

MATHEMATICAL LOGIC — ASSIGNMENT FOUR

- (1) Define the notion of representable relation in Peano arithmetic.
This is Definition 27.2 in the slides.
- (2) Prove that in every Heyting algebra, for every x, y, z , $x \leq y \supset z$ if and only if $x \wedge y \leq z$.
This is Proposition 23.2 in the slides.
- (3) Assuming that Peano arithmetic is consistent, show that there is a sentence in Heyting arithmetic which is not provable and whose negation is not provable either.

(Hint: use Gödel's First Incompleteness Theorem for Peano arithmetic. Beware that provability in Heyting arithmetic differs from provability in Peano arithmetic.)

Let $\Gamma \vdash_{\text{PA}} A$ denote that A is provable from Γ in Peano arithmetic, and $\Gamma \vdash_{\text{HA}} A$ denote that A is provable from Γ in Heyting arithmetic.

Observe that Peano and Heyting arithmetic have the same axioms, but the former operates in classical logic, while the latter in intuitionistic logic.

The provability predicate T_{HA} for Heyting arithmetic is defined exactly as T , the provability predicate for Peano arithmetic we have seen in the course, using the same coding function g but dropping the Law of Excluded Middle from the coding of derivations.

By the Fixed Point Lemma, there is a sentence G_{HA} such that

$$\vdash_{\text{PA}} G_{\text{HA}} = \neg \text{T}_{\text{HA}} [\Gamma G_{\text{HA}} \supset /y] .$$

Suppose $\vdash_{\text{HA}} G_{\text{HA}}$. Since every intuitionistic proof is classical, $\vdash_{\text{PA}} G_{\text{HA}}$. Hence $\vdash_{\text{PA}} \neg \text{T}_{\text{HA}} [\Gamma G_{\text{HA}} \supset /y]$. Thus $\not\vdash_{\text{HA}} G_{\text{HA}}$ because T_{HA} represents provability in Heyting arithmetic, contradiction.

Suppose $\vdash_{\text{HA}} \neg G_{\text{HA}}$, thus $\vdash_{\text{PA}} \neg G_{\text{HA}}$ since every intuitionistic derivation is also classical, so $\vdash_{\text{PA}} \text{T}_{\text{HA}} [\Gamma G_{\text{HA}} \supset /y]$ by definition of G_{HA} , hence there is $n \in \mathbb{N}$ such that $g^{-1}(n)$ is the code of a proof π : $\vdash_{\text{HA}} G_{\text{HA}}$. As before, this implies π : $\vdash_{\text{PA}} G_{\text{HA}}$, thus Peano arithmetic would be non consistent, contradiction.

Hence there is a sentence, G_{HA} , in Heyting arithmetic such that $\not\vdash_{\text{HA}} G_{\text{HA}}$ and $\not\vdash_{\text{HA}} \neg G_{\text{HA}}$.