

MATHEMATICAL LOGIC — ASSIGNMENT ONE

(1) Prove in natural deduction $\vdash \neg(A \vee B) = \neg A \wedge \neg B$.

$$\begin{array}{c}
 \frac{\neg(A \vee B)^1 \quad \frac{[A]^2}{A \vee B} \neg I_1 \quad \frac{\neg(A \vee B)^1 \quad \frac{[B]^3}{A \vee B} \neg I_2}{\perp \neg B} \neg E}{\perp \neg A} \neg I^2 \\
 \hline
 \frac{\perp \neg A \quad \perp \neg B}{\neg A \wedge \neg B} \wedge I \\
 \hline
 \frac{\neg A \wedge \neg B}{\neg(A \vee B) \supset \neg A \wedge \neg B} \supset I^1
 \end{array}$$

$$\begin{array}{c}
 \frac{\frac{[A]^2 \quad \frac{[\neg A \wedge \neg B]^3}{\neg A} \wedge E_1 \quad \frac{[B]^2 \quad \frac{[\neg A \wedge \neg B]^3}{\neg B} \wedge E_2}{\perp \neg B} \neg E}{\perp} \neg E}{\perp} \vee E^2 \\
 \hline
 \frac{\perp}{\neg(A \vee B)} \neg I^1 \\
 \hline
 \frac{\neg A \wedge \neg B \supset \neg(A \vee B)}{\neg A \wedge \neg B \supset \neg(A \vee B)} \supset I^3
 \end{array}$$

(2) Show that in a bounded lattice $\langle S; \leq \rangle$, $\bigvee S = \top$ and $\bigwedge S = \perp$.

This is Proposition 5.7 in the slides.

(3) Show that every non-trivial Boolean algebra which is also a total order, is isomorphic to $\langle \{0, 1\}; \leq \rangle$, the Boolean algebra of truth-tables. Here, non-trivial means that $\perp \neq \top$.

In a Boolean algebra every element x has a unique complement $\neg x$ such that $x \wedge \neg x = \perp$ and $x \vee \neg x = \top$.

Fix a non-trivial Boolean algebra which is also a total order. Then for every element x one of the following options holds

- $x \leq \neg x$, thus $x \wedge \neg x = x$, so $x = \perp$;
- $\neg x \leq x$, thus $x \vee \neg x = x$, so $x = \top$.

Hence every element x is either \top or \perp , so the support of the algebra is $\{\perp, \top\}$, and $\perp < \top$ by definition of \perp and \top . Clearly, this structure is isomorphic to the algebra supporting truth-tables.