedented ways

The mid-to-late 20th century witnessed the extraordinary power of abstract
mathematical tools to solve long-standing problems and uncover profound
interconnections across disciplines. This period cemented mathematics as a
deeply unified and indispensable science, setting the stage for the
computational revolution and the exploration of entirely new frontiers that
would define the turn of the millennium
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History of Mathematics: Lecture 16

Syllabus:
The 20th century in Mathematics:

■ Computation, complexity, and new frontiers



Computation, complexity, and new frontiers

Mathematics in the digital age
The Late 20th and early 21st century landscape:

■ Building upon the vast theoretical frameworks established earlier
■ Marked by the rise of computation as both a tool and a field of study in

its own right
■ Emergence of new areas driven by technology, interdisciplinary needs, and

the pursuit of complexity
■ Continued focus on grand challenges, both solved and open

Key focus for this lesson:
■ The age of computation: Theoretical foundations and limits of

computing
■ Chaos theory and fractals: Exploring complexity and non-linearity
■ Probability and statistics ascendant: Increasing rigour and broad

applications
■ Major unsolved problems: A look at the persistent frontiers
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A century of abstraction

■ Early 20th century: Focused on consolidation and abstraction
□ Rigorous foundations (ZFC, Bourbaki)
□ Generalised spaces (topology, functional analysis)
□ Abstract algebraic structures (modern algebraic geometry, deep group

theory)
■ Mid-to-late 20th century: Characterised by interconnections and

problem-solving
□ Algebraic topology bridging algebra and geometry
□ Solution of long-standing problems (Fermat’s last theorem, Hilbert’s 10th)
□ Deep interplay between differential geometry and physics (general relativity,

gauge theories).
□ Pinnacle of abstraction (e.g., toposes)

Having built powerful abstract tools and demonstrated their profound
interconnectedness, mathematics in the late 20th century was poised for new
revolutions, particularly driven by the emergence of computing and the
exploration of complex, non-linear phenomena
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Alan Turing

The crisis of foundational mathematics (Revisited):
■ Recall Hilbert’s program (1920s): to formalise all of mathematics and

prove its consistency and decidability
■ Kurt Gödel’s incompleteness theorems (1931) showed fundamental limits

to formal systems, dashing Hilbert’s full dream
■ This led to the pressing question: What exactly is a computable function

or an algorithm? Is there a precise mathematical definition?
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Alan Turing

Alan Turing (1912–1954): A visionary
mathematician

■ British mathematician, logician,
and computer scientist

■ Instrumental in formalising the
concept of an algorithm and
computation

■ His work had a profound impact
during WWII (code-breaking at
Bletchley Park, underlying the
“Enigma” machine)

Alan Turing
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Alan Turing

The Turing machine (1936): A conceptual breakthrough
■ Turing introduced a simple, abstract mathematical model of computation:

the Turing machine
■ It consists of:

□ An infinitely long tape divided into cells
□ A read/write head that moves along the tape
□ A finite set of internal states
□ A set of rules that dictate behaviour based on the current state and symbol

under the head
■ Significance: Despite its simplicity, it can simulate any algorithm or

computation that a modern computer can perform. It defines precisely
what “computable” means

Defining the undefinable: What is computation? Turing’s genius lay in
providing a rigorous mathematical definition for the intuitive notion of an
algorithm, paving the way for the entire field of theoretical computer science
and distinguishing between what is computable and what is not
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The Church-Turing thesis and undecidability

The Church-Turing thesis (1936): A foundational assertion
■ Independently of Turing, American mathematician Alonzo Church

(1903–1995) developed a different formal system for computation called
lambda calculus

■ Remarkably, Church and Turing (along with others like Stephen Kleene
and Emil Post) showed that their different formalisms were equivalent in
computational power

■ The thesis: Any function that can be computed by an algorithm (in the
intuitive sense) can be computed by a Turing machine (or equivalently, by
lambda calculus)

■ Significance: It’s a fundamental belief, not a theorem (as “intuitive
sense” isn’t formally defined), but it provides the bedrock for theoretical
computer science. It posits that Turing machines define the absolute
limits of computation
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The Church-Turing thesis and undecidability

The uncomputable: Undecidable problems
■ A profound consequence of precisely defining “computable” is the

realisation that some problems are uncomputable or undecidable
■ This means no algorithm, no Turing machine, can ever solve them for all

possible inputs in a finite amount of time

The halting problem:
■ Posed by Turing himself: Given an arbitrary program and an input, can

we determine if the program will eventually stop (halt) or run forever?
■ Turing proved in 1936 that the halting problem is undecidable. There is

no general algorithm that can answer this question for all possible
programs and inputs
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The Church-Turing thesis and undecidability

Connecting back: Hilbert’s 10th problem:
■ As we discussed before, Hilbert’s 10th problem asked for an algorithm to

determine if a Diophantine equation has integer solutions
■ Matiyasevich’s theorem (1970) proved this problem is also undecidable,

relying directly on the work in computability theory initiated by Turing
and Church

Profound limits: Not all questions have algorithmic answers: The
Church-Turing thesis and the discovery of undecidable problems
fundamentally changed our understanding of what can be achieved through
computation, revealing inherent limitations to algorithmic solutions, even for
clearly defined mathematical questions
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Computational complexity

Beyond computable: The question of efficiency
■ While computability theory (Turing, Church) tells us if a problem can be

solved by an algorithm, it doesn’t say how long or how much memory
it will take

■ Computational complexity theory studies the resources (time and
space) required to solve computational problems

■ It’s about classifying problems based on their inherent difficulty
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Computational complexity

Measuring complexity: Growth
rates

■ We measure complexity as a
function of the input size (n)

■ Polynomial time (Efficient):
Algorithms whose running time
grows as a polynomial function of
n (e.g., n2, n3). These are
generally considered “tractable” or
“efficient”.

■ Exponential time (Intractable):
Algorithms whose running time
grows exponentially (e.g., 2n, n!).
These quickly become impossible
for large inputs

Polynomial vs. exponential time growth
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Computational complexity

Key complexity classes and P vs. NP:
■ Class P (Polynomial time): Contains decision problems for which a

solution can be found (computed) by a deterministic algorithm in
polynomial time. (e.g., sorting a list, multiplying numbers)

■ Class NP (Non-deterministic Polynomial): Contains decision problems for
which a proposed solution can be verified by a deterministic algorithm in
polynomial time. (e.g., given a list of cities and connections, is there a
route that visits all cities exactly once with total length less than X?)

■ Every problem in P is also in NP (if you can find a solution efficiently, you
can certainly verify it efficiently)
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Computational complexity

The P vs. NP problem:
■ Is P = NP? This is one of the greatest open problems in mathematics

and computer science
■ It asks: If a solution to a problem can be quickly verified, can it also be

quickly found?
■ Most computer scientists believe P ̸= NP

A million-dollar question with profound implications: The P vs. NP
problem has immense practical implications for cryptography, artificial
intelligence, optimisation, and nearly every area of science and engineering.
Its resolution would redefine the limits of what we consider computationally
feasible
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Chaos theory: Order in apparent randomness

Beyond predictability: When simple rules yield complex behaviour
■ For centuries, scientists believed that if one knew the initial conditions

precisely, the future state of a system could be perfectly predicted
(Laplace’s demon)

■ Chaos theory emerged to study dynamic systems that, despite being
deterministic (governed by fixed rules), exhibit highly unpredictable and
seemingly random behaviour

■ This unpredictability arises from an extreme sensitivity to initial conditions
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Chaos theory: Order in apparent randomness

The Lorenz attractor

“The Butterfly Effect”: Sensitive dependence
on initial conditions

■ Coined by meteorologist Edward Lorenz
(1917–2008) in the 1960s

■ He discovered that tiny, imperceptible
differences in initial input to his weather
model led to vastly different long-term
predictions

■ Metaphor: A butterfly flapping its wings
in Brazil could theoretically set off a
tornado in Texas weeks later

■ This fundamental property means
long-term prediction in chaotic systems is
often impossible, even with powerful
computers
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Chaos theory: Order in apparent randomness

Mathematical tools for chaos:
■ Chaos theory utilises tools from:

□ Dynamical systems: The study of how systems change over time
□ Topology: Understanding the qualitative behaviour of trajectories
□ Measure theory: Quantifying probabilities and averages in chaotic systems

■ Chaotic systems often settle into strange attractors – complex, fractal-like
geometric shapes that describe their long-term behaviour. The Lorenz
attractor is a famous example

From determinism to unpredictability: Chaos theory revealed that
determinism does not always imply predictability, fundamentally altering our
understanding of phenomena ranging from weather patterns and fluid
dynamics to population growth and even brain activity
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Fractals: The geometry of roughness

Beyond Euclidean geometry: A new language for Nature
■ Traditional Euclidean geometry describes smooth shapes (lines, circles,

spheres)
■ But what about coastlines, clouds, trees, or mountains? These are rough,

irregular, and defy simple description
■ Mathematician Benoit Mandelbrot (1924–2010) coined the term

“fractal” in 1975 to describe these shapes
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Fractals: The geometry of roughness

The Mandelbrot set

Defining properties of fractals:
■ Self-similarity A: fractal displays similar

patterns at increasingly small scales.
Zooming in reveals smaller copies of the
whole

■ Fractional (or Fractal) dimension:
Unlike conventional shapes (lines=1D,
squares=2D, cubes=3D), fractals often
have non-integer dimensions. For example,
a coastline might have a fractal dimension
between 1 and 2, indicating how
“space-filling” it is

■ Infinite detail: They exhibit intricate
detail at arbitrarily small scales
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Fractals: The geometry of roughness

Iconic examples:
■ Koch snowflake: A curve of infinite length enclosing a finite area,

demonstrating self-similarity
■ Sierpinski gasket/triangle: A recursive construction creating intricate

patterns
■ The Mandelbrot set: Perhaps the most famous fractal, generated by

iterating a simple complex number equation. It reveals astonishing
complexity and beauty
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Fractals: The geometry of roughness

Connections and applications:
■ Chaos theory: Strange attractors in chaotic systems often have fractal

structures
■ Nature: Modelling coastlines, river networks, tree branching, snowflakes,

blood vessel systems
■ Computer graphics: Generating realistic landscapes and special effects
■ Signal processing, medicine, finance: Analysing complex data and

patterns

Unveiling hidden geometry: Fractal geometry provided mathematicians and
scientists with the tools to describe, analyse, and even generate the complex,
irregular patterns prevalent in both natural phenomena and abstract
mathematical systems, fundamentally expanding our understanding of
geometry itself
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Probability and statistics

From intuition to axioms (early 20th century):
■ While probability had roots in gambling and statistics in statecraft, their

full mathematical rigour was established in the early 20th century
■ Andrey Kolmogorov’s (1933) axiomatic framework put probability

theory on a solid measure-theoretic foundation (linking it to pure analysis)
■ This allowed for rigorous study of random processes (stochastic processes)
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Probability and statistics

The data explosion and statistical inference:
■ The mid-to-late 20th century saw an explosion in data generation (from

scientific experiments to surveys and later, digital data)
■ Statistics moved beyond description to sophisticated inference: drawing

conclusions about populations from samples, quantifying uncertainty, and
testing hypotheses

■ Development of advanced techniques like regression analysis, ANOVA,
multivariate analysis
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Probability and statistics

Bayesian statistics: Updating beliefs with data
■ While rooted in Thomas Bayes’ 18th century work, Bayesian methods

experienced a renaissance in the late 20th century, particularly with the
advent of powerful computer

■ Core idea: Start with a “prior belief” about a hypothesis, then update
that belief based on new evidence (data) using Bayes’ theorem

■ Offers a coherent framework for dealing with uncertainty and is
particularly powerful in situations with limited data or requiring sequential
decision-making
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Probability and statistics

Foundations for the data-driven world:
■ The mathematical theories of probability and statistics became

foundational for
□ Financial modelling: Quantifying risk, derivatives pricing
□ Quality control and engineering: Reliability, design of experiments
□ Epidemiology and medicine: Clinical trials, disease modelling
□ Artificial intelligence & machine learning: The mathematical bedrock of

modern data science (e.g., neural networks, pattern recognition, predictive
analytics)

The language of uncertainty and information: Probability and statistics
evolved into powerful mathematical disciplines essential for managing
uncertainty, extracting insights from vast datasets, and driving evidence-based
decision-making across nearly every field of human endeavour
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Major unsolved problems

The unfinished symphony of mathematics:
■ Despite the monumental achievements of the 20th century — solving

long-standing conjectures (FLT, Hilbert’s 10th) and developing vast new
theories — the mathematical landscape is still filled with profound
unanswered questions

■ These open problems often act as powerful driving forces for new
research, pushing the boundaries of existing theories and leading to
unexpected connections
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Major unsolved problems

The Millennium Prize Problems
(2000):

■ The Clay Mathematics Institute
(CMI) in 2000 announced seven
“Millennium Prize Problems”,
offering a $1 million prize for the
first correct solution to each

■ They represent some of the most
challenging and fundamental open
problems in mathematics

■ So far, only one has been solved
(Poincaré conjecture)

The Clay Millennium Prize problems
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Major unsolved problems

A glimpse at remaining challenges:
■ P vs. NP problem: (Already discussed) Is finding a solution as easy as

checking one? Crucial for computer science
■ Riemann hypothesis: (Already discussed) The distribution of prime

numbers
■ Yang-Mills existence and mass gap: To establish a rigorous foundation

for quantum field theories used in particle physics (related to gauge
theories)

■ Navier-Stokes existence and smoothness: To understand the
existence and properties of solutions to equations describing fluid flow
(crucial for weather, aerodynamics)

■ Birch and Swinnerton-Dyer conjecture: Deep problem in number
theory about elliptic curves

■ Hodge conjecture: A problem in algebraic geometry relating topology to
algebraic curves

( 502 )



The enduring frontiers

The endless quest: These unsolved problems are not deficits but rather
invitations — proof that mathematics is a vibrant, expanding universe of
ideas, continuously challenging our intellect and inspiring new generations of
mathematicians to explore its boundless frontiers
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20th century mathematics

A century of revolution, unification, and endless discovery
■ Foundational scrutiny & abstraction (early 20th century): Began with

a crisis of foundations, leading to unprecedented rigour, axiomatic
systems (ZFC, Bourbaki), and the rise of highly abstract structures
(general topology, functional analysis, modern algebra & geometry)

■ Interconnections & grand problem solving (mid-20th century):
Mathematics matured into a deeply interconnected web. New tools from
one field solved problems in another (e.g., Fermat’s last theorem via
elliptic curves and modular forms; Hilbert’s 10th problem via
computability). Geometry provided the language for physics (general
relativity, gauge theories)
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20th century mathematics

A century of revolution, unification, and endless discovery
■ Computation, complexity & new frontiers (late 20th/early 21st

centuries): The advent of the Turing machine and computability
theory revolutionised mathematics and laid the groundwork for the
digital age. Fields like chaos theory and fractal geometry explored
complexity, while probability & statistics became indispensable for
data-driven insights
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20th century mathematics

Profound impact: The 20th century transformed mathematics from a
discipline primarily focused on physical models into a vast, abstract, and
deeply unified science. Its intellectual output has not only expanded human
knowledge but has profoundly shaped modern technology, medicine, finance,
and our fundamental understanding of the universe.

The future of mathematics: As we step into the 21st century, mathematics
continues its dynamic evolution. Driven by new technologies, massive data,
and enduring unsolved mysteries like the Riemann hypothesis and P vs.
NP, mathematicians are constantly forging new connections, developing new
tools, and exploring an ever-expanding universe of ideas. The journey of
discovery is far from over
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