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| | | Introduction

Mathematical logic is the branch of mathematics that rigorously investigates
the principles of reasoning and deduction, providing a solid foundation for the
entire field.

This course offers a comprehensive introduction to mathematical logic,
starting from the basics and assuming only undergraduate-level mathematics.

The course content aligns with most introductory textbooks on the subject.
To support your learning, lecture slides will be made available to students
throughout the course.

The course is in English.
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l | l Program

The course takes 78 hours, and its content will be an introduction to classical
logic with a glimpse to other logical systems.
The detailed program is

m Propositional logic: language, deduction system, semantics, soundness,
completeness;

m First-order logic: syntax, semantics, soundness, completeness,
compactness, extensions of models;

m Set theory: fundamental axioms, ordinals, cardinals, transfinite induction,
axiom of choice, continuum hypothesis;

m Computability: computable functions, A-calculi, simple theory of types;

m Constructive mathematics: intuitionistic logic, expressive power,
semantics, propositions as types;

m [imiting results: Peano arithmetic, Godel's incompleteness theorems,
natural incompleteness results.
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| | | Texts

All the slides are available at the course website:
http://marcobenini.me/lectures/mathematical-logic

Also, at the end of each lesson, references to articles, texts, and other
resources which may be of interest to those interested in learning more, will
be provided. While the content of the slides is mandatory, looking at the

references is optional. Some non-official online video lessons are available on
the website.

Although there is no standard textbook, | will mainly use the classical Bell,
Machover A Course in Mathematical Logic.
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l | l Examination

The examination will be conducted orally and will require you to demonstrate
your understanding of the course material through the following:

m Exercise Performance: Solve simple exercises, such as proving a theorem
using a formal deductive system.

m Concept Recall and Discussion: State, discuss, and prove key results
covered in the course.

m [anguage Choice: You may choose to take the examination in either
Italian or English.

Scheduling and Registration:

m Informal Scheduling: To schedule an examination, simply make an
appointment with the instructor. Appointments can be made at any time
after the course concludes.

m Formal Registration: Examinations must be formally registered during
scheduled registration periods. Students must select a specific date to
register for the examination.
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l | l Examination

Important Considerations:
m Plan Ahead: We strongly encourage you to plan your examination date in
advance and schedule an appointment accordingly.

m Flexible Registration: Once you have taken the examination, you can
register your result at any time within 24 months of the course’s
completion.

m Repeated Examinations: Please note that taking an examination a second
time will automatically void any previous, unregistered results.
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l | l Examination

While not mandatory, we will offer four intermediate assignments throughout
the course. Each assignment will be preceded by a dedicated lesson that
reviews and analyses selected exercises from previous assignments.

Assignments will take place during lesson time, and they will cover
1. propositional logic
2. first-order logic
3. set theory and computability
4.

constructive mathematics and limiting results

Students willing to take them can avoid the examination: each assignment
will get a mark, and the average will be the final mark. Rules for registration
are the same as for regular examinations.

The assignments from previous years are available at the course website.
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l l l Timing

The schedule of lessons is fixed and not modifiable.

Please note that lessons typically begin 10 minutes after the official start time
and conclude 10 minutes before the official end time, with no breaks.

Intermediate assignments will be integrated into the course schedule.
Students will have the flexibility to choose a date for these assignments after
completing the relevant section of the course.
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| I | Questions

Questions are welcome. Please, do not hesitate to ask questions when you do
not understand something during a lesson.

Questions could be asked also before the start of a lesson, or after the end.

Another possibility is to ask questions by email: in case write at the address
marco.benini@uninsubria.it

specifying your name, the course, and the question. Please, use your official
email from uninsubria.

There are no office hours in this course: students have to fix an appointment.
Please, do so only if you really think there is no other way to solve your
problem: although | am usually available during the course term, when | am
not teaching it is often the case that | am not in University, so use this
opportunity as your last resource.

Online appointments are always possible and encouraged.
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| l | Your teacher

| am a researcher in Mathematical Logic. This means that my main job is to
think, and hopefully to find novel results in this field of Mathematics.

Teaching is part of my academic duties, but is not my first occupation.

As a logician, my interests lie in the interplay between truth and
computability. Indeed, | investigate mainly constructive logical systems, which

have nice computational properties, and my current playground, the ‘universe’
| work within, is Homotopy Type Theory.

For more, please visit my web page:

http://marcobenini.me
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| | | Mathematical logic

Mathematical logic studies the mathematical deduction process and the
notion of truth, at large.

Logic is an ancient part of Mathematics: its origins go back to Aristotle, while
its mathematical foundations can be traced in the work of Boole, Frege,
Cantor, Russell, Hilbert, Godel, . ..

Since Godel's incompleteness results, the discipline underwent a huge
development and today it is a very active part of contemporary Mathematics,
with application in Computer Science and Philosophy.

Since this is a first course in mathematical logic, we will stop after proving
the incompleteness results. Here and there, hints about future developments
will be given, but the course sticks on the classical track.
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| | | Greek mathematics

Proof
Theorem

©Marco Benini, Pytaghoras in Samos
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| | | Greek mathematics

Proof by contradiction
Paradoxes on infinity

Johannes Moreelse,

Heraclite,
Centraal Museum, Utrecht,
1630
Marcus Meibomius,
engraving of Zeno of Elea in Diogenis Laertii De Vitis,
1698
a
a
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| | | Greek mathematics

Conditionals, implication
Relation between meaning and
truth, semantics

Chrysippos of Soli,
Marble, Roman copy of the late 3rd century BC
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Precursors of ideal objects
Algebra
Algorithm

Avicenna
Portrait on Silver Vase
Museum at BuAli Sina (Avicenna) Mausoleum
Hamadan, Western lIran
©Adam Jones photographer, 2012
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| | | Europe in the Middle Ages

Museum of Galileo, Florence,
©Marco Benini, 2015
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| l | Descartes

Analytic geometry
Bridge between geometry and algebra
Space

Portrait of René Descartes by Frans Hals
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| | | Liebniz

Mathematical analysis
Characteristica Universalis

Bildnis des Philosophen Gottfried Wilhelm Freiherr von Leibniz,
Christoph Bernhard Francke, 1695
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| | | The crisis in analysis
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Carl Friedrich GauB, Augustin Louis Cauchy,
Christian Albrecht Jensen, 1840 photo by Charles Reutlinger
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| | | The crisis in analysis

Karl WeierstraB,
Conrad Fehr, 1895

Georg Friedrich Bernhard Riemann, 1863

Julius Wilhelm Richard Dedekind,
photo by Johannes Ganz, 1866
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Revolution
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Algebra
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Last page of the letter from Evariste Galois to Auguste Chevalier,
29 March 1832

Niels Henrik Abel
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| | | Non-Euclidean geometry

Nikolai Ivanovich Lobachevsky,

Janos Bolyai portrait by Lev Kryukov, 1843

painting by Markos Ferenc, 2012
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Cantor

Georg Ferdinand Ludwig Philipp Cantor,
1910

Set theory
Infinities
Cardinality



l | l Boole

The Laws of Thought
Mathematical logic

(30)

AN INVESTIGATION

THE LAWS OF THOUGHT,

THE MATHEMATICAL THEORIES OF LOGIC
AND PROBABILITIES.

GEOCRGE BOOLE LL.D

Lonbon
MACMILLAN AND CoO.
185

i

The Laws of Thought,
1854



| | | Frege

Variables
Quantifiers

Friedrich Ludwig Gottlob Frege,
1879
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Russell’s paradox

Let R={x: x & x}.
Then ReR if and only if R¢R.
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Peano

Giuseppe Peano

Formal arithmetic
Induction
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Hilbert

David Hilbert,
1912

Formal geometry
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Hilbert

axicms
% cordinuum hypothesis
| aritimadic e
» el \ s
ey ¢ consistant s
» cardinslity | Ind » Frove that the sxioms of adthmetc are mrul;'.el!LE J -
i ioadmi i} _— 4 Gidzie
* inleges | - \
Gentzen

% resl numben E The continuum hypotnesis (Inat s, thess i no sel whowe cardinality L IRE

s strictly betwean thet of the integers and that of the real numbers) sza0nd ircompletznas: theoem &

b Zermelo-Fraerie| sel neory

mefrics
% | 41h Constuct ell mavics whare lines are pe:d&.is.% y "
b Zermelo—Fraerhel set ihecry | _eadusics %
 Dolegiz / Bl Maihematical reatment of the axioms of pnpuu@_
% polyhedrs | | / Riemann hypathzsls #
R E Givan any twa polybedta of squal volume, is it slweys posible fo cut the fist inta L | o
Dehn invariants \, = finitzly meny polyhedral pisces which can be reamembled to yisld the second? l vl
W groups | Bih The Rigmann hypathesis [the mal padt of any ren-trivial zerg of the
» differentisl grouss |, I Riemsnn zets fundlion is %) and other prime numasr problems, Riemann zeta functian
- N E Are continusus groups autematizally difersniisl grouss? | amang them Goldoach's conjedure and the twin peime conjecturs
# Androw Glemon ~ ALY

3 Hlbert Schilhs canjecicre /!
Find en slgorithm to dsteming whether 5 given pohmomial E
Dizaharting equation with integer cosficents has en integer salution.

% panscendental

=+ algesnaic

Froneme—Weber thecram #
Extend {he Kranedief-{{gbes theorern on sbelian E - -
ertensians of th rations]l numbsrs to 2ny base number figls, — / TElianel rumbes hd
Is the ring of invariants of 8n algebrsic group eding on iEl
potynomizl ning slweys finiely gansratzd®

= jrraticral g "% ranscandentsl, fee aigebaica # 0,1
S — g for
» Geltendy thascem 3 and imationzl Blgebreizh 7

W Deliond=-Schneides theorem
e

E Find the mest genzral law of the red peocity thearerm in any algebraiz number fizld.

real

E Zchang gusdraticforms with algsbraic numerncsl cosfliciznts algebraic -

Desaive relsbve positions of svals originsting from 2 real alge:rnlclg

curve ant as limit oydes of 8 polynomisl vedor fisld on the plane. limit oycles #

%, wecto fizld

E Sah'e T-th deg_re-_s euu_a!igm |_;sig'|g mr!tir-l.;us fungiul_'s of w3 pars 'r-eiels

El Rigarpus frundslion of Schubedt's enumarative caloulus

El Express & nannegative rstional funstion as guotient of sems of squsres (8} ls there a pelybedron which admibs only IHEI

aniseh=dral difing in three dimsnsfons?

E Are the solutons of regular problems in the caloulus

of lizay always necesantily sralytic? (b} Whst is the dersest sphers pacianq'?E_

5] 90 atl variatioral problems wilh certaln brundsny condilisns have salutions? Froef of the sxliense of linsat diflerential ‘q”'“°"’E

having @ presgibed moncdromic group

EI‘ ifarmization of enalytic reletions by means of automomphic funcions e
= Furihar devalopmaent of the calculus of varisticns

© Sharjeel Khan



| | | Hilbert

Formalisation: all mathematical statements have to be written, at least in
principle, in a precise formal language and manipulated according to a fixed,
precise, and formal set of rules.

Consistency: the whole corpus of mathematics has to be proved to be
contradiction free by means of a formal proof inside mathematics itself.

Finitistic: the language, the rules of inference, and the proofs have to be
finite and effective. In particular, the consistency proofs have to be finitistic.
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| | | Zermelo and Fraenkel

Ernst Zermelo, e
1900 Abraham Halevi Fraenkel,

1939-49

(37)



(38)

Russell

Bertrand Russell

Principia Mathematica
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Lowenheim and Skolem

Thoralf Skolem,
1930
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Godel

Kurt Godel

Completeness of first
order logic
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Godel

Incompleteness theorems



l l l Gentzen

Gerhard Gentzen,
photo by Eckart Menzler-Trott, Prague, 1945
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Consistency of arithmetic
Cut elimination
Proof theory



| | | Computability theory

Stephen Cole Kleene,
photo by Konrad Jacobs, Erlangen, 1978

Alan Mathison Turing
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| | | Computability theory

Halting problem
Church-Turing thesis

(44)

Alonzo Church
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Intuitionism

Luitzen Egbertus Jan Brouwer

Constructive mathematics



| | | Afterwards

Mathematical logic (Jon Barwise, 1977):
= Set theory
m Proof theory
= Model theory

m Recursion theory

Nowadays also: Category theory, Topos theory, Type Theory, ...
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Afterwards

Saunders Mac Lane,
photo by Konrad Jacobs, 1972

Category theory



Type theory
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Afterwards

Per Martin-Lo&f
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Afterwards

The Art of Ordinal Analysis

Michael Rathjen

Abstract. Ordinal analysis of theories is a core area of proof theory whose origins can be
traced back to Hilbert’s programme - the aim of which was to lay to rest all worries about
the foundations of mathematics once and for all by securing mathematics via an absolute
proof of consistency. Ordinal-theoretic proof theory came into existence in 1936, springing
forth from Gentzen's head in the course of his consistency proof of arithmetic. The central
theme of ordinal analysis is the classification of theories by means of transfinite ordinals
that measure their ‘consistency strength’ and ‘computational power’. The so-called proof-
theoretic ordinal of a theory also serves to characterize its provably recursive functions
and can yield both conservation and combinatorial independence results.

This paper intends to survey the development of “ordinally informative” proof theory
from the work of Gentzen up to more recent advances in determining the proof-theoretic
ordinals of strong subsystems of second order arithmetic.

Mathematics Subject Classification (2000). Primary 03F15, 03F05, 03F35; Sec-
ondary 03F03, 03-03.

Keywords. Proof theory, ordinal analysis, ordinal representation systems, proof-theoretic
strength.



| | | References

Two classical books on the history of Mathematics are: Carl B. Boyer, A History
of Mathematics, John Wiley & Sons (1968), and Morris Kline, Mathematical
Thought from Ancient to Modern Times, Oxford University Press (1972).
Also, very good references to authors and ideas can be found in the Stanford
Encyclopedia of Philosophy: https://plato.stanford.edu/

For those interested in the recent history of logic, a nice and short book
is Piergiorgio Odifreddi, La matematica del Novecento—Dagli insiemi alla
complessita, Piccola Biblioteca Einaudi, Einaudi, (2000).

There are many introductory textbooks about mathematical logic and a few
important reference texts. | would like to mention the comprehensive guide
Jon Barwise, Handbook of Mathematical Logic, Studies in Logic and the
Foundations of Mathematics 90, North-Holland, (1977).

Although not required, most of the course is based on John Bell and Moshé
Machover, A Course in Mathematical Logic, North Holland (1977).
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| l | Proving by induction

When proving that a property P(x) holds for every value of x within a domain
D, a straightforward approach might involve substituting each element ve D
into P(x) and verifying that P(v) is true. However, this method becomes
impractical when D is huge, or impossible when D is infinite.

A more efficient approach is possible when D can be generated using a
defined process or algorithm, that is, D is finitely generated in the proper

mathematical jargon. By exploiting the generation process, we can often
prove P(x) for all elements of D.

This technique is called induction.

(52)



| l | Proving by induction

Let N be the set of natural numbers {0,1,2,...}.
Observe how N can be finitely generated:

1. 0eN;

2. if meN then S(m) €N, with S the successor function S(x) =x+1.
Hence, if P is a property, we have an induction principle:

1. if we have a proof of P(0),

2. if we are able to prove P(S(m)) from the hypothesis P(m),
then P(x) holds for every x € N.

(53)



| l | Proving by induction

The induction principle is intuitively justified:
= we have a proof g of P(0) by step 1;
m composing g with the proof of step 2, we obtain a proof m; of P(1);
= composing 71 with the proof of step 2, we obtain a proof w5 of P(2);
m andsoon ...

So, whatever value v e N, we will find a proof for P(v) in the list above.

(54)



| | | Example

k k(k+1
Proposition 2.1. Z n= ( )
n=0 2

Proof.
By induction on k e N:

0 0(0+1
I when k=0, " n=0= 20",
n=0 2
k k(k+1
2. assume ) n= ( ) Then
n=0 2
k+1 k k(k+1) k°+3k+2 (k+1)((k+1)+1
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| | | Definition by induction

Induction can be used to define new concepts and new objects.

Let 7 be a map from N. Then, the image of 7 is a new concept and its
elements are new objects.

For example, posing 7(x) =2x, we define a new concept: even numbers.

Considering the collection of all the maps p: N—{0,...,9} to the set of
digits, we obtain new objects, one for each p, denoting the real number
0.0(0)p(1)--- whose digit at the decimal position nis p(n), and a new
concept, the unit interval [0,1].

(56)



l | l In general

The idea of induction is far more general: whenever we can finitely generate a

domain, we have an induction principle which may be used to reason and to
define properties and concepts.

In Mathematical Logic, induction is one of the fundamental and most
powerful tools.
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| | | Propositional logic

In this lesson, we want to introduce classical propositional logic.
We will start from its syntax and its intended meaning.

The idea is that a proposition stands for a truth value, either true or false.
Composite propositions will derive their truth value from their components,

while basic propositions will have a truth value which depends on the world
they are interpreted in.

For example, the sentence ‘Socrates is a man’ may be true or false, as
Socrates may be the ancient Greek philosopher or a cat. On the other side, ‘If
Socrates is a man then Socrates is mortal’ is true when Socrates is both a

man and mortal, but also when Socrates is not a man, and it is false when
Socrates is an immortal man.

(58) .



ll' Language

Definition 2.2 (Formula). Let V be an infinite (countable) set of symbols,
called variables, not containing ‘(", *)’, ‘T, ‘L', ‘A", ‘v, 'D', "=
Then, a formula is inductively defined as

1. a variable x € V' is a formula;

2. T, spelt true, and L, false, are formula;

3. if Ais a formula so is (mA), not, negation;

4. if A and B are formulae so are (AA B), and, conjunction; (Av B), or,
disjunction, and (A> B), implication.

Note how A and B above are not part of the language but are variables in the
metalanguage—we will be mostly informal about the metalanguage, i.e., the
language we use to describe the logical language.

(59) A



ll' Language

To simplify the notation, we use a number of abbreviations:
= outermost parentheses are not written: x Ay instead of (x A y);

m conjunction and disjunction have a higher precedence over implication:
xAy>zVw instead of ((xAy)2(zVvw));

m negation has a higher precedence over conjunction, disjunction, and
implication: =.x A -y instead of ((—x)A(7y));

m |owercase letters, unless specified otherwise, stand for variables.

m uppercase letters, unless stated otherwise, stand for objects in the
metalanguage.

An important point to remark is that the definition of formula is by induction.

(60 ) :



ll' Language

As an example of inductive definition, let's introduce the notion of subformula:

Definition 2.3 (Subformula). Given a formula A on the set V of variables, B

is a subformula of A if and only if B belongs to the set S(A) inductively
defined as

1. if AeV, A=T, or A= 1 then S(A)={A};
2. if A=BAC, A= BV C, orA—B:CthenSA):{A}US(B)US(C);
3. if A=-B then S(A)={A}uS(B).

We may equivalently say that B occurs in A, meaning that B is a subformula

of A. Observe that we may want to distinguish occurrences: for example, A
occurs twice in AAA.

In general, the symbol = in the meta-language means ‘literally equal’, i
written in exactly the same way.

(61) I|I



| | | Intended interpretation

Informally, a truth value is either true or false.

®= A variable x stands for some truth value.

= T denotes true.

m | denotes false.

m AA B is true when both A and B are true; it is false otherwise.
[ |

AV B is true when A is true, or B is true, or both are true; it is false
when both A and B are false.

m A> B is true when A and B are both true, and also when A is false. It is
false when A is true but B is false.

m —A is true exactly when A is false.

In general, the truth value of a formula depends on the values of its variables.
Sometimes, it happens that a formula is true independently from the value of
its variables, e.g., x © x is true whatever truth value x may assume.

Logic is mainly concerned in the study of tautologies, those formulae which
are true independently from the values of their variables.

(62)



| | | Natural deduction

An obvious way to discover whether a formula is true, is to try all the possible
values for the variables occurring in it.

But there are three drawbacks in this strategy:

m the strategy is exponential: if there are n distinct variables in a formula,
we have to try 2" possible assignments.

m the strategy does not scale to other logical systems. For example, take
arithmetic: it is unfeasible to show the truth of a formula trying all the
possible values for its variables as each of them stands for a natural!

m the strategy does not provide any insight: we have no idea why the
formula holds, except that it exhaustively satisfies all the possible
assignments. In particular, we do not know which axioms in our theory
are required to make the property true.

What we want is a notion of proof. a way to reason that, starting from some
basic accepted facts, and adopting a series of accepted rules, allows us to
conclude that the formula is true.

(63) !l!



| | | Natural deduction

Definition 2.4 (Theory). Fixed a language, a theory T is a set of formulz,

each one usually referred to as an axiom.
When T =@, we will speak of the theory as pure logic.
Definition 2.5 (Proof). Fixed a language and a theory T in it, a proof or

deduction of the formula A, the conclusion, from a set ' of formulae, the
hypotheses or assumptions, is inductively defined by a set of inference rules

described in the next slides.
A formula A which is the conclusion of a proof with no assumptions, is called

a theorem in the theory T.

(64)



| | | Natural deduction

The inference rules governing conjunctions are:

AANB AANB A B
/\E1 /\E2

AN
A B AANB

we have two elimination rules and one introduction rule.

Those governing disjunctions are:
(Al [B]

A B AvB C C
V I VE
Av B

(65)
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Implication and negation are subject to the following rules:

A
B I A>oB A -
ASB B
A
1 A A

- — -
-A 1

They are very similar, since, as we will see later, negation can be defined from

implication.

(66)



| | | Natural deduction

True and false are governed by the following rules:

1
— Tl —LE
T A

If Ais an axiom of the theory T, i.e., if Ae T, we are allowed to deduce it:

aXx

A
If Ais an assumption, i.e., if A€ T, we can deduce it

A

(67)



| | | Natural deduction

Finally, for every formula A either A is true or it is false. This is expressed by
the Law of Excluded Middle:

em

—— |
Av A
As we will see later in the course, the Law of Excluded Middle is delicate, and
it has a special status.
In general, whenever possible, we will try to avoid its use in a proof.

As matter of fact, the same deduction system, without the Law of Excluded
Middle, identifies another logic, intuitionistic logic, we will introduce and
motivate later in the course.

(68)



| | | Natural deduction

A couple of comments:

m except for the Law of Excluded Middle, the rules come in pairs: any

connective is associated to one or more introduction rule and one or more
elimination rule.

m assumptions may be free or discharged. Free assumptions are real and the
proof depends on them; discharged assumptions are used locally, and they
not affect the whole proof. This is best understood looking at the
‘implication introduction’ rule: to prove A> B, we locally assume A and
we try to prove B, but the final result does not depend on A anymore.

When we want to name but not to detail the proof, we write m: I'1 A,
meaning that 7 is a proof of A from the assumptions I' in the theory T. When
the proof is not relevant, we omit the m; when the theory is understood or
empty, we omit the T; when the set of assumptions is empty, we omit the I'.

(69)
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A B AANB ANB 1
Al = = — 1E
ANB A B A
Al 18]
A B AvB C C
vy Vo VE — Tl
Av B Av B C T
[A] [A]
B A>B A 1 A A
ol Sk lem — -E
Ao B B Av A —A 1

o) I



| l | Summary

This lesson is fundamental. Memorise the inference rules in the previous slide
and use them at will.

Although the intended meaning seems obvious, be sure to really understand
the way implication is interpreted.

Take some time to note the symmetries among the inference rules:

m except for the Law of Excluded Middle, there are introduction and
elimination rules for every connective;

m you cannot introduce falsity;
m you cannot eliminate truth;
m implication and negation are similar;

m conjunction and disjunction are similar.

(71)
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Natural deduction in its current format has been introduced by Gherard Gentzen
and deeply analysed in the classical text Dag Prawitz, Natural Deduction,
Almqvist & Wiksell, Stockholm, (1965). Recently, this text has been reprinted
by Dover.

We will use mainly John Bell and Moshé Machover, A Course in Mathematical
Logic, North-Holland, (1977) in this course as a general reference. Although
it is an old book, it is still a classical reference, and it contains a complete,
formal development of all the notions.

For a comprehensive and deep treatment of natural deduction, see Anne Sjerp
Troelstra and Helmut Schwichtenberg, Basic Proof Theory, Cambridge Tracts
in Theoretical Computer Science 43, Cambridge University Press, (1996). This
book extends far over the content of our course.
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| | | Examples

To prove a formula we think backwards: so introduction rules eliminate the
main connective from a formula.

The first basic technique is to reduce the formula to prove by applying the
only introduction rule which could generate it.

Example 3.1. Prove HF Ao (B2 A).
AT

BoA -
A>(BoA) ~

|1

(74) ‘
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A useful way to help proving a formula is to keep track of the assumptions we
generate in the deduction process.

In the last example we started from
A>(BoA)
We tried to simplify the goal to prove by the implication introduction rule

BoA
A> (B2 A)

ol

and in the meanwhile our set of assumptions, initially empty, has become {A}.

(75)



| | | Examples

We tried to simplify the current goal B> A, obtaining

A
BSA |
Ao (B> A) -

and in the meanwhile our set of assumptions has become {A, B}.

(76)
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Now we see that the current goal is in the set of available assumptions, so we
can close the proof by discharging.

Al
BoA -
A>(BoA) il

I
Il

It is worth noting that

= we should remember which rule introduced which assumption, so
discharging could be correctly performed:;

= we may have unused assumptions, like B in the example.

(77)
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When an assumption is a complex formula, it is worth dismounting it by
means of an elimination rule.

Example 3.2. Prove F (A C)o>((Bo>C)>(Av B> ()).

[A* [A>CP B* [B>C]
[Av B]! C > C il
C
AVB>SC
(BoC)>(AvB> () il
(Ao C)>((Bo>2C)>(AvB>o()) i}

E

vE?2

Il

|4

|3

Note how assumptions are local to a subproof. Try to redo this exercise and
understand how assumptions have been managed.

(78)
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Example 3.3. Prove HFAv B=BvV A (v is commutative).

We introduce something new: A= B abbreviates (A> B)A (B2 A).
To prove such a formula it suffices to prove A> B and B> A.

We note that the property is auto-dual, so it suffices to show

2 2
[A] [B]
1 V|2 V|1
[AvB]" BVA Bv A
vE?
BvA i
AvB>oBVA

(79)
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Example 3.4. Prove HFAAB=BAA (A is commutative).

[AnB]! [AAB]!
AE2 /\E1

(80)
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There could be more than one way to prove a result.

Example 3.5. FAVA=A (v is idempotent).

AVAY (AP AP Al Al
VE? viy vip

A . AV A 1 AV A
AVASA A> AV A A>AVA

(81)
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Example 3.6. FAAA=A (A is idempotent).

[An A [AnA]Y
A /\E1 A /\E2
:)I1 D|1

ANADA ANADA

(82)
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Example 3.7. AV (AA B) = A (absorption law).

[AA B]?
AvAnB (A2 A A
A y Av (AA B) :.1
AV(AAB)o A A>Av(AAB)

(83)
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Example 3.8. FAA(AvV B) = A (absorption law).

A
[AA(AV B)]* A} AvB
= Al
A . AN (AvV B) .
AAN(AVB)SA - ASAA(AVB) ~

(84)
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Example 3.9. F(AAB)AC=AA(BAC) (A is associative).

[(AAB)AC]* -
[((AAB)AC]E AnB "' [(AAB)AC]
N E—— Y =D =
ANB B C
A BAC "
AN(BAC) "

|1

(AAB)ACSAA(BACQ) -

(85)
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F(AAB)AC=ANA(BAC) (A is associative) continued.

[AAn(BA O] -
[AA(BAC)] BAC 2 [AA(BAC)
/\E1 /\E1 /\E2
A B BAC
ANB Al C =)
|
(AAB)AC !
=k
AN(BAC)S(AAB)AC
i1
(86) 1
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Falsity elimination allows to deduce any formula one needs. But falsity always
comes from a contradiction.

Example 3.10. F—2A> (A2 B).

Al (AP

-E
1

— 1E

B

|2

A>B
—A>(A>B)

1

ol

(87) I
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Thinking backwards, not introduction allows to assume the conclusion
deprived of the negation. It is a form of reasoning by contradiction.

Example 3.11. FAAB>—(A>-B).

[AA B]? i
As-BY A "' [AAB]
5 SE B NE>
-E
1 .
2(A>-B)

(88)
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Example 3.12. - =(Av B) ==AA =B (De Morgan's law).

Al° | BT’ |
[~(AvB)]'! AvB VEl [~(AvB)]' AvB VE2
J_A B J_B p
Al
“AA-B 1
~(AvB)>-AA-B ~
[~AA-B]? i [~AA-B]?
Y N I -
Av B} 1 * 1 o
[Av B] -
1 ]
=(Av B) 3

~AA-B>-(AvB) ~

(89)
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Example 3.13. F == (AAB)> =17 AA B,

[AAB]? [AA B
9 NEq 4 NE2
[-A] A [-B] B
-E -E
1 S 1 S
1 — —
[(AAB)  ~(AnB) [(ArB)  ~(ANB)
1 1
p —12 5 -4
Al
ﬁﬁA/\ —|—|B

Il

—|—|(A/\ B) D) —|—|A/\—|—|B N

(90)
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Example 3.14
14, F"="AA-BD
- —I—I(A/\ B).

[A]" [B]?
A Al
AB [~(AAB)]?
1 t
ﬂA—M [~~An2B)f
= A NEL
1 S
ﬁB—# [~An-B)
—|—|B /\E2
1 ot
13
“(AnB)
—|ﬁA/\—|—|BDﬁﬁ(A/\ B) DI4
(91)
l|l
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Example 3.15. F==(A> B)> (—-A

[A]' [A>B]?
SE
B [-~B]°?
1 -E
= ADB _|I2
( ) [-=(A> B)]*
N -E
-1
A
[~-A]°
1 -E
B

5

~=(A>B)>(7A>-1B)

|4

(92)
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Example 3.16. (== A>==B)
=B)>--(A>B)

AP AL
| oAt By
[ _IAD_I_IB]z — , [_I(A:)B)]l ASB
o ! n -E
—1°
-B
iJ_E -E
(A5 B)] 5
A5 B ol
1 "
( (ASB)
—=A>-B)>-7(A> B) >r
(93)
[
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Proofs involving the Law of Excluded Middle are more difficult.

The fundamental strategy is that an application of the principle is required

when no other strategy could be used.
Example 3.17. = A=-1-A (double negation law).

AN AP

E 1 a2

n A (A

lem 1 1E -E
Av A [A] A 1
vE! -1
A 1A
512 S12
—ADA Ao 1A

(94)
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Do not rely on the shape of the theorem! Small variations could be provable
without the Law of Excluded Middle.

Example 3.18. F A= —-—-A.

[—A]? [A] -
1
[~-=A] A o [A=A]Y [~A]2
-E -E
1 1
-13 |1

(95)
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One may think the Law of Excluded Middle is about negation. This is false:

there are elementary facts in which negation does not appear that require the
Law of Excluded Middle to be proved.

Example 3.19. - (A5 B) v (B> A).

A2 (=l
[A]” [HA] e
= E
— 1
BoA ASB
lem V|2 V|1
Av A (Ao B)v (B> A) (Ao B)v (B> A) o1
(A>B)v (B> A) ’

(96)
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Example 3.20. - ((A>B)> A)> A (Pierce’s law).

AN AP
-E
1
— 1E
B 3
I [((A> B)> Al? A:)BDE
Av-A A A i}
A vE!
5|2
(A=B)=>A)>A

(97)
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Example 3.21. - A> B=-B> A (contraposition).

[-B>-A7 [-8]

[A>B]" [A]? - —A [A]°
B -B]3 1
[ ] -E lem 1 — 1E
L Bv-B [B] 1
=l vE
_IA :)I3 B :)I3
—|BD—IA |1 ADB |2
(A>B)>(~Bo-A) (-B>-A)>(A>B) ~
(%) ]



| | | Examples

Example 3.22. F Ao B==(AA—B).

2
[AA-B] E
[A> B]} A ' [AAAB)
B D -8 "
-E
1 ;
“(AA-B)

(Ao B)>(AA-B) !

(99)
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- A>B=-(AA-B) continued.

( 100 )

[A”_[-B]" |
Arn-B " [~(AA-B)]
lem 1 iJ_E
Bv-B [B] B,
B VE
D2
ASE
~(AA-B)>(A>B)

-E
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Example 3.23. FAvB=-A>B.

[A]? [~A] -
L [FA' [~AS B2
[Av B] B [B] [A] B
vE? lem vy vls
B Av A Av B Av B
513 vE!
-A> B i Av B 2
AvB>(=A>B) (~A>B)>AvVB
(101 ) ! | !
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Exercises can be found in any standard textbook, see, e.g., Chapter 1 of John
Bell and Moshé Machover, A Course in Mathematical Logic, North-Holland,
(1977).

Some further exercises are available on the course web site.

Proving techniques come from the completeness and the normalisation theo-
rems.

(102) 11
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l | l Semantics

The intended meaning of propositional logic can be formalised.

In this way we will get a first, very simple semantics for the syntax introduced
in the previous lessons.

Definition 4.1 (Truth-tables semantics). Fixed a map v: V —{0,1} from the
set V' of variables to the truth values, denoted by 0 and 1, the meaning [Al
of a formula A is inductively defined as:

= if A€ V is a variable then [A] = v(A);

= [T]=1;
u [U—]]:O, N
(1104 ) ]



l | l Semantics

— (Truth-tables semantics)
m if A= BA C then [A] is calculated according to

[B] [CI|[BAC]
0 0 0
0 1 0
1 0 0
1 1 1

m if A= Bv C then [A] is calculated according to

[B] [C] | [BvC(]
0 0 0
0 1 1
1 0 1
1 1 1

(105 )



l | l Semantics

— (Truth-tables semantics)
m if A=-B then [A] is calculated according to

[B] | [-B]
0 1
1 0

m if A= B> C then [A] is calculated according to

[B] [C] |[B>C(]
0 0 1
0 1 1
1 0 0
1 1 1

( 106 )
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Example 4.2. We can show that the formula x Ay > x Vv y is true whatever

values we may assign to x and y;

[x] [yl | [IxAyl [xvy]l |[xAy>xVvyl
0 0 0 0 1
0 1 0 1 1
1 0 0 1 1
1 1 1 1 1

The corresponding proofs in natural deduction are:

[xAyl”

/\E1

V|1

XVy

(107 )

XANYDXVYy

ol

[xAyl”

/\E2

Y

V|2

XVy

*

ol

XAYDXVYy




| | | Example

Example 4.3. Truth-tables allow to derive semantic properties, too.

IxI Iyl | IxAyl [xvyl|IxAyl=slxvyl
0 0 0 0 1

0 1 0 1 1

1 0 0 1 1

1 1 1 1 1

( 108 )
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Truth tables are widely used in the synthesis of (logical) circuits, and many
techniques to minimise the number of electronic gates, each one
implementing a logical connective, have been developed.

In logic, truth tables are not an effective way to check whether a formula is

true for any assignment of its variables: the number of assignment to try is

2", with n the number of variables, so it grows exponentially with respect to
the number of variables.

Anyway in pure logic truth tables are a very effective way to construct a
minimal set of connectives. Indeed, the collection of connectives is redundant
as they can be mutually defined.

(1109 ) 1



| | | Interdependence of connectives

Proposition 4.4. Negation can be defined using implication and falsity.

Proof.
Checking the truth tables, = A is equivalent to A> L. []

Proposition 4.5. The set of connectives A, vV, and — suffices to define all the

others.

Proof.
Just checking the truth tables, one can see that

m T can be defined as =X v X, for any choice of X;

®m | can be defined as °T;
® A> B can be defined as AV B. L]

(110 ) Ly



| | | Interdependence of connectives

Proposition 4.6. Conjunction can be defined from disjunction and negation.
Moreover, disjunction can be defined from conjunction and negation.

Proof.
Writing down the proof tables it is immediate to see that
= AAB is the same as =(=Av —B);
= Av B is the same as =(7AAB). ]

Usually =-(AAB)=-Av-B and =(Av B) = AA B are referred to as

De Morgan's Laws.
Here A= B between two formulae A and B means that both Ao B and B A
hold, i.e., A and B are equivalent.

(111)



| | | Interdependence of connectives

So, the following sets of connectives are sufficient to define all the others:
= Lo
= {7 AL
= {7V
= {-,oh
But, in principle, one can reduce to a single connective although this is

impractical. Define A|B=-(AAB), which is known as Sheffer’s stroke.
Then using truth tables it is easy to prove

= SA=A|A:
= A>B=A|(B|B).

(112)
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We want to show that every conclusion we may derive in the proof system is
true whenever all the assumptions it depends upon are true.

Before stating the theorem and proving it, we should make one important

remark. The collection of proofs is inductively generated by the inference rules.
So we can reason about a provable statement by saying: if A is provable, let
7 be a proof of A. If a property holds for every proof then it holds for 7, too.

To prove that a property holds for every proof, we can prove that each
inference rule preserves the property, which means that assuming the property
to hold for the proofs in the premises of the rule, we have to show that a
proof whose last step is an instance of the inference rule under examination,

has the property too. In the case of the Soundness Theorem the property of
interest is ‘the conclusion is true’.

(113)



| l | Soundness

Theorem 4.7 (Soundness). IfT is a set of formulae, and we have a proof

n: ' A in the natural deduction system then whenever each formula in T is
true, so is A.

Proof. (i)

The main hypothesis is that, for every GeT, [G] =1.

We proceed by induction on the definition of the proof 7, showing that if all
the premises of an inference rules satisfy the property in the statement, so
does the conclusion:

m if 7 is an instance of the assumption rule then A€T’, so [A] =1 by
hypothesis.

m if 7 is an instance of the Tl rule then A=T, so [A] = 1. —

(114)



| l | Soundness

— Proof. (ii)

(115 )

if 7 is an instance of the LE rule then [L] =1 by induction hypothesis,
but we know by definition that [L] =0, thus 0=1. Then it follows that
[A] =1 since [A] € {0,1}, which is indeed a singleton.

if 7 is an instance of the Law of Excluded Middle, A= Bv ~B. But
[Bv-B] =1 as it is immediate to check using truth tables.

if 7 is an instance of =1l then by induction hypothesis applied to

n': TU{A}F L, we have that [A] =1 implies [L] =1. Then, the
contrapositive form of the implication says that [L] #1 implies [A] #1,
which means [L] =0 implies [A] =0. But [L] =0 by definition of
semantics, so [A] =0, that is [7A] =1.

if 7 is an instance of =E then by induction hypothesis applied to both
premises, we get that [7A]l =1 and [Al=1. Thus, 0=[A] =1. Then
[L]=0=1. —



| l | Soundness

— Proof. (iii)

m if 7 is an instance of Al then A= B A C and by induction hypothesis
applied to both premises, [B] =1 and [C] =1. So by the truth table of
conjunction, [BA C] =1.

m if 7 is an instance of AE; then the premise is a proof of AA B from I.

Applying the induction hypothesis, we get that [AA B] =1, so by the
truth table of conjunction we derive that [A] =1.

m if 7 is an instance of AE> then the premise is a proof of BA A from T.
Applying the induction hypothesis, we get that [BA A] =1, so by the
truth table of conjunction we derive that [A] =1. —

(116 )
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— Proof. (iv)

m if m is an instance of vl; then A= Bv C, and the premise is a proof of B

from I'. By induction hypothesis [B] =1, so by the truth table of
disjunction [Bv C] =1.

m if m is an instance of vl then A= Bv C, and the premise is a proof of C
from I'. By induction hypothesis [C] =1, so by the truth table of
disjunction [Bv C] =1.

m if  is an instance of VE then applying the induction hypothesis to the
first premise, we get that [Bv C] =1. Thus by the truth table of
disjunction either [B] =1 or [C] =1. In the former case, applying the
induction hypothesis to the second premise, we get that [A] =1. In the

latter case, applying the induction hypothesis to the third premise, we get
that [[A]] =1. >

(117)
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— Proof. (v)

m if 7 is an instance of | then A=B> C. If [B] =0 then [B>(C] =1 by
the truth table of implication. Otherwise [B] =1, and we can apply the

induction hypothesis to the premise of the inference rule obtaining
[C]=1. Thus by the truth table of implication [B> C] =1.

m if 7 is an instance of > E then applying the induction hypothesis to both
premises, we get [BED>A] =1 and [B] =1. Thus by the truth table of
implication it follows that [A] =1 too. []

(118)
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The soundness theorem is folklore. Indeed, we will see soon a more interesting
and powerful version of it, which uses a more refined semantics.

The interest of the soundness theorem lies in the structure of its proof: most
soundness theorems are proved by induction on the structure of proofs, checking
that each inference rule preserves the truth of premises into the conclusion. It
is important to become acquainted with this technique.
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l | l Orders

A rather more interesting semantics for propositional logic comes from the
algebra of orders. In the following, we will develop what is needed to
introduce it.

Definition 5.1 (Order). An order G =(S;<) is a set S equipped with a binary
relation < which is

m reflexive, i.e., for all xe S, x < x;
m anti-symmetric, i.e., for all x,y € S, when x<y and y <x then x=y;
m transitive, i.e., for all x,y,z€ S, if x<y and y <z then x < z.

Noting that if G =(5;<) is an order, so is G°P =(S;=) we have a duality
principle: when a property holds for all orders, its instance on the opposite
order generates a dual property, which holds for all orders, too.

(121)
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Definition 5.2 (Least upper bound). Fixed an order @ =(S5;<) and U< S, we

call the element me S, if it exists, the least upper bound (lub), or supremum,
or join of U whenever

m for every xe U, x < m;

m for each w€ S such that x < w for every xe U, m=w.

Definition 5.3 (Greatest lower bound). Fixed an order @ =(5;<) and U< S,

we call the element me S, if it exists, the greatest lower bound (glb), or
infimum, or meet of U whenever

m for every xe U, m<x;
m for each w € S such that w < x for every xe U, w<m.

Observe how the two notions are dual.

(122)
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Definition 5.4 (Lattice). An order @ =(S; <) is called a /attice when for every

pair x,y € S, there exists the join of {x,y}, denoted by x vy, and there exists
the meet of {x,y}, denoted by xAy.

Moreover, a lattice is said to be bounded when, for every finite U< S, there is
V U, the join of U, and A U, the meet of U. Conventionally, \/ @ is denoted
by L, bottom, and A\ @ is denoted by T, top.

Observe how lattices preserve duality.

(123)
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Meet and join are associative, commutative and idempotent operations:
Proposition 5.5. In a lattice (S5;<), for every a,b,c€ S:

m gAb=bAaand avb=bva;

m aA(bAac)=(anb)Aacand av(bvc)=(avb)vc,

B agANa=aand ava=a.

Proof.
Immediate unfolding of the definitions of A and V. []

(124 )
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Proposition 5.6. In a bounded lattice (S5;<) every element is greater that L
and less than T.

Proof.
By duality, it suffices to prove just one part of the statement.

Since T = A @, by definition of meet for any y € S such that y < x for all x € @,
it holds y < T. But there are no elements in @, so y <T for any y € S. []

Observe how these properties uniquely characterise T and L.
Proposition 5.7. In a bounded lattice (5;<) VS=T and NS=1.

Proof.

By definition of join for every xe€ S, x<V S, and by Proposition 5.6 T is such
that for all xe 5, x<T. So, T<VS and VS <T. By anti-symmetry VS=T.
The other part follows by duality. ]

(125 )
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Definition 5.8 (Complemented lattice). A bounded lattice G =(S; <) is said
to be complemented when for each element x € S, there is an element y€ §
such that

B XAy=1;
B xvy=T.

The element y is not necessarily unique. For example

T

(126 ) JAl



| | | Lattices

Definition 5.9 (Distributive lattice). A lattice @ =(S;<) is said to be
distributive when for every x,y,z€ S,

xA(yvz)=(xAy)Vv(xAnz) .

Proposition 5.10. For each x in a bounded lattice, x=xAT and x=xV L.

Proof.
Immediate by definition of meet and join, and Proposition 5.6. []

Proposition 5.11 (Absorption). For each x and y in a lattice, xV (xAy) = x
and x A (xVy)=x.

Proof.
By definition of join x <x Vv (xAy), so it suffices to show x Vv (xAy) < x.

But x < x by reflexivity, and x A y < x by definition of meet, so x VvV (xAy) < x
by definition of join. The other part follows by duality. []
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| | | Lattices

Proposition 5.12. In any distributive lattice for all x, y, and z,
xV(ynz)=(xVvy)A(xVz).

Proof.
(xVy)A(xVz)
=((xvy)Ax)Vv((xvy)Az) distributivity
=(XAX)V(XAY)V(xAZ)V(yAZz) distributivity twice
=xV(xAY)V(xAzZ)V(yAz) idempotence
=xV(xAz)V(yAz) absorption
=xV(yAz) absorption []

Associativity and commutativity of A and v are silently applied.
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| l | Lattices

Proposition 5.13. In any bounded distributive complemented lattice each
element x has a unique complement, denoted by —x.

Proof.
Suppose the element x has two complements y and z. Then by definition of
complement: xAy=1l=xAzand xvy=T=xVvz. Thus

y=yAT
=y A(xV2z)
=(yAx)Vv(ynz)
=(zAx)V(zAy)
=zA(xVYy)
=zZAT

=z . L]
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| | | Boolean algebras

Definition 5.14 (Boolean algebra). A Boolean algebra is a bounded
distributive complemented lattice.

Example 5.15. The set {0,1} with the ordering 0 <1 is a Boolean algebra with
T=1and L =0. This is the structure supporting the truth-table semantics.

Example 5.16. Fixed a set U, the powerset p(U)=1{S: S < U} ordered by
inclusion is a Boolean algebra. The complement of S is the difference U\ S,
while A is the intersection, and V is the union.

Example 5.17. Let ne N be such that it cannot be divided by the square of

any other number, e.g., 105 =3-5-7. Then the divisors of n form a Boolean
algebra with the operations of greatest common divisor as meet, least
common multiple as join, and the complement of x being n/x.
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l | l Semantics

We introduced Boolean algebra for a precise purpose: interpreting
propositional logic.

Definition 5.18 (Semantics). Fixed a Boolean algebra ¢ = (0O; <) and

v: V — O, the evaluation function, mapping each variable into an element of
the algebra, the interpretation [A] of a formula A is inductively defined as:

if Ais a variable, [A] =v(A);

if A=T, [A] =T, the maximum element of ©;

if A=_1, [A] =L, the minimum element of &;

if A= BAC, [A]l =[BIA[C], the meet of the interpretations of conjuncts;
if A=Bv C, [Al =1[B] v [C], the join of the interpretations of disjuncts;

if A=B> C, [A]=-[B] VvICl], that is [A] = ["B vV (] interpreting
implication as a relative complement;

if A=-B, [A] = [B], the complement of the interpretation of B.
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| l | Soundness

Definition 5.19 (Validity). A formula A is valid or true in a Boolean algebra

O =(0; <) together with an evaluation v: V — O of variables when [A] =T.
A set of formula is valid or true when each formula in the set is valid. The
pair (O, v) is called a model for a theory T when it makes true all the axioms
in T.

Theorem 5.20 (Soundness). In any model (0 =(0;<),v: V — O) of the
theory T and the assumptions in the set A, if m: A1 A then A is valid.
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| l | Soundness

Proof. (i)

The proof is by induction on the structure of m: we show that the
interpretation of the conclusion A is greater or equal than Agerl[Gl, with T
the finite set of assumptions occurring in the proof of A:
m if m is a proof by assumption then A€ and by definition of A,
AGerlGl = [A].
m if 7 is a proof by axiom, then Ae T and by hypothesis, [A] =T, so
AGer[G] < [A] by characterisation of T.
m if 7 is an instance of the Law of Excluded Middle then A= Bv B, and
[Al =[Bv-B]=[B]v-[B] =T by definition of complement in a
Boolean algebra. Thus Ager[Gl <[A]l =T by characterisation of T.

®m if 7 is an instance of T-introduction then A=T, so [A]l=[T]=T. Thus
AcgerlGl < [A]l = T by characterisation of T. —
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| l | Soundness

— Proof. (ii)

(134)

if 7T is an instance of L-elimination then by induction hypothesis
1L < AgerlG] =[L] =L. Thus by anti-symmetry, Ager[G] = L. So, by
characterisation of 1, L = AgerlG] < [A].

if 7 is an instance of A-introduction then A= B A C, and by induction
hypothesis twice, Agerl[Gl < [B] and Agerl[ Gl < [C]. Thus by definition
of A, AgerlGl =[BIAICI=[BACl=[A]

if 7 is an instance of Aj-elimination then by induction hypothesis for
some formula B, AgerlGl < [AA B] =[A]l A[B]. Thus by definition of A,
AgGer[G] = [Al.

if 7 is an instance of As-elimination then by induction hypothesis for
some formula B, AgerlGl < [BAA] =[B]AlA]l. Thus by definition of A,
AGer[G] = [Al. —



| l | Soundness

— Proof. (iii)

m if 7 is an instance of vi-introduction then A= Bv C and by induction
hypothesis Agerl[ Gl < [B]. So by definition of v,
AGerlGl =[Bl <[BIVvI[C]l=[Bv (] =I[Al

m if 7 is an instance of vo-introduction then A= Bv C and by induction
hypothesis Agerl[G] < [C]. So by definition of v,

NgerlGl =[Cl = [BlvICl=[BvVv (] =[Al.

m if 1 is an instance of v-elimination then by induction hypothesis for some
formule B and C, AgerlGl <[Bv Cl=[BlVICI, [BlAAgerlGl < [AI,
and [C] A AgerlGI = [Al.

It follows that by definition of v and distributing,

(IBIAAGerlGl) v (ICI A AgerlGI) = ([B1 v [C]) A Ager[GI =< [AL.

But since AgerlGl <[BIVICI, (IBIVICI)AAgerlGl = AgerlGl by
definition of A, so AgerlG] < [A]. —
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| l | Soundness

— Proof. (iv)

® if 7 is an instance of >-introduction then A= B > C for some formule B
and C. By induction hypothesis, [B] A AgerlG] < [C].
So by definition of v, [BI A AgerlG] <-[B] vI[C] and
Bl = ~[Bl vICl.
Thus by definition of v,
Al =[B>C]l=~[B]VvIC] =~[B]v ([[B]] /\/\GeFHG]])- Distributing and
by definition of complement, [A] = (=Bl Vv I[Bl)A(=I[Bl Vv AgerlGl) =
TA(=IBIV AgerlGl) = =[Bl Vv Ager[Gl. By definition of v,
AGerlGl = 7[Bl v Ager[G] = [Al. —
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| l | Soundness

— Proof. (v)

m if 1 is an instance of >-elimination then for some formula B, by induction
hypothesis twice, AgerlGl < [B > A] and AgerlG] < [B].
By definition of A, AgerlGl <[B> Al A[B]. But [Bo A] =-[B] v [A].
So AgerlGl < (—[BI Vv I[Al)A[B]. Distributing and by definition of =,
AGer[Gl = (m[BIAIB]) Vv ([AIA[B]) = L v ([AI A LB]) = [AI A [B] =< [A].

m if 7 is an instance of —-introduction then A= B for some formula B. So
by induction hypothesis [B] A Ager[G] < [L] = L. Thus by definition of
1 and anti-symmetry, [B]l A Ager[G]l =L1. Then
[Al = [~Bl =-[Bl==[BlvL==[Blv(IBlAAgerlGl), and
distributing, [A]l = (=[Bl1V [B]) A (—[Bl Vv AgerlGl) =
TA([7BIV AgerlGl) =[Al vV Ager[Gl. Thus by definition of v,
AGerlGl = [AlV Ager[G] = [Al.
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| l | Soundness

— Proof. (vi)

m if 7 is an instance of —-elimination then A= 1 and by induction
hypothesis twice, AgerlGl < [B] and AgerlG] < [B]. But
[-B] =—[B]. So by definition of A, Agerl Gl <—[B] A [B]. By definition
of complement, AgerlGl < [BIA[B] =1 =[A].

Hence, for every formula A such that 7: A7 A with I' € A the set of
assumptions really used in @, Ager[G] < [A].

But for every Ge A, [G] =T by hypothesis, and 'S A so Ager[Gl =T, thus
by the characterisation of T, T<[A] <T, so [A]l =T by anti-symmetry. []
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| | | References

Boolean algebras, in the form of the powerset of a set, have been introduced
for the first time in George Boole, An Investigation of the Laws of Thought,
Prometheus Books, (2003), reprint from the original edition (1854).

Two excellent references for orders, lattices, and Boolean algebras are Brian A.
Davey and Hilary Ann Priestley, Introduction to Lattices and Order, Cambridge
University Press, (2002), and George Gritzer, General Lattice Theory, second
edition, Birkh&user, (1996).

The proof of the Soundness Theorem is folklore: indeed, the proof itself is
adapted from a more general result which uses the internal logic of a Boolean
topos. This is an advanced topic, which will not be covered in the course,
and the interested student can give a glimpse to Peter Johnstone, Sketches of
an Elephant: A Topos Theory Compendium, two volumes, Oxford University

Press (2002).
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l | | Completeness

We will show that, fixed a theory T, any formula A which is valid in every
Boolean algebra making T true, is provable, i.e., there is a derivation in
natural deduction with no assumptions that has A as its conclusion.

Indeed, we will prove a stronger result: in a theory T for any finite set I" of

formulae and for any formula A, if Ager[G] < [A] in every Boolean algebra
which makes the theory T true, there is a natural deduction proof 7: I' -1 A.

As a corollary, noting that when I'=@, Ager[Gl =T, the previous result
follows by anti-symmetry by definition of T.

(141) I



| | | Preliminaries

The proof is subtle.

In the first place, it is worth noting that if 7: I' 1 A then there is a finite

A cT such that m: A7 A. Indeed, since any proof is a finite object and any
inference rule has a finite number of premises, only a finite number of
assumptions may be used in a proof.

In this sense the limit of having a finite I' in the statement of the
Completeness Theorem is not committing.
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l | l Strategy

Of course, the difficult aspect of the theorem lies in considering the totality of
Boolean algebras.
The strategy behind the proof is

m construct a canonical Boolean algebra B which makes the axioms of T
true and which is ‘easy’ to manage;

m prove that, for any finite set I' of formulae and for any formula A, if
AGer[G] < [A] in B then there exists n: I'T1 A;

m since the premise holds in every Boolean algebra, we deduce completeness.

This strategy is general: many completeness results for most logical systems
follow this pattern. But there are exceptions. ..
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l | | Canonical model

The idea is to define a canonical Boolean algebra in which truth and
provability are the same notion.

Definition 6.1 (Canonical Boolean algebra). Let T be a theory. Then the

canonical Boolean algebra B(T) on T is the pair
({A: A is a formula in the language of T}/~;$B(T)>, where

m A~Bifand only if Ak B and BFT A,
= [A]. <g(T) [B]~ exactly when A1 B.

For the sake of simplicity, when it is clear from the context, we omit the
subscripts. Also, observe how [A]. <g(1) [B]~ and [B]. <g(T)[A]~ implies
Al = [B]-.

But we have to show first that B(T) is a Boolean algebra.
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| | | An auxiliary result

Lemma 6.2. Ifn:TU{A}r7B and 6: T 1 A then there is a proof
v: T I—T B.

Proof. (i)

By induction on the structure of the proof .

m if 7 is an instance of the assumption rule either BeT’, so v coincides with
7 which does not depend on A, or B= A thus v=20.

®m if 7 is an instance of the axiom rule, Be T, so v =m which does not
depend on A.

®m if 7 is an instance of T-introduction, B=T, so v =7 which does not
depend on A.

m if 7 is an instance of l-elimination, by induction hypothesis there is
¢: I’ L, so applying the L-elimination rule to ¢ gives the required v.—
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| | | An auxiliary result

— Proof. (ii)
m if 7 is an instance of the Law of Excluded Middle, B=Cv-(C,sov=n
which does not depend on A.

m if  is an instance of A-introduction, B= CA D, and by induction
hypothesis there are {: T'7 C and u: I'7 D, so the required v is
obtained by applying A-introduction to ¢ and pu.

m if 7 is an instance of Aj-elimination, by induction hypothesis there is
E:TH7 BAC, so v is obtained by applying Ai-elimination to €.

m if 7 is an instance of Ap-elimination, by induction hypothesis there is
E:T'HT CAB, so v is obtained by applying As-elimination to &. —
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| | | An auxiliary result

— Proof. (iii)

m if 7 is an instance of vi-introduction then B= Cv D, and by induction
hypothesis there is {: ' C, so v is obtained by applying
V1-introduction to €.

m if 7 is an instance of Vvs-introduction, then B= C v D, and by induction
hypothesis there is {: I'7 D, so v is obtained by applying
Vo-introduction to €.

m if 7 is an instance of v-elimination, by induction hypothesis there are
E:THTCVD, uc:Tu{Ct-7 B and up: Tu{D}+T B, so applying
v-elimination to ¢, uc, and up the required v is constructed. —

(147) .



| | | An auxiliary result

— Proof. (iv)

m if 7 is an instance of >-introduction then B= C > D, and by induction
hypothesis there is {: TU{C} 7 D, so v is obtained by applying
D-introduction to €.

m if 7 is an instance of >-elimination, by induction hypothesis there are
(:THEr CoBand u: T C, so v is constructed applying >-elimination
to ¢ and pu.

m if 7 is an instance of —-introduction, B =—C, and by induction hypothesis
there is {: TU{C}F7 L, thus v is obtained applying —-introduction to €.

m if 7 is an instance of —-elimination, by induction hypothesis there are
(:T'H7—=Cand u: T'H7 C, so v is constructed applying —-elimination to
¢ and p. []
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| | | Properties of the canonical model

Proposition 6.3. The relation ~ is an equivalence relation.

Proof.

m By the assumption inference rule AF-T A, so A~ A for any formula A, i.e.,
~ is reflexive.

m |If A~ B then A+ B and BF7 A, so B~ A too. That is, ~ is symmetric.

m [f A~B and B~ C then there are ng: AT B, maq: BT A, and
Oc: B+ C,0g: CH1 B. By Lemma 6.2 there are n: A7 C and
0: C+1 A, that is, A~ C, which means ~ is transitive. ]
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| | | Properties of the canonical model

Proposition 6.4. The relation <g ) is an ordering.

Proof.

= The relation [A] < [B] does not depend on the choices of the
representatives in the equivalence classes on ~. Indeed if [A] =[A'] and

[B] = [B'] then A~ A" and B ~ B'. So by definition of ~, A'1 A and
Bt B'. But by definition of <, A1 B, thus by Lemma 6.2 twice,
A"k B’ that is [A'] < [B].

= By the assumption rule AT A, so [A] <[A], i.e., < is reflexive.

= If [A]<[B] and [B] =[C] then A-7 B and B+1 C, so by Lemma 6.2,
AT C, that is [A] =[(], i.e., < is transitive.

= If [A] <[B] and [B] <[A] then A7 B and B+ 71 A, so by definition of ~,
A~ B, that is [A] =[B], i.e., < is anti-symmetric. ]

IAIA

IA
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| | | Properties of the canonical model

Proposition 6.5. B(T) is a lattice.

Proof.

= Consider [AA B]: [AAB] <[A] since AABF1 A by Aj-elimination; also,
[AA B] <[B] since AA B1 B by Ap-elimination.
If [C]<[A] and [C]<[B] then Ck7Aand C+7B,so C7 AAB by
A-introduction, thus [C] <[AA B]. So by definition of A in an order,
[A|A[B] =[AAB].

= Consider [Av B]: [A]<[AV B] since A7 Av B by vi-introduction; also,
[B] <[AvV B] since B-1 Av B by vo-introduction.
If [A]<[C] and [B] <[C] then A+ C and B+7C, so AvBr71 C by
v-elimination, thus [Av B] <[C]. So by definition of v in an order,
[A]v[B]=[AvV B]. ]
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| | | Properties of the canonical model

Proposition 6.6. B(T) is a bounded lattice.
Proof.

= For each formula A, A+ T by T-introduction, so [A] <[T]. Thus by
characterisation of T in a bounded lattice, T =[T].

m For each formula A, L 7 A by L-elimination, so

characterisation of L in a bounded lattice, L =[1].

(152)
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| | | Properties of the canonical model

Proposition 6.7. B(T) is a distributive lattice.

Proof. (i)
For any A, B, and C, [A]V([B]A[C])=[A]v[BAC]=[AVv(BAC)] and
(Al VIB) A([Al v [C]) =[AvBIA[AV C] =[(Av B)A(Av C)].

But AV(BAC)F7 (AvB)A(Av C) since

[BAC]” - [BAC]” i
Al Al B ¢ ™
AvB " Aave ™ ave? ave °
I
AV(BAC) (AVB)A(AVC) (AVB)A(AVC)
(Av B)A(Av C) ’
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| | | Properties of the canonical model

— Proof. (ii)
Also (AVB)A(Av C)F7 Av(BAC) since
8]
(AvB)A(Av C) - [A]" |
Av B " UAV(BAC) T AV(BAC)
AV (BAC) ’

(154 )
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| | | Properties of the canonical model

— Proof. (iii)
where the third premise is
B [C]'
(Av B)A(Av C) Al BAC
NE> vip vy
Av C AV (BAC) AV (BAC) o
\%

Av(BnAC)

Thus (AvB)A(Av C)~Av(BAC) and the conclusion follows.

(155 )



| | | Properties of the canonical model

Proposition 6.8. B(T) is a complemented lattice.

Proof.
Consider [ A] for any formula A: [A]A[7A]=[AA-A]=[L1] =1L since
1 +7 AA A by L-elimination, and

AN-A AN-A
/\E1

A A
1

/\E2

-E
Also, [Alv[-A]=[Av-A]=[T]=T since Av-Ar+ T by T-introduction

and T 1 Av —A by the Law of Excluded Middle.
Corollary 6.9. B(T) is a Boolean algebra.
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| | | Classifying models

Proposition 6.10. Fixed a theory T, let (0,v) be a model of T. If

[BL S[B(T) [C]~ then [Blg <0 [Clo.

Proof.

If [B]. <g(T) [C]. then there is m: Bl-1 C by definition of <g(T).

Thus by the Soundness Theorem 5.20 applied in the © Boolean algebra with
the v evaluation, [Blg <¢ [Clo. []
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| | | Classifying models

Definition 6.11 (Canonical map). Fixed a theory T let (0,v) be a model of

T. Then the map ég: B(T) — O defined by [B]. — [Blg is the canonical
map to O.

This definition does not depend on the choice of the representatives in B(T).
Indeed if [A] = [A'] then, [A] = [A'] and [A"] = [A], so by Proposition 6.10,
[A] < [A] and [A’'] < [A] in O, thus by anti-symmetry, [A] = [A'].

Moreover the canonical map preserves the ordering of B(T).
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| | | Completeness

Theorem 6.12 (Completeness). Fixed a theory T, for any finite set T' of

formulae and for any formula A if Ager Gl < [A] in any model of T then
there is a natural deduction proof m: I' F1 A.

Proof.

If AgerlG] < [Al, then [Ager Gl < [A] being T finite.

Since this fact holds in any Boolean algebra, it holds also in B( T), the
canonical Boolean algebra on T. And because of the way interpretation is
defined in B(T), [Ager G| =[A].

So by definition of < in B(T) there is m: Ager GFT A. Noting that

I' =7 Ager G by iterating the A-introduction rule, by Proposition 6.2 it
follows I' =7 A. []
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l | | Completeness

Corollary 6.13. If [A]l =T in every model of T then there is a proof m: F1 A.

Proof.

If [Al =T then T =[T] <[AIl, being < reflexive. By the Completeness
Theorem 6.12 the result immediately follows. []
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| | | Classifying models

In fact we have another result for free: any model for a theory T, i.e., any
Boolean algebra O together with an assignment of variables is described by its

canonical map ¢g.

In a sense, all the models of a theory T can be synthesised from the canonical
model applying a canonical map. It is tempting to identify the models with
the class of canonical maps. ..

... but this is another story which leads very far. And we will not pursue it
during this course. We just observe that, when there is a classifying model,
then we can limit the study to the classifying model to analyse properties, like
completeness, that hold in every model.
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The proof has been adapted from the one in topos theory, which is illustrated
in Section D of Peter Johnstone, Sketches of an Elephant: A Topos Theory
Compendium, Oxford Logic Guides 43, Oxford University Press, (2003).

The notion of classifying model is central in the topos-theoretic approach and

in some way it goes back to Grothendieck’'s work. Again, Johnstone's book is
a good starting point.
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| | | First-order logic

Propositional logic, while a valuable tool, lacks the expressive power to
describe complex mathematical theories like arithmetic or set theory.

To effectively use logic for mathematical reasoning, we need a system that
can represent and manipulate objects. First-order logic introduces this
capability by allowing us to identify objects and create formulas about them.
Quantifiers in first-order logic can range over individual objects but not over
sets or collections of objects.

Higher-order logics, which extend quantification to include sets and other

structures, are beyond the scope of this course and have limitations in terms
of completeness. First-order logic, on the other hand, is considered to be at
the boundary of completeness, a concept we will explore in more detail later.

(181)



ll' Language

Definition 8.1 (Signature). A signature £ =<(S;F;R) is composed by
m a3 finite set S of symbols for sorts.

m a3 set F of symbols for functions. Each symbol f € F is uniquely
associated with a type s; x---x s, — sp, with s;€ S for each 0 <i=<n.
When n=0 we say that f is a constant of type sp.

m a3 set R of symbols for relations. Each symbol r € R is uniquely associated
with a type sy x--- xs,, with s;€ S for each 1 </j<n.
When n=0 we say that r is a propositional constant.

The notations f: sy x---xs,—sp€F and r: s; x---xs, € R mean that f is a
function symbol whose type is s; x--- x s, — 59, and r is a relation symbol
whose type is s1 x :-- x s, respectively.

Also, we require S, F, and R to be non ambiguous.

A signature describes a first-order alphabet: sorts stand for collections of
elements, functions are used to denote elements, while relations are used to
construct basic formulee.
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ll' Language

Example 8.2. The signature
A =N {0: N, S: N—=N:+: NxN—-=N,-: NxN —N}:{=: N xN})

specifies the basic language for arithmetic. There is one sort, which stands for
the collection of natural numbers in the intended interpretation. There is a
constant, 0, denoting the zero natural number, there is a function S, which
stands for ‘successor’, denoting the next natural number, so that 5(5) =6 in
the intended interpretation, while the function symbols + and - denote
addition and multiplication.

There is only one relation symbol denoting equality.

Of course, the theory of arithmetic should be devised in such a way that as far
as possible the formal behaviour, that is, what we can prove, conforms to the
intended interpretation.
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ll' Language

Example 8.3. The signature

G=(G};{1: G,-: GxG— G,_"1: G— G};{=: G x G}) describes the
language of an algebraic group.

Example 8.4. The signature & = {{O}; @;{<: O x O}) describes the language
of an order.

Example 8.5. The signature

L ={E,L;{nil: L,cons: ExL— L};{=: Ex E,=;: LxL}) defines the
language of the theory of lists. A computer scientist would say it defines the
data type of lists.
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| | | Terms

A first-order language has two purposes: to provide a syntax to denote
elements in the universe, i.e., the collections denoted by the sorts, and to
provide a syntax to denote properties of those elements.

The first issue is addressed by terms.

Definition 8.6 (Term). Let Z=(S;F;R) be a signature and let V be an

infinite set of symbols, called variables, such that VNn(SUFUR)=@. Also
assume that each variable x € V' has a uniquely associated type s € S denoted
by x: s. We require that there is an infinite (countable) amount of variables
for each type s€ S.

A term along with the set of its free variables is inductively defined as:
= if x: se V then x is a term of type s, and FV(x) = {x};

miff:syx---xs,—sp€F and ty,...,t, are terms of type si,...,5;
respectively, then f(ty,...,t,) is a term of type sp, and
FV(f(t1,...,tn)) =UL; FV(t;).

We use the notation t: s to indicate that the term t has type s.
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Example 8.7. Using the signature A of arithmetic, 0, 5(0), S(5(0)), ... are

terms of type N. Also +(x,0) and -(x,+(5(0),5(5(0)))) are terms of type N.
Note how x+0 and x(1+2) are not terms.

To cope with the need of expressing the standard notation of mathematics
within the rigid syntax of terms we will formally introduce definitions later.
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As terms are used to denote elements, formulae are used to denote properties
of elements. The syntax is similar to propositional logic with two important
differences: we have atomic formulae instead of propositional variables, and
we have quantifiers.

Definition 8.8 (Formula). Fixed a signature X =<(S;F;R) and a set of
variables as for terms, a formula along with the set of its free variables is
inductively defined as

= T and L are formulze, and FV(T)=FV(l) = 9.

m if r:syx---xs,€ R is arelation symbol and t;: sq,...,t,: s, are terms
then r(t1,...,tn) is an atomic formula, and

FV(r(ty,....,tn)) =UL{ FV(t).
= if A and B are formulae, so are A, AAB, AvB, and Ao B, and
FV(=A)=FV(A), FV(AAB)=FV(Av B)=FV(A>B)=FV(A)UFV(B).
m if x: s is a variable and A is a formula, so are Vx: s.A and 3x: s. A, and
FV(Vx:s.A)=FV(3x: s.A)=FV(A)\{x}.
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There are two main differences between propositional and first-order formulae:

m instead of propositional variables we have atomic formulae, which link the
formulae with terms by means of a relation;

m there are quantified formula where the variable is not free. We say that
quantified variables are bounded.

The notion of bounded variable is not new: for example, the expression
fabf(x)dx does not really depend on the variable x. Indeed, the x is a
placeholder to give some name to the argument of the f function. A bounded
variable does not denote a value, but rather it acts as a placeholder which
allows to write a formula or a term.

lts meaning is controlled by the quantifier and not by the way variables are
interpreted, as in the integral x does not denote a real or complex number but
rather what is allowed to vary in the function.
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Variables are subject to a fundamental operation: substitution. Indeed, from a
formula A where the variable x appears free, we may obtain another formula,
A[t/x], where the term t substitutes x. For example, in the language of
arithmetic x can be substituted by 2 in x+0=x to obtain 2+0=2.

Substitution is fundamental in describing the inference rules governing
quantifiers. Bounded variables make substitution not immediately intuitive.

There are many equivalent ways to formalise the substitution operation: we

will use a method which is not the most immediate but it will become very
handy later in the course.
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Definition 8.9 (Substitution on terms). Fixed a signature and a term t on it

the substitution of the variable x: s with the term r: s, yielding t[r/x], is
defined by induction on the structure of the term t:

m if t =x then t[r/x]=r;
= if tis a variable, but t Z x, t[r/x]=t;
m if t=1(t1,...,tn) then t[r/x]=f(t1[r/x],..., talr/x]).

Note that the substitution operation is defined only when t and x share the
same type. Also, observe that substitution is a purely syntactical operation.
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Definition 8.10 (Substitution on formulae). Fixed a signature and a formula A

on it the substitution of the variable x: s with the term t: s, yielding A[t/x],
is defined by induction on the structure of the formula A:

m if A=T or A= 1 then A[t/x] = A;

m if A=r(ty,...,tn) then A[t/x] = r(t1[t/x],..., ta[t/x]);

= if A=-1B then A[t/x|=-B[t/x];

m if A=BAC, A=Bv C,or A=B> C then A[t/x]=B[t/x] A C[t/x],
Alt/x] = B[t/x]v C[t/x], or A[t/x] = B[t/x]> C[t/x], respectively;

m if A=Vy:r.B,or A=3y: r.B and y: r=x: s then A[t/x] = A

m if A=Vy:r.B,or A=3y:r.B, and y: r#x: s then

Alt/x|=Vz: r.(Blz/y])[t/x], or Alt/x]=3z: r.(B[z/y])[t/X]
respectively, where z: r g FV(B) UFV(t).
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The first clauses in the definition are obvious: we substitute the variable x
with the term t wherever it appears.

The last but one clause means that a bounded variable cannot be substituted:
this is simple to understand as it does not make sense to substitute x with 5
in the formula 3x: N.x2 = x3. Indeed, the formula is true because 12=1=13

but evidently it happens just for some values of x that the existential
quantifier is meant to single out.
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The last clause is a bit cryptic. It says that before performing the substitution
of x with t on the quantified body B, we should rename the quantified
variable y with a new variable z, which does not appear in B and t.

An example may clarify why this must be done: let A=3x: N.x=2(y+1)
and let t =2x. If we do not rename variables A[t/y| would give

dx: N.x=2(2x+1), that is, Ix: N.3x+2=0. We note the A holds whatever
value y may take, while A[t/y] is always false. The problem is that the x in t
and the one in A should be kept distinct—and we obtain this by renaming
before performing the substitution.
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The language of first-order logic is cumbersome. Despite we already use a
simplified notation, avoiding unneeded parentheses and hiding what can be
immediately inferred from the context, the formal nature of the language is
far from the reality of the mathematical practice.

On the contrary, the formal nature of the language is what allows it to be
analysed: we constantly use induction on the structure of the language
(terms, formulae, proofs) as our main proving instrument.

There is a way in between: we can construct a reasonable language by taking
a basic formal language and enriching it with syntactical sugar. This does not
change the formal nature of the language, but allows to make the language
much closer to the standard practice.

This practise takes place by allowing syntactical construction which are not
part of the formal language, but still can be directly translated into the formal
language. This construction is called definition and it has to follow a few
precise rules.
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Definition 8.11 (Function definition). Fixed a first-order language with
equality, let f be a new symbol. Whenever it holds that

Vx1:81....Yxp: Sp.Ay: so. FAVZ: s9.F[z/y]|2z=y ,

with FV(F) S {x1,..., X, y} then f: s; x--- x s, — sp can be used as an
additional function symbol since it can be removed from the language by
replacing an occurrence as follows:

Alf(t1,....,tn)/z]|=3z: so. AN(F[z/y])[t1/x1,-. ., tn/Xn] A
AVYw: so.(Flw/yD[t1/x1,....th/xn] 2 z=w

for any formula A. As far as a different syntax is non-ambiguous we allow it
in place of the standard functional notation, e.g., x+y in place of +(x,y).

The idea is that F specifies a functional property and f provides a name for it:
we can always remove f from the language using F instead.
1
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Definition 8.12 (Relation definition). Fixed a first-order language, let r be a
new symbol. Then r: sy x---x s, can be used as an additional relation symbol
standing for the formula R whenever FV(R) ={x,...,x,} as it can be

removed by substituting R[t1/x1,...,tn/xn| wherever r(ty,...,t,) occurs in any
formula A. Again, as far as the syntax is non-ambiguous we allow fancy

syntactical constructions.

(1196 )



l | l Definitions

Consider any first-order language with equality. Then we add a new form of
quantification, which is read as ‘uniquely exists': 3lx: s. A with x: s a variable
and A a formula, which stands for 3x: s. AAVz: s.A[z/x] 2 z=x with

z: s¢FV(A).
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Fixed any first-order language, the definition of theory follows the one already
given in the propositional case.

The same holds for the definition of proof and the other related terms except
that the collection of inference rules contains four new rules to deal with
quantifiers. They are illustrated in the next slides.

When the language contains equality we require the presence of additional
inference rules detailed in the next slides.

The modular composition of inference rules in natural deduction explains why
we chose this deduction system instead of one of the many others in the
literature: all the deduction systems in this course are obtained by adding or
deleting a few rules from the propositional or the first-order case.
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Following the previous notation, the rules for universal quantification are

A Vx:s.A
VI VE
Vx:s.A Alt/x]

provided that

m in VE, tis a term of type s;

m in VI, the variable x: s does not occur free in the proof of the premise,
which means that for every assumption G in the premise, x: s¢ FV(G).
This condition is sometimes referred to by saying that x: s is an

eigenvariable.

Note the similarity between the rules for V and A.
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Similarly, the rules for existential quantification are

8]

Alt/x] I dx:s.B A
=
dx:s.A A

JE

provided that
m in 3l, tis a term of type s;

m in JE, the variable x: s does not occur free in the proof of the second
premise, that is, for every assumption G in the second subproof except for
B, x: s¢g FV(G) and x ¢ FV(A). Again, x: s is said to be an
eigenvariable. Note how this inference rule discharges the assumption B.

Observe the similarity between the rules for 3 and v.
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Equality is a special relation and this is captured in a series of ad-hoc
inference rules. When the language has an equality relation for some sort s it

is subject to the following rules:

refl sym
Vx:s.x=x Vx:sVy:s.x=yDoy=x
trans
Vx:sVy:sVz:s.x=yANy=zDx=zZ
Alt/x| t=r
[£/x] subst
Alr/x]

fun

Vx1:S1....Yxp: sp. Az s9g.z=f(x1,...,Xn)

where t and r are terms of type s, A is some formula, and f: sy x---

is a function symbol of the language.

(201 )
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Usually, first-order logic is presented in a simplified way, avoiding the multi-
sorted language and using a reduced number of connectives. Although this
approach simplifies the initial presentation, it makes difficult to move to other
logical systems, e.g., intuitionistic logic and to deal with real mathematical
theories where multiple sorts are often present.

A good text which introduces the first-order language in a formal way is John
Bell and Moshé Machover, A Course in Mathematical Logic, North-Holland,
(1977), which covers our treatment of definitions, too.

Natural deduction is described in many textbooks. This lesson follows
Anne Sjerp Troelstra and Helmut Schwichtenberg, Basic Proof Theory, Cam-

bridge Tracts in Theoretical Computer Science 43,Cambridge University Press,
(1996).
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| | | Examples

Example 9.1.
ldh
Ix:s.P [~3x: 5. P]
1
=P
Vx:s.7P
(m3x:s.P)oVx:s.P il

-E
1

ml

Vi
|2

By applying the double-negation law (A =-=-1A) and posing P =-A we get
that (—3x: s.7A) D Vx: s. A
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Example 9.2.
[Vx:s.~P]?
5 VE
[P] BLig.
[3x: s.P]* 1 i
3E2
L o
—3dx:s.P

>|3
(Vx:s.mP)o—3dx:s.P

Putting P =-A and applying the double negation law one gets that
Vx:s.A=-3dx:s.7A, i.e., the V quantifier is redundant and it can be
expressed using negation and the existential quantifier.
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Example 9.3.

[3x: 5.~ P]! 1
1
aVx:s. P
(Ix: s.mP)>Vx:s.P il
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Example 9.4. To show that the restrictions on variables in the introduction

rule of the universal quantifier is essential, consider the following
counterexample.

Let x: se FV(P).
[PI’
Vx:s.P
PovVx:s.P
Vx:s.(PoVx:s.P) ’

Vi

Il

The instance of the VI rule on the top is invalid since x: s appear in the
assumptions which are undischarged in that moment of the proof.

In arithmetic, if P stands for ‘x is even’ the conclusion allows to prove by VE
that, since P[0/x]| is true, every natural number is even!
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Example 9.5. Another counterexample, showing why the restriction on
variables is essential in the elimination rule for the existential quantifier is the

following.
Again, let x: se FV(P).
PoG (PP
: 1 -
[3x: 5. P] Q 3
Q 1

(Ix:s.P)> Q@ ) _p
(P>Q)>((3x:5.P)> Q) ”
Vx:s.((P>Q)>((3x: 5.P)> Q))

Inside arithmetic, let @ = L so the conclusion reduces to
Vx:s.(mP>=3x:s.P). If P stands for ‘x is even’, since P[1/x] is false the

conclusion allows to deduce by VE that there is no even natural number!
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Example 9.6. The last counterexample justifies why the quantified variable

must not occur in the conclusion of the exists elimination rule.
Let x € FV(A):

[Ax: s.AY [A]?
A
Vx:s.A
(Ix:s.A)>(Vx:s.A)

JE2

Vi
1

ol

Inside arithmetic, let A be the formula stating that its argument is even.
Since there is at least an even number, 2 for example, it follows that every
number is even.
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Example 9.7. FVx.Bo A= B> Vx.A with x¢FV(B)

[Vx.B> A2 [BoVx.A' [B]?
1 VE SE
[B] B> A Vx. A
y oE A VE
vl o|?
Vx.A . BoA |
) v
BoVx.A 2 Vx.Bo A .
(Vx.BoA)> (B> Vx.A) il (BoVx.A)o (Vx.Bo A) il
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Example 9.8. - Vx.A> B=(3x.A)> B with x¢ FV(B)

[Vx.A> BJ? . [A]*

|
A2~ A-B A [(3x.A) 5 B2
1 SE ok
[3x. A B B

JE2 =k

B . Ao B |

-) Y

(Ix.A)> B , Vx.A> B 2

(Vx.A>B)>((3x.A)> B) - ((3Ix.A)>B) > (Vx.A> B) -
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Example 9.9. F 7Vx.AD Vx.7—A

[vx. Al
vE 5
A [—A]
1 s
- _||1 3
VX.A [V x. A
1
—12
Y
Vx.7—A

>|3
=71(Vx.A) D Vx. A

(212)
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Example 9.10. - AA (3x.B) 23x.AA B with x ¢ FV(A)

[AA3x.B]!
A /\E]_ [8]2
1 Al
[AA3x.B] ANB
N = 3l
dx.B dx.AAB o2
3
dx.AAB

Il

AA(Ix.B)>3x.ANB -
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Example 9.11. F3x.AA B> AA3dx. B with x¢ FV(A)

[An B]?
2 /\E2
[AA B] B
A =1 2% B 3l
X.
Al
[3x.AA B]! AA3x.B
3E?

AA3Ix.B
(Ix.AAB)>An3x.B il

Il
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Example 9.12. F AAVx.B=VYx.AA B with x ¢ FV(A)

[AAVx.B]! i [Vx.An B!
[AAVx.B]! vx.B °  [Vx.AAB]! ANB
=1 VE VE NE>
A B AAB B
Al NE1 Vi
ANB A vx.B
\v/
Vx.AA B ] AAVx.B " \
AN (¥x.B)SVX.ANB (Vx.AAB)> AAVx.B
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Example 9.13. + (Vx.AAB) > (Vx.A)A(Vx.B)

[Vx.An B! i [Vx.An B!
v
AAB AAB
/\E1
A B
v v
Vx.A Vx.B
(Vx.A)A(Vx.B)

(Vx.AAB)> (Vx.A)A(Vx.B) ~

VE

/\E2

Il
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Example 9.14. + (Vx.A)A(Vx.B) > Vx.AAB

[(Vx.A) A (Vx.B)] [(Vx.A) A (¥Yx.B)]
/\E1 /\E2
Vx.A Vx.B
VE VE
A B
Al
AANB
Vi
Vx.ANB

Il

(Vx.A)A(Yx.B)SVX.ANB
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Example 9.15. - (3x.AA B) o (Ix.A) A (3x.B)

[An B]? [An B]?
A /\E1 B /\E2
3l 3l
dx. A dx.B |
[3x.AA B]! (3x.A) A (3x. B) E:
3

(Ix.A) A (3x. B)
(3x.AAB)> (3x.A) A (3x.B) ~

1
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Example 9.16. F (Ix.Vy.A) > Vy.Ix. A

[Vy.Al?
A VE
3l
dx. A |
v
[Ax.Vy. A} Vy.3x.A "
3
Vy.dx. A

Il

(Ix.Vy.A) o Vy.Ax. A i}
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Exercises could be found in any standard textbook, see, e.g., Chapter 1 of John
Bell and Moshé Machover, A Course in Mathematical Logic, North-Holland,

(1977).

Some further exercises are available on the course web site.
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| | | Informal meaning

Fixed a signature (S; F; R) the intended interpretation of a sort s€ S is a
specific set; the intended interpretation of a function symbol is a function;
and the intended interpretation of a relation symbol is a relation.

The intended meaning of equality, =: s x s, when present in the language, is
the identity of the interpretation of its arguments.

Thus the intended meaning of a term is an element, which is identified via the
interpretation of functions and the evaluation of variables, in the universe, the
collection of all the sets denoted by sorts.
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In turn formulae stand for a truth value, either true or false, as in the
propositional case. And connectives have the intended propositional meaning

we already illustrated.

Atomic formulae, r(t1,...,t,), are true when the interpretation of the
argument (tg,...,t,) is in the relation denoted by r.

A formula is universally valid, that is Vx: s.A holds, when A is true in
whatever way we interpret x as an element of the set denoted by s.

Symmetrically, a formula is existentially valid, that is 3x: s. A holds, when
there is an element e in the set denoted by s such that interpreting x as e
makes A true.
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l | l Semantics

The standard semantics for first-order logic, due to Alfred Tarski, directly
formalises the intended interpretation.

Definition 10.1 (Z-structure). Let X =(S5;F,R) be a first-order signature.
Then a Z-structure M = (U; F ;) is composed by

= a finite collection U= {us}__c of non-empty sets, called the universe,
m 3 collection of functions over the universe

F ={gr: Uus X+ X Us — Usy | F: 5%+~ x5,—50€ F},
m 3 collection of relations over the universe
R={pr: Usy X+ XU | F: 53 % x5sp€R}.
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To make clear the relation between a signature £ and a X-structure, we use
the following notation:

m for each s€ S, [s] = us;
m for each f: sy x---xs,—>s9g€F, [f] =gr;
m for each r: sy x---xspeR, [r] =p,.

This is called the interpretation of the signature X in the XZ-structure.

(225 )
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Definition 10.2 (Interpretation of terms). Let £ =(S;F,R) be a signature and

let .4 be a X-structure with the notation as before. Also let v={vs}__. be a

family vs: {v|v:se V} — [s] of functions mapping the variables of type s
into the corresponding set [s].

Then a term t is interpreted according to the following inductive definition on
Its structure:

m if te V is a variable of type s then [t] =vs(t);
m if t=1(t1,...,tn) then [t] = [F1([t1],...,[tnl).
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Definition 10.3 (Interpretation of formulz). Let X=<(S;F,R) be a signature,
let 4 be a X-structure, and let v be an evaluation of variables with the

notation as before.
Then a formula A is interpreted according to the following inductive definition

on its structure:

m if A=T, [Al=1;if A=1, [A] =0;

m if A=r(t1,...,tn), [Al=1if ([t1],...,[tnl) € [r] and [A] =0 otherwise;

m if A=-B, A=BAC, A=Bv (C, A= B> C then [A] is defined as in the
truth-table semantics;

mif A=Vx:s.Bor A=3x: s.B, let { ={{s}.cs be an evaluation of
variables such that ¢, = v, for each a #s, and és(v) =vs(v) for each
V # X.
Then [Vx: s.B], =1 if, for all the possible ¢, [B]s =1, and
[Vx: s.B], =0 otherwise. Also [3x: s.B], =1 if there is a ¢ such that
[Ble =1, and [3x: s.B], =0 otherwise.
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We stipulate that when equality is in the language, [t = top] =1 exactly when

[t1] = [t2]. If one prefers [=s], the equality on the sort s represents the
diagonal relation {(x,x): x € [sl}.

It is worth remarking that equality is always typed: t; =t is a valid formula if
and only if t; and t» are terms of the same sort s, and the relation symbol =

should be read as a shorthand for =5, which stands for the diagonal relation
on the set denoted by the sort s.
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Example 10.4. Fix the signature of arithmetic and consider the standard

model of natural numbers. Then the formula S0+ 50 = S50 is interpreted in
[SO+ S50=550] =1 since

1. [SO+S0] = [+]([SO01,1S01) =+ ([S1(I01),[S1(I01))=+(1+0,1+0) =
1+1=2;

2. [550] = [S1(1S01) = [S1(IS1(101)) =1+ (1+0)=1+1=2;

3. [S0+50=550] =1 if and only if [SO+ 50] =[S550], that is if and only if
2=2.
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Example 10.5. Fix the signature of arithmetic and consider the standard

model of natural numbers. Consider [x = (550)y]. Applying the definition of
semantics, [x = (550)y] =1 if and only if [x] =2[y], that is if and only if x is
interpreted in a number which is two times the value y is interpreted in.

So, if x is interpreted in 6 and y in 3, the formula is true, while if x is
interpreted in 6 but y in 5, the formula is false.
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Example 10.6. Fix the signature of arithmetic and consider the standard

model of natural numbers. Consider [Ix.x = (550)x]. Applying the definition
of semantics, [dx.x = (550)x] =1 if and only if there is an assignment ¢ of
variables, identical to the one fixed in the model except for the value it

assigns to x, such that [x =(550)x] =1. But whenever {(x) =0,
[x = (550)x] =1 since both sides evaluate to 0 so the initial formula is true.

Consider [Vx.x =(550)x]. Applying the definition of semantics,

[Vx.x =(550)x] =1 if and only if for each assignment & of variables, identical
to the one fixed in the model except for the value it assigns to x, it holds that
[x =(550)x] =1. But when é(x) =1, [x=(550)x] =0 since the left side
evaluates to 1 and the right side to 2.
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Definition 10.7 (Validity). A formula A is valid or true in a Z-structure .4

together with an evaluation v of variables when [A] = 1.
A set of formulae is valid or true when each formula in the set is valid.
The pair (#,v) is a model for the theory T when it makes every formula in

T true.
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Proposition 10.8. Let x: s be a variable and t: s a term. Let v be an

evaluation and let ¢ coincide with v except that {s(x) = [tl,. Then, for each
term T and for each formula A, | T[t/x]]|, =[Tl¢ and |A[t/x]], = [Al.

Proof. (i)

By induction on the term T:
m if T=xthen |[T[t/x]], =1[tly=&s(x)=1TIk.
m if T#x and T:s'is a variable. Then

[TIt/x]], =0Tl =ve(T)=¢(T)=1TI¢ .

s if T=f(Ti,..., Tp) then

[ TTe/x10, = A ([ Tale/x],, - [ Talt /X1 )
= [f1([Talg, - [ Tale) = [T

where | T;[t/x]], =[T;]; by induction hypothesis. —
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— Proof. (ii)
By induction on the formula A, where yj,...,y, are distinct variables and
z1,...,Zn are distinct and new variables, to show that

[(Alz1/y1,---, 20/ ya]) [t/X]], = [[A[Zl/yb---»zn/)/n]ﬂg

Observe that the statement of the proposition follows when n=0.
m if A=T then

[(Alzr/y1s-- s za/ya]) [t/ X]],

= [Tl =1=1[Tl¢
= HA[ZI/Yl»---’Zn/Yn”]{ -

The case A= 1 is analogous.
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— Proof. (iii)
m if A=BA C then
(Alz1/y1,---,2n/yn]) [t/ X]] v

= [(Blzr/y1,--rzn/ya]) [t/X]], AM(Clz/y1,e oo 2n/ya]) [E/X1],,
= |Blz1/y1,---,2n/ yn] ¢ N chzl/)/Lu-»Zn/)/nH]f

= :A[Zl/ylw-’zn/yn]:f

The cases A=-B, A=Bv C and A= B> C are analogous.
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— Proof. (iv)
m if A=r(T1,..., Tm) then

[(Alz1/ 1,20/ ya]) [/X]],
=111 ([(Ta[z/y1s-- o za/ya]) [E/ X1, - [(Tmlz1/y1,-., 20/ yn]) [t/X]],)
= [r] ([[Tl[zl/yl ..... zn/yn]]]f ..... | Tim[z1/y1,-- zn/yn]]]é)
= |Alz1/y1,-, Zn/yn]]]g

where we used the already proven statement on terms. —
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— Proof. (v)
m if A=Vx: s.B then

since the x variable is not free in the evaluated formula.

(Alz1/y1-+22n/ Y0
:A[Zl/yl»---’zn/yn]:

Alz1/y1,..,2n/ ynl]

The case A=3x: s.B is analogous.
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| l | Soundness

— Proof. (vi)

mif A=Vy,i1: 5. B with y,.1 # x then, fixed z,.1 new,

[(Alz1/y1,--ozn/ya]) [t/X]],

= [Vzps1: 8" (Blzi/y1,-- - zne1/yn1]) [E/X]], -

Call o\ z the set of evaluations which are identical to o possibly except in
z, and call o[z — €] the evaluation which is identical to o except that it
maps z to e. Observe how & =v[x — [t],].

Then [(Alz1/y1,..-,2n/yn]) [t/x]], =1 if and only if
[(Blz1/y1,---»Zn+1/yn+1]) [t/x]],, =1 for every v e v\ zpiq.

Similarly [A[z1/y1,...,2n/yn]] =1 if and only if
[[B[21/y1,...,zn+1/yn+1]]]5, =1 for every &' €&\ zp41. —
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— Proof. (vii)
Let a: v\zp11 — ¢\ zpe1 and B ENzpr1 — v\ zpe1 be

impose [x — [t]y]

a(vl) =¢ [Zn+1 — V;-/(Zn+1)]

ﬁ(fl) =V [Zn+1 — flsl(zn+1)] forget [X — [[t]]v] .

Observe how

Bla(v')) :,5(5 [Zn+1 vas, (Zn+1)]) v[Zn+1 HV (Zn+1 ]

a(ﬁ(él)) =a (V [Zn+1 — 5,5/ (Zn+1)]) =X3 [Zn+1 — 6 Zn+1 ]

that is, @ e B are one the inverse of the other.
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| l | Soundness

— Proof. (viii)

Hence, for every v e v\ z,,1 and & €&\ 2,41,

[(Blz1/y1,-- s zne1/yne1)) [t/X]], = [Blz1/y1,-- s zne1 / yne1l] o
[(Blz1/y1,--szns1/yne1]) [t/ X)) peery = [ Blzr/y1s-- s Zne1/ynaal]

by induction hypothesis.

Therefore,

[(Alz1/y1,-- oz fyn)) [t/X]], = [Alz1/y1,- 020/ yal ] -

The case A=3y,,1: s'. B with y,.1 # x is completely analogous. []
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| l | Soundness

Theorem 10.9 (Soundness). In any model (.¢,v) of the theory T, which
makes true the assumptions in the set A, if t: A1 A then A is valid.

(241)



| l | Soundness

Proof. (i)

First, we observe that by Definition 10.3 the connectives act in the Boolean
algebra on {0,1} with 0<1, so the A, v, = operations are defined as in the

truth-table semantics.
The proof is by induction on the structure of the proof m: we prove that the
interpretation of the conclusion A is 1 when the interpretation of each G in

the finite set of assumption I is 1:
m if m is a proof by assumption then AeI and by hypothesis [A] = 1.
m if m is a proof by axiom then Ae T and by hypothesis [A] =1.

®m if 7 is an instance of the Law of Excluded Middle then A= Bv B and
[Al =[Bv-B] =[B]v-[B] =1 by definition of complement.

®m if 7 is an instance of T-introduction then A=T so [A] = 1. —
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— Proof. (ii)

®m if 7 is an instance of refl then A=Vx: s.x=x, so [A] =1 when
[x = x] =1 for each possible evaluation of the variable x in [s]. So if x
gets mapped to e€ [s], (e,e)€{(z,2): ze [sl}, so [x=x] =1 for any e.

m if 7 is an instance of sym then A=Vx:sVy:s.x=y>oy=x, so [A]l=1
when [x =y >y =x] =1 for each possible evaluation of the variables x
and y in [s]. So if x gets mapped to e, € [s] and y to e, € [s], if
(ex,ey) €{(z,2): z€ [s]} then e = ey, thus (e, ex) €{(z,2): z€ [sl},
thatis [x=yoy=x]=1. —
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— Proof. (iii)

m if 7 is an instance of trans then
A=Vx:sVy:sVz:s.x=yAy=z>x=2z s0 [Al =1 when
[x=yAy=z>x=2z] =1 for each possible evaluation of the variables x,
y, and z in [s]. So if x gets mapped to e € [s], y to e, € [s], and z in
ez € [sl, if (ex,ey)€{(z,2): z€[sl} and (ey,e;) € {(z,2): z€ [s]} then
ex = €, = €, and thus (ex,e;) €{(z,z): z€ [sl}, that is
[x=yAy=zDx=2z]=1.

m if ; is an instance of fun then
A=Vxy:81....YXp: sp.3z: s9.z=f(x1,...,Xn), so [Al =1 exactly when z
can be uniquely mapped into a value e, in [sp] so that
(e, [f1(€xq,---r6x,)) €4(2,2): z€ [s]}, which is evidently true for
ez =[fl(ex,---r€ex,). o
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— Proof. (iv)

if 77 is an instance of subst then by induction hypothesis [A[t/x]] =1 and
[t=r]=1, that is [t] = [r]. The conclusion follows by an easy induction
on the structure of the formula A.

if 7T is an instance of L-elimination then by induction hypothesis
O0=[L]=1. Thus [A] =1 since interpretation is a total function.

if 7 is an instance of A-introduction then A= B A C, and by induction
hypothesis twice [B] =1 and [C] =1. Thus 1=[B]A[C] = [A].

if  is an instance of Aj-elimination then by induction hypothesis for
some formula B, [AAB] =[Al A[B] =1. Thus by definition of A, [A] =1.

m if 1 is an instance of Ax-elimination then by induction hypothesis for some
formula B, [BAA]l =[B] AlAl =1. Thus by definition of A, [Al=1. —
() !



| l | Soundness

— Proof. (v)

m if 7 is an instance of vi-introduction then A= Bv C and by induction
hypothesis [B] =1. So by definition of v, 1 =[B] v [C] = [A].

m if 7 is an instance of vo-introduction then A= Bv C and by induction
hypothesis [C] =1. So by definition of v, 1 =[B] v [C] = [AI.

m if m is an instance of v-elimination then by induction hypothesis for some
formule Band C, [Bv(C]=[B]VvI[C]=1,if [Bl=1 then [A] =1, and if
[C] =1 then [A] =1. By definition of v either [B] =1, thus [A] =1, or
[C] =1, thus [A] =1. —
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— Proof. (vi)

®m if 1 is an instance of >-introduction then A= B > C for some formulae B
and C. By induction hypothesis if [B] =1 then [C] =1. So by definition
of o, [A] = 1.

m if 7 is an instance of >-elimination then for some formula B by induction
hypothesis twice [B> A] =1 and [B] =1. By definition of o, [A] =1.

m if 7 is an instance of —-introduction then A= B for some formula B. So
by induction hypothesis if [B] =1 then 0=[L]=1. Thus, ["B]=1 as
either [B] =0 or 0= 1.

m if 7 is an instance of —-elimination then A= 1 and by induction
hypothesis twice [B] =1 and [B] =1. So by definition of complement
0=1. Thus 0=[A] =1. —
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— Proof. (vii)

m if 7 is an instance of V-introduction then A=Vx: s.B, and by induction
hypothesis [B] =1 for every evaluation of variables which makes the
assumptions true. But since x: s does not appear free in any assumption,
[B] =1 for any way we may evaluate x in [s], that is [A] = 1.

= if 7 is an instance of V-elimination then A= B[t/x], and by induction

hypothesis [Vx: s.B] =1. So in particular when x evaluates to [t],
[Al = [B[t/x]] = 1. —
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— Proof. (viii)

m if 7 is an instance of 3-introduction then A=3x: s.B, and by induction
hypothesis [B[t/x]]| =1. So the evaluation of variables & which is the
same as Vs except for és(x) = [t] makes A valid.

m if 7 is an instance of 3-elimination then by induction hypothesis
[3x:s.B]=1 and if [B] =1 then A is valid. But [dx: s.B] =1 means
that there is way to evaluate x in [s] which makes B valid. Applying this
evaluation to the second induction hypothesis, we get that A is valid. [
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The interpretation of formulae as illustrated in this lesson has been formalised
first by Alfred Tarski. This is a classical definition and it can be found in most
textbooks.

The notion of model, that is a X-structure which satisfies all the axioms in
a theory, is analysed in depth in the branch of Logic called model theory. A
standard reference is Chen Chung Chang and Howard Jerome Keisler, Model
Theory, Studies in Logic and the Foundations of Mathematics, 3™ edition,
Elsevier, (1990). Nevertheless this text is quite dated and an introduction to
the basics of contemporary model theory can be found in Wilfrid Hodges, A
Shorter Model Theory, Cambridge University Press, (1997).

The soundness theorem is a classical result and its proof can be found in most
textbooks. Our treatment follows the already cited John Bell and Moshé
Machover, A Course in Mathematical Logic, North-Holland, (1977). It is
worth comparing the proof in this lesson with the propositional proof using
the truth-tables semantics.
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l | l Strategy

The completeness theorem is difficult, both technically and conceptually.

The strategy to prove it is indirect:
= Suppose A is true in any model satisfying I'. Then Tu{—=A} has no model.

m Every set of formulae A which is consistent, i.e., non allowing to derive a
contradiction, has a model. This is proved by constructing a sufficiently
big set ® containing A which has enough information to synthesise a
model for itself.

= So F'u{=A} must be non consistent. Which means that '+ A.

We need to prove each step. And we will start from the end.
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l | | Consistency

Definition 11.1 (Consistent set). Fixed a first-order signature, a set of
formulae T on it is consistent when it does not happen that ' A and T'F —A
for some formula A in the language.

Definition 11.2 (Maximal consistent set). Fixed a first-order signature, a set

of formulae I" on it is maximal consistent when it is consistent and for any
other set A on the same language such that I'c A, A is not consistent.

It should be stressed that being maximal consistent is a property which is not
invariant with respect to the language. For example, add a propositional
constant to the signature.
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| l | Consistency

Proposition 11.3. For any set of formulae T' and any formula A,

= TU{-A} is not consistent if and only if T = A;
= TU{A} is not consistent if and only if T F =A.

Proof.

If Tu{=A} is not consistent then Tu{-A}+ B and Tu{=A} =B for some
B. So, by implication introduction '+=-A> B and ' ="A> =B. Since
F(mA>B)A(mA>B) > A can be easily proved using the double negation
law, see Example 3.17, it follows that I' - A.

Conversely T U {=A} - A by hypothesis, and T U{=A} - = A by the assumption
rule, so Tu{=A} is not consistent.

By the double negation law, T'U{A} is not consistent if and only if [ U {=-A}
is not consistent, thus the second part follows from the first one. ]
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The completeness theorem says: if a formula A is true in every model of the
theory I' then there is a proof of A from I.

Now, by Proposition 11.3 it suffices to prove that: if a formula A is true in
every model of the theory T then Tu{=A} is not consistent.

We note that any super set of a non consistent set of formulz is non
consistent, too. The idea we want to pursue is to construct a sufficiently rich
super set of any consistent set that allows to build a model.
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Proposition 11.4. A set I' is maximal consistent if and only if it is consistent
and for every formula A either AT or mA€T.

Proof.

Suppose T' is maximal consistent. Then it is consistent by definition. Also,
suppose there is A such that A¢T and “A¢T, then TU{A} and Tu {-A}
must be both not consistent by definition. Thus I'=A and I'+ A by
Proposition 11.3, making I' not consistent, which is a contradiction.
Conversely, suppose I'c A. Then there is A€ A such that A¢TI'. So by
hypothesis "Ael'cA. Thus, AFA and A+ —A by assumption. []

Corollary 11.5. If T is maximal consistent and T'+ A then AeT.

Proof.
Otherwise A €T thus I' = A making I' not consistent. []
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The notion of maximal consistent set resembles the algebraic notion of ideal.

Proposition 11.6. Let I' be a maximal consistent set. Then the following
facts hold:

1. Tel'; L&T;

2. if A=r(t1,...,tn) then either AeT or "A€T,
3. if A€l then AeT’;
4. if ANBEeT then AeT and BeT; if 7(AAB) €T then "A€eTl or "BeT;
5. if AVBeT then AeT or BeT; if 7(Av B) €T then 7A€l and "BeT,
6. if ADBeT then ~A€eT or BeT; if 7\(A>B) el then AeT and ~BEeT,
7. ifVx:s.A€eT then A[t/x]|eT for each term t: s;
8. if 7(3x: s.A) €T then —A[t/x] €T for each term t: s.

a2
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| | | Closure of maximal consistent sets

Proof.
Since I' = T by truth introduction, T eI'. Hence L ¢T since T is equivalent

to L. The condition on atomic formulae follows from Proposition 11.4.

If ANBeT then ' A and T'+ B by conjunction elimination. So, by
Corollary 11.5 AeT and BeT. Moreover, =(Av B)=-AA-B and
=(A> B)=AA B as we proved before in the course, thus the required
results follows.

If AvBeT and A¢T it must be "AeT. Since HF—-AA(AV B)> B, it follows
'k B, i.e., BeT. Moreover =(AA B)=-AvV =B, showing the stated result.

If AoBeTl and 7"A¢T it must be AeTl’. SoT+B, i.e., BeT. Also
I'—-2ADA soif "—AeTl, AeTl, too.

If Vx:s.A€eT, then I' A[t/x] for any term t: s by the forall elimination rule.
Thus A[t/x]eT.
Also, since 73x: s.A=Vx: s.7A, the stated result follows. []
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Proposition 11.7. Let I' be a maximal consistent set in a language with
equality. Then the following facts hold:

1. t=teTl for all terms t;

2. ift=rel then alsor=teT;

3. ift=rel and r=u€el then alsot=uel;
4

. ifti=ri el for each 1<i<n then f(t1,...,tn) =f(r,...,rn) €T for every
f:s1x:--x5s,—5sg in the language;

5. ifti=ri €l for each 1<i<n then p(ti,...,tn) 2 p(r1,...,rm) €T for every
p: sy x---%xSp Iin the language.

Proof.
Since all these equalities can be deduced from I' applying the inference rules
in an elementary way, by Corollary 11.5 the results follow. []
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| | | Closure of maximal consistent sets

Two evident conditions are lacking from Proposition 11.6:
m if 3x: s.A€eT then A[t/x] €T for some term t: s;
m if 7(Vx:s.A)eT then =A[t/x] €T for some term t: s.

But the second condition is the first one since —(Vx: s.A) =3x: s.7A.
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The first condition is lacking simply because it does not hold for any maximal
consistent set. Take the language with just equality and let U={u,v}.
Consider the evaluation o which maps every variable in u. Call ¥ the
collection of all true formulae on the model U under the evaluation o.

Evidently, ¥ is consistent since it has a model: if a theory T has a model and
it is inconsistent, it would make true both a formula and its negation by the
Soundness Theorem 10.9, impossible.

Moreover, for any formula A either it is true or false in that particular model,
so either Ae ¥ or "Ae ¥, making ¥ maximal consistent.

But 3x.-x =y, with x and y distinct variables, is true while (=x = y)[t/x] is
false for any term t because the only terms are variables and all of them are
interpreted into the same element wv.
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Definition 11.8 (Henkin set). A set of formulae T in a fixed language is a
Henkin set when T' is maximal consistent in that language and

m if 3x: s.A€eT then A[t/x] €T for some term t: s;
m if 7(Vx:s.A)eT then =A[t/x] €T for some term t: s.

Thus, Henkin sets form a proper subclass of maximal consistent sets, and they
are the right objects to look at as they contain enough information to
construct a model for themselves.
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Lemma 11.9. IfT is a Henkin set then it has a model (. ,0).

Proof. (i)

Let T be the set of terms in the language. Define t ~r when t =5 r €T (if the
signature does not contain equality on the sort s, let ~ be =).

By the properties of Henkin sets, see Proposition 11.7, ~ is an equivalence
relation, so it induces a partition on T.

Thus we define U= {{[t]~: t: se T}} ., grouping partitions by sort.

For each function symbol f: sy x---xs,— sg in Z, pose

[F1([t1]~,-.. [tn]~) = [f(t1,.... tn)]~ .

Note how this definition is licit, since the class [f(t1,...,ty)]~ does not
depend on the choice of the representatives [t1]-~, ..., [tn]~ by a direct
application of Proposition 11.7. —
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— Proof. (ii)

For each relation symbol p: sy x:--s, in Z, pose

pl ={([t1]~,---,[tn]~) : P(t1,....tn) €T} .

Again, this definition is licit since it does not depend on the choice of the
representatives [t1]~, ..., [tn]~ by Proposition 11.7.

So let .4 be the Z-structure having U as its universe, and interpreting
function symbols and relation symbols as above.

Define o, the evaluation of variables as o(x: s) =[x]-.

Note how this model resembles the canonical model of propositional logic. —
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l | | Canonical model

— Proof. (iii)
By induction on the structure of terms we show that [t] = [t]~:
m if t=x:sis avariable, [t] =0(x: s)=[t]-~;
m if t=1(ty,...,tn), [t] = [f1([t1],...,[tx]), and by induction hypothesis
[t] = [F1([t1)~, ..., [tn]~) = [F(t1,..., tn)]~ = [t]~. —
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— Proof. (iv)

By induction on the structure of formulae we show that, when AeT’, [A] =1,
and when “AeT, [A] =0.

m if A=T then A€l by Proposition 11.6, and [A] =1 by semantics.
m if A= 1, then 7A€l by Proposition 11.6, and [A] =0 by semantics.

m if A=p(t1,...,tn), [Al =1 if and only if ([t1],...[ts]) € [p], that is
([t1]~,.--,[tn]~) € [p], thus p(t1,...,tn) €T by definition of [p], i.e., when
AeTl. When nA€T, being I' maximal consistent A¢T’, so [A] =0.

m if A=t=r, [Al =1 exactly when [t]. =][r]~, so t =reT by definition ~.
Again, if 7t =reT, being I' maximal consistent t=r ¢TI, and [A] =0.

m if A=-B, [A] =1 exactly when [B] =0, and by induction hypothesis this
happens exactly when B¢T'. Conversely, if A¢T" then BeT being I’
maximal consistent, so by induction hypothesis [B] =1, i.e., [A]=0. —
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— Proof. (v)

m if A=BAC, [Al=1if and only if [B] =1 and [C] =1, but by induction
hypothesis this happens exactly when BeT and CeTI'. So, when A€T,
by Proposition 11.6, BeT and C €T, thus [A] =1. On the contrary,
when = A €T, by Proposition 11.6 "B €T or =C eI, and being I' maximal
consistent either B¢gT or C¢TI'. In both cases, [A] #1, so [A] =0.

m if A=Bv (C, [Al=1if and only if [B] =1 or [C] =1, but by induction
hypothesis this happens exactly when BeT or CeTI. So, when A€T, by
Proposition 11.6 BeT or CeT, thus [A] =1. On the contrary, when
—AeT, by Proposition 11.6 "B el and =C €T, and being I' maximal
consistent B¢T and C¢T'. Hence [A] #1, so [A] =0. s
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— Proof. (vi)

m if A=Bo C, [Al=1if and only if [B] =0 or [C] =1, but by induction
hypothesis this happens exactly when =B el or CeI'. So, when A€T,
by Proposition 11.6 "BeTI or CeT, thus [A] =1. On the contrary, when
—AeT, by Proposition 11.6 BeTI and =C €T, and being I' maximal
consistent BeT and C¢T'. Hence [A] #1, so [A] =0.

m if A=Vx: s.B, [A]l =1 exactly when in whatever way x: s is interpreted
in U, [B] =1. Since U is composed by equivalence classes of terms, x: s
is evaluated in [t: s]~. Thus [B[t/x]| =1 in the o evaluation of variables.
By Proposition 11.6 when AeT, B[t/x] €T for every term t: s, so by
induction hypothesis |B[t/x]| =1 for any term t: s, thus [A] = 1.
Furthermore, when =A €T, being I' a Henkin set there is a term t: s such
that = B[t/x] €T.

Then, by induction hypothesis |B[t/x]| =0, thus [A] =0. —
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— Proof. (vii)

m if A=3x: s.B, [A] =1 exactly when there is a way to interpret x: s in U
such that [B] = 1. By definition of U, x: s is interpreted in [t: s]~. Thus
|B[t/x]| =1 in the o evaluation of variables. Being ' a Henkin set, when
A€eT, B[t/x]eT for some term t: s, so by induction hypothesis
|B[t/x]]| =1, thus [A] =1.

Also, when =A€T, then = B[t/x]| €T for every t: s by Proposition 11.6,
so [B[t/x]| =0 by induction hypothesis, thus [A] =0.

Summarising, we have constructed a Z-structure .# and an evaluation of
variables o such that every formula A€T is true in (,0). []

Corollary 11.10. The .4 model has a universe whose size does not exceed the
one of the collection of all terms.
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The first completeness proof for first-order logic has been developed by Kurt

Godel. The proof presented in this lesson uses the techniques introduced by
Leon Henkin.

Our treatment follows John Bell and Moshé Machover, A Course in Mathe-
matical Logic, North-Holland, (1977).
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| | | Existence of Henkin sets

Proposition 12.1. Let T be a consistent set of formulee on the signature .

Then there is a set of formulae A on a signature X' extending X with
constants such that A is a Henkin set and I' C A.

Proof. (i)
Warning: we anticipate some set theory here!

Let A be the cardinality of the collection of terms on XZ. Let

C=U{c:sli<A}
seS

be a collection of symbols for constants such that no ¢’: s appears in . Let
>’ be X extended with the set of constants in C.

The collection of all formulae over X' is a set whose cardinality is A as easily
follows by cardinal arithmetic. So, this set can be well-ordered as the sequence
S ={S;: i< A} by means of an equivalent of the Axiom of Choice. —
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| | | Existence of Henkin sets

Although the concepts will be made precise later in the course, some
intuitions are useful to understand what we are doing:

B 3 cardinal is a measure of the size of a set;
m every cardinal is an ordinal,

®m an ordinal is an extension and abstraction over the structure of naturals
to deal with infinity;

m one can add and multiply cardinals;
m every ordinal is well-ordered by its own definition, so also a cardinal is so;

= the Axiom of Choice tells that every set has a cardinality, thus it can be
enumerated by the elements of the (unique) associated cardinal.
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| | | Existence of Henkin sets

An ordinal a is an element of the order @ defined as
m 0e@ and 0 < n for every ne 0;

m if ne® then n+1€@ and n<n+1, that is @ is closed under the
successor operator;

m similarly, @ is closed under the sup operator applied on subsets of ©.

The result is that every natural number is an ordinal; but also w, the
collection of all natural numbers is an ordinal; thus w+1, w+2, w+3, ... are
ordinals; then w + w is an ordinal; and so on.

Thinking to this structure as inductively generated by three steps (zero,
successor, limit), we get an induction principle, called transfinite induction.
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| | | Existence of Henkin sets

— Proof. (ii)

By transfinite induction on A we define for every i < A a set I'; of formulae
such that

1. I'; T for every j<i;
2. T'; is consistent;

3. no more than max(/,w) constants in C occur in T;.
We pose I'g =T.
Condition (1) holds vacuously;
(2) holds by hypothesis;
(3) holds since no constant in C appears in T' by definition. _—
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| | | Existence of Henkin sets

— Proof. (iii)
If i<Ais a limit ordinal, we put I'; =U;<; T;.

By definition condition (1) holds.

If I'; is not consistent, so I'j - A and I'; - = A, then these proofs use only a
finite FIA cT';. Let my =min{j: yeI};}, and let m=max{m,: ye FI.A}.

Since necessarily my < i for every y € Ff‘, m < i and Ff\ <I'yy, thus I';yy H A and
I'm A, contradicting the induction hypothesis by which T'j, is consistent.
So T'; must be consistent, proving (2).

Finally, since (3) holds for any j < i, because of (1) it must hold also for i by
simple cardinal arithmetic, proving (3). —
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| | | Existence of Henkin sets

— Proof. (iv)
If i <A is a successor ordinal say i = k+ 1, we distinguish three cases:

= |f T U{Sk} is not consistent then I'; =Ty, and the three conditions
clearly hold by induction hypothesis.

= If T u{Sk} is consistent and Si is not of the form 3x: s.A or =¥x: s. A
then T'; =T, U{Sk}. Evidently, the three conditions hold by induction
hypothesis and by construction of I'; since we are not adding more than a
finite number of new constants, those appearing in 5. —
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— Proof. (v)

= |f T u{Sk} is consistent and Sy has the form 3x: s.A or =Vx: s. A then
by (3) there is c: s in C not occurring in T') and S.
So, Tj =T, U{Sk, Blc/x]} with B=A when S, =3x:s.A, and B=-A
when S5, = Vx: s. A.

Clearly, (1) and (3) hold by construction and induction hypothesis,
because we are adding no more than a finite number of new constants,
those in S, and possibly c.

Suppose T'; not consistent. Then [, U{Sk}F -B[c/x]. Since c is a new
constant, it could be regarded as a free variable, so 'y U{Sk} +Vx: s.7B
by V-introduction. If Sy =3x:s.A, B=A, then [, U{Sk}F L by

F-elimination. If S =-Vx:s. A, B=-A, then I'y U{Sk} + L since =B is
equivalent to A. In both cases, I', U{Sk} is not consistent, contradicting
the assumption. Thus, I'; must be consistent. —
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| | | Existence of Henkin sets

— Proof. (vi)
Let A=T). By (1) T'=TgcA, and by (2) A is consistent.

Let A be a formula on X’ such that A¢ A. Since A= S, for some k<A, T'j41
must not contain A, which means by construction of {I';}; that I'y U {A} is not
consistent, thus also AU {A} is not consistent.

Therefore, A is maximal consistent.

If 3x: s.A€ A then Ix: s.A= 5y for some k <, so I'k,1 contains A[c/x]| for
some new constant c: s.

Similarly, if "Vx:s.A€ A then =Vx:s.A= S5, for some k<A, so I'i4q
contains 1A[c/x]| for some new constant c: s.

Thus, A is a Henkin set. ]
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Theorem 12.2. If T is a consistent set of formulze on a signature ~ then T is

true on a model whose universe has a cardinality less or equal than the
cardinality of the formulze in the language on X.

Proof.
By Proposition 12.1 T" can be extended to a Henkin set A. By Lemma 11.9 A,
and thus I', has a model satisfying the cardinality constraints. []

Theorem 12.3 (Completeness). If every model of T makes A true then T A.

Proof.
Clearly, if every model of I' makes A true then I'u{=A} has no model.

Thus T'u{-A} is not consistent by Theorem 12.2.
Then, by Proposition 11.3 T'+ A. []
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The first completeness proof for first-order logic has been given by Kurt Godel.

The proof presented in this lesson follows the techniques introduced by Leon
Henkin.

Our treatment follows John Bell and Moshé Machover, A Course in Mathe-
matical Logic, North-Holland, (1977).

Godel’s proof was his doctoral dissertation and it is based on an obscure
formalism. Henkin's proof is a substantial reorganisation of Goédel's proof,
emphasising that it involves the construction of a model.
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l | | Compactness

Theorem 13.1 (Compactness). For any set of formulae T, if every finite subset
of I' has a model then I' has a model too.

Proof.

By hypothesis, applying the Soundness Theorem 10.9 every finite subset of T’
is consistent: if A<, I is not consistent, thus AF A, A=A then [A] =1,
[ A] =1 so [A] =0, hence A has no model, getting a contradiction.

Suppose T" not consistent: then I' A and I' = —A. Since a finite number of

assumptions occur in each proof, there are two finite subsets such that I'i1 F A
and I'> - —A. Consider I'yy =T UI's. It is evidently finite and not consistent

leading to a contradiction. Thus I' must be consistent.

So I has a model by Theorem 12.2. ]
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Proposition 13.2. Fix a language with a single sort. If a set of sentences S
has arbitrarily large finite models then it has an infinite model.

Proof.
Define 7, =3x1,...,Xp. A1<i<j<nXi # Xj. Clearly, 7, holds in any model whose
universe has at least n distinct elements.

Consider a finite subset F < Su{z,: neN}.

Since F is finite, m=max{n: 7, € F} is defined (pose m=0 if F contains no
Tp). Thus, since S has arbitrarily large finite models by hypothesis, F has a
finite model larger than m.

Hence, Su{t,: neN} has a model .# by Theorem 13.1. Since 7, must hold
for every ne N, .4 has more than n distinct elements in its universe for every
neN, thus it must be infinite.

Observe how .# is a model of S to conclude. []
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The signature of real numbers has a single sort, the 0 constant, the plus and
times operations, and equality and < as relations. The theory R of real
numbers is the collection of true sentences (formulae with no free variables)
on the model whose sort is the reals, and whose symbols are interpreted as
one expects.

Example 13.3. There is a model of R in which infinity is a number.

Let us extend the signature with the new constant oo.
Let T ={n<oo: neN} and consider the theory RUT.

If FSRUT is finite then the maximum m such that either (m<oo) € F or

m =0 is defined. Thus interpreting co in m+1 in the standard model of reals
validates F.

Hence, by the Compactenss Theorem 13.1 RuU T has a model, and co must be
interpreted in an element bigger than any natural number. The same model
makes true R so it is an alternative model of reals with an infinite element.
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Example 13.4. There is a model of reals with infinitesimals.

Let us extend the signature with the new constant k.
Let T={0<k<-1-: neN}.

n+1 -

If FC RUT is finite, there is the maximum m for which either

(0O<k< L) € F or m=0. Then interpreting k in —, F is valid in the

m+1 m+2"
standard model of reals.

Hence, by the Compactenss Theorem 13.1 RuU T has a model, and k has to
be an infinitesimal. The same model validates R, so it is an alternative model
of reals with an infinitesimal element.
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| l | Lowenheim-Skolem

Let Xo = |NJ|. A classical result in Model Theory is

Theorem 13.5 (Downward Léwenheim-Skolem). Let T be a theory on the

signature X with just one sort. If T has an infinite model of cardinality
a = |X| then T has a model of cardinality max (|Z|,Rg).

Proof.
Extend the signature X by adding {k;: 0 <i<max(|Z|,Rg)} new constants.

Let T' = TU{k/#kj: I?f_/}

By the Completeness Theorem 12.2 T’ has a model of cardinality less or
equal than max(Ro, |Z]).

Conversely, since all the k; must be distinct, every model of T’ must have a
cardinality greater of equal than max(Xg,|Z|). ]
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Corollary 13.6. Any consistent theory T (on a single sort) such that | T|<Xg
has a model whose universe has cardinality at most Xg.

Proof.
Being consistent T has a model. Either T has an infinite model or it does
not. In the latter case, the result is obtained.

In the former case, by Theorem 13.5 the result follows since the language can
be limited to X using only the symbols appearing in the theory T, which
form a countable set by hypothesis. []

Note how the Completeness Theorem 12.2 allows to prove a weaker result,
since the model has the cardinality of the formulae on the language, which can
be bigger than Xg if the signature contains more than Xy symbols.
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Theorem 13.7 (Upward Léwenheim-Skolem). Let T be a theory on the

signature T with just one sort. If T has a model of cardinality a« =Xq then T
has a model of any cardinality f = max(a,|Z|).

Proof.

Fix any = max(a,|X|) and extend the signature X by adding § new
constants k;, i<f. Let T'=T uiki#kj: i<j<p}. Clearly, T"is a theory on
the extended signature.

Let F < T' be any finite subset of T'. Since it contains only a finite number
of axioms of the form k; # k;, F has a model because the model for T being
infinite allows to validate the axioms k; # k;, and clearly it makes true the
other axioms in F.

Thus by Compactness T’ has a model .4 and it must contain at least
distinct elements. But by Theorem 13.5 there is model having exactly
cardinality B, using the cardinality of the extended X as an upper bound. []
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Theorem 13.8 (Léwenheim-Skolem). Let T be a theory on the signature X
with just one sort. If T has a model of cardinality @ =Xy then T has a model
of each cardinality = max(|Z],RXo).

Proof.
Immediate by combining the upward and downward Léwenheim-Skolem

theorems. []

Corollary 13.9. If T is a consistent theory on the signature £ with just one
sort then either T has a finite model or it has a model for any cardinality
greater than max(|X],Rp).
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| l | Discussion

The Compactness Theorem 13.1 is a consequence of the completeness result.
One of its consequences is Proposition 13.2.

Thus, it is impossible to write a first-order theory which captures the notion
of having finite models only. Indeed, any theory T either has finite models
with a bound on their cardinality, or it has at least an infinite model.

Hence, the compactness result reveals a first, intrinsic limit to what can be
expressed in the first-order language.
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| l | Discussion

The Lowenheim-Skolem Theorems provide other limitations to what can be
expressed in a first-order theory.

For example, Corollary 13.6 says that every ‘effective’ and consistent theory
has a model whose cardinality is either finite or Xg. Here, by ‘effective’ we
mean really writable, thus at least, with finite or denumerable symbols.

As a concrete instance we get that the theory of real numbers as developed in
any textbook of mathematical analysis, which can be formally rendered as a
first-order theory, has a countable model, which is much smaller than R.

Saying the same thing in another, provocative way, Mathematical Analysis
does not speak about real (or complex) numbers. It speaks about an infinite
set which is much smaller than R or C. So small that it disregards most of the
reals (or complex numbers), which play no role in Analysis.

[Analysts are greatly disturbed by this sentence but nevertheless it is true
when we regard Mathematical Analysis as a formal theory!]
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| l | Discussion

Of course, we are investigating formal first-order theories. In this respect, the
Léwenheim-Skolem Theorems say that not only every ‘effective’ theory has a
finite or countable model, but if it has an infinite model, it has a model of any
infinite cardinality.

This has a deep impact. Consider for example a formal and effective theory of
arithmetic. Natural numbers form an obvious model and the theory is
intuitively consistent.

So, by Corollary 13.9 it has models of any infinite cardinality.

In other words, without even writing the formal theory, as far as we
require it to be effective we know that it does not capture only the model of
natural numbers. It must have models for each cardinal above NXy.
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| l | Comparing models

Let ~ be a signature with just one sort and let T be a theory.
We have seen that T may have more than one model.

This means that we have a way to distinguish models. From the outside of a
theory this is obvious. But, from the inside?

If DT and DT are both models for T and they are distinct, we would like to find
a formula 6 in the language on Z which holds in 901 but is false in I1.

The question is: can we always find such a formula?
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Completeness is a property of a formal system which says that whatever is
true in any model, it can be derived.

But there is an alternative notion of completeness which says

Definition 13.10 (Completeness). A theory T on the signature X is complete

if for every sentence ¢ on the same language, either ¢ is true in any model of
T, or ¢ is true in any model of T.

Here, by ‘sentence’ we mean a first-order formula with no free variables.
Hence it does not depend on the interpretation of variables, which simplifies
the analysis.

Also we will write T E ¢ to say that every model of T makes ¢ true.

So we have another question: are the two notions of completeness equivalent?
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Example 13.11. The simplest example of complete theory is

Th(9) = {¢: ¢ is a true sentence in Mt}

with 9)1 any model on the signature X.

The key in the example is that since we are working in classical logic, every
sentence is either true or false in a model. So given two models 9t and 91, we
can compare them by comparing Th(9t) and Th(91). When these theories are
different we know the models are different too. And there is at least one
sentence § € Th(91) N Th(M1), which can be used to distinguish the models.

But, when they are equal?
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Actually, the answer is simple: if a model 91 is infinite then the theory Th(9t)
must have models of any infinite cardinality beyond the size of the language

by Theorem 13.7.

If we take one of those models, call it 91, whose size is greater than the
cardinality of 2t we know that these models are distinct.

Consider Th(91): since D1 validates each formula in 901, it makes true Th(),
that is for every ¢ € Th(9M) it holds that ¢ € Th().

Since every sentence ¢ in the language on X is either in Th(90) or
—¢p € Th(9N) then Th(DR) = Th(N).

So, we may have different models which are indistinguishable by what we can
express in the language.

Our counterexample shows that the models are distinguishable because they
have different cardinality, a fact that cannot be expressed inside a theory.
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The notion of compactness is fundamental in model theory since it allows to
construct models of an infinite theory by considering only finite subsets of
formulae. This fact turns out to be critical in many situations. A good starting
reference is Wilfrid Hodges, A Shorter Model Theory, Cambridge University
Press, (1997).

The exposition of Léwenheim-Skolem theorems follows John Bell and Moshé
Machover, A Course in Mathematical Logic, North-Holland, (1977) omitting
the parts on elementary equivalence of models.

A comprehensive text on model theory which is approachable and contains
many examples of the application of logic to other fields, is David Marker,
Model Theory: An Introduction, Graduate Texts in Mathematics 217, Springer
(2002).
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ll' Language

The language of the theory of sets is the classical first order language with
equality plus one additional symbol: €. The corresponding signature is

({S};@;{=: SxS,e: Sx S}

Since there is a unique sort we omit sort specifications from the syntax.

The intended meaning is that S stands for the collection of all possible sets
while € denotes membership.
Note how there are no objects apart sets in the universe.
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ll' Language

It is important to distinguish between formal set theory, which is the first
order theory we are going to introduce, and informal set theory, which is used
to describe the formal theory.

Although the former intends to model the latter, the latter is assumed in the
definition of the former. With this distinction in mind we cannot say that set
theory is constructed out of itself.

As we have already seen formal set theory admits a countable model, so the
collection of all sets seen ‘from the outside’ may be assumed to have the
same cardinality as the natural numbers. But looking ‘from the inside’, the
collection of all sets is much bigger.

This is just one of the various bizarre phenomena we should expect when
dealing with the formal theory.
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ll' Language

The language of sets is very poor so it is enriched via a number of definitions:
® x not equal to y, x #y abbreviates = x =y;
m x not in y, x¢y abbreviates = x € y;
m x is a subset of y, xSy abbreviates Vz.ze x> zey;
m there is x in y such that A, dx € y. A abbreviates Ix.x € y A A;
m for all x in y, A, Vxey.A abbreviates Vx.x ey D A;
m for some subset x of y, A, Ix S y.A abbreviates Ix.x S y A A;

m for every subset x of y, A, VxS y.A abbreviates Vx.xcy > A.
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| I l Classes and sets

Informally a set is a collection of elements. Although this is very intuitive and
helpful, the structure of a set is much more subtle and delicate.

We stipulate that collections of elements in the universe of set theory are
called classes. This is part of the intended meaning of set theory. Sets in the
intended meaning are classes which behave in a regular way.

As we will see there are classes which cannot be sets, while all sets are also

classes in the intended meaning. Each formal set has an extension, which is
the class representing the collection of its elements in the intended model of
the theory. But a set is not its extension, although we would like to say the
converse, that is to every extension corresponds a unique set.

As we will see sets have properties not shared by classes, e.g., sets should
have a cardinality while proper classes cannot. These properties are what
identify the structure of sets, and they are what we are allowed to use when
using sets in our proofs.
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| l | Paradoxes

A very simple theorem we will be able to derive in set theory is: for any
formula A such that x ¢ FV(A),

(Ix.Vy.((yex)=A) o (Tx.Vy.((yex) = A)) .

It means that when there is a set x whose members are exactly those making
the formula A true then the set x is uniquely identified.
In other words the property A defines the set x.

It is tempting to carry on this result by thinking that any formula A defines a
set. This amounts to assume

Ix.Vy.((y e x)=A)

as an axiom schema. This schema is called the unrestricted Comprehension
Axiom and it has been used to define sets by Gottlob Frege.
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Unfortunately the unrestricted Comprehension Axiom is untenable as shown
by Russell’s paradox: take A=y ¢y. Then by the axiom we have
dx.Vy.yex =y ¢y, and specialising we obtain Ix.x € x = x ¢ x, allowing to
derive L, i.e., showing that the theory of sets is not consistent.

It is important to understand the key point: the collection of sets making A
true is a class. To be a set it has to show a ‘reasonable’ behaviour. In logical
terms a minimal reasonable behaviour prevents a contradiction.
Thus, what the Russell's paradox tells is

m there are classes which are not sets;

m every formula uniquely identifies a class: the elements which make it true.
This class may be proper, that is not a set.
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| | | Paradoxes

Sets are a delicate concept. When we fix a universe which is a set and we do
mathematics within that universe, we do not see the problems sets pose. But
when we consider the totality of sets, things change.

Consider the following deduction:
1. Let X={x: xexo> Y}

2. Thus, X € X is equivalent to Xe X2 Y

3. Then, from Xe X2 (X e X>Y) one gets the equivalent
XeXAXeXDY,thatis XeX2Y

4. Hence, from (X € X2 Y)> X e X and the previous step, one infers X € X
5. Therefore, Y holds by steps 2 and 4

Since Y can be any formula, fix Y = L and set theory becomes not consistent.
This is known as Curry’s paradox, and step 2 is the wrong part since it
assumes X to be a set.
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| l | Paradoxes

Sets and properties as already seen are linked but different. Consider for
example the hyper-game paradox. Let G be the collection of all games
which can be played by two players making successive alternate moves. A
game in G is said to be finite if in whatever way the players move, the game
terminates after a finite number of steps. When a game is not finite it is said
to be infinite.

Take tic-tac-toe: it must end at most after 9 moves so it is a finite game.

Define the super-game as the game in which the first player chooses a game
g € G, and then the second player starts playing g.

Is the super-game finite?
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| | | Paradoxes

Since the first player may choose an infinite game, the super-game is clearly
infinite. So define a variant: the hyper-game is played like the super-game,
but the first player must choose a finite game.

Since the first player chooses a finite game g then the hyper-game takes one
move more than the moves to conclude g. But the moves to conclude g are
always finite so the hyper-game is finite.

Hence, the first player may choose the hyper-game as the game to play and
the second player may do the same. Forever. So the hyper-game is infinite.
Thus the first player cannot choose the hyper-game being infinite, and thus
the hyper-game always terminate in a finite number of steps.

The problem here is that the collection of all finite games is a class and we
define the hyper-game as a particular element which depends on the whole
class. This is something we want to do but, as the paradox shows, it cannot
be freely done with classes: a certain amount of ‘regularity’ in the class is
needed to define an element which depends on it.
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| | | Comparing sets

Although many other paradoxes can be formed on sets, most of them require
some knowledge that we have not yet explained.

Comparing two sets means to establish a correspondence between them. A

function, mapping all the elements of one set in the elements of another does
not say much. But when the function is bijective, we may think that the two
sets are equal except for a renaming of the elements in their extensions. We
write A= B to indicate that there is bijective map between the sets A and B.

Intuitively a set A is smaller than a set B when it can be embedded into B
modulo a renaming: formally this intuition is modelled by the existence of an
injective function A— B. Symmetrically A is greater than B when there is a
surjective function A— B.
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l | l Comparing sets

This way of comparing sets is standard and it works as one expects when
dealing with finite sets. But on infinite sets it reveals that sets are far more
complex objects than we may imagine at a first sight.

Theorem 15.1 (Schroder-Bernstein). If f: A— B is injective and g: B— A is
injective then A= B.

Proof. (i)

Let Co = A\g(B) and by induction Cny1={g(x): x€ Dy} and
Dp={f(x): x€ Cp}. Define h: A— B

f(x if xe C, for some n
h(x) = { ) |
g *(x) otherwise

This definition makes sense as g~%(x) is defined on g(B). —
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l | l Comparing sets

— Proof. (ii)
Let x,y € A. Suppose h(x) = h(y):
= if xe Cp, and y € Ci for some m and k then h(x)="f(x)="f(y)=h(y), so
x =y being f injective;
= if x¢ C, and y ¢ C, for any n then h(x) =g 1(x)=g"1(y) = h(y), so
glg7 (x))=x=y=g(g”(y));
= if xe C,, for some m and y ¢ C, for any n, h(x)=f(x) =g 1(y) = h(y),
so (gof)(x)=y, thatis, y € Cpt+1 which is impossible.

Thus h is injective. —
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— Proof. (iii)

We must show that h(A) = B.

Observe that for any n and any z€ D, z=f(x) for some x € Cp, so by
definition z = h(x).

Then let ze B\U, D,. Evidently, g(z) &€ C,, for any n (otherwise z € D, if
n>0, and Co=A\g(B)), thus h(g(z)) =g 1(g(2)) =z

So h is surjective. []

It is surprising how difficult is to prove this result, which is completely
elementary in the finite case using, e.g., the pigeon hole principle.
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Example 15.2. Let P={2n: neN}.
Since f: P — N such that f(x)=x is injective, and g: N— P such that
g(x) =2x is injective, by Theorem 15.1 we conclude that P =N.

In general, an infinite set A is such that it is possible to find a proper subset

B < A such that A= B.
We can even use this property as a definition of being infinite.
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l | l Comparing sets

Example 15.3. NxN=N

Evidently, the function f: N— N xN mapping x — (x,x) is injective.
Oppositely, the function g: Nx N — N defined as
g(x,y)=(x+y)(x+y+1)/2+y is injective as it is easy to prove. Informally it
counts the pairs using diagonals which justifies the claim of being injective:
the formal proof is just arithmetic.

Thus, by Theorem 15.1 the result follows.

This result can be generalised to arbitrary infinite sets, although the proof
requires some technicalities.

A simpler result, which is immediately obtained by induction, is that N =N
for any k> 0.
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l | l Comparing sets

Example 15.4. The collection of finite sequences of naturals N* =N

Obviously, the function f: N— N* mapping x — {x} is injective.
Oppositely, calling g,: N7 — N the bijection from the Cartesian product of
n=1 copies of N to N, we may define a function h: N* - N xN by

h({x;}lsisn) =(n,gn(x1,...,xn)). For n=0 let h(@)=(0,0).
Evidently h is injective since g, is for each n=1. So the composition gooh is
injective and the result follows by Theorem 15.1.

Again, the result can be generalised to arbitrary infinite sets, essentially by the
same proof.
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l | l Comparing sets

An application of what has been obtained till now to logic is immediate: let
be a signature with a finite number of symbols. Since the variables of sort s
are in a bijective correspondence with N, the collection of all variables is in

bijection with N.

Then the sequences of symbols given by the function symbols, the parentheses,
the commas, and the variables is in bijection with N. So the collection of all
terms on Z being an infinite subset of that set, is in bijection with N too.

Analogously, the collection of all formulae on X being an infinite subset of the
collection of sequences of symbols of X plus a finite set of logical symbols, is
in bijection with N.

All these result can be easily extended to arbitrary signatures, using the
generalised versions of the previous examples.
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l | l Comparing sets

Example 15.5. @(N) ZN.

This result, which specialises a famous theorem by Cantor, says that the
collection of subsets of N is not in bijection with N. The proof is a classical
masterpiece that introduces a technique called diagonalisation.

We can identify each subset A< N with its characteristic function
xa:N—{0,1}. Suppose that all these functions are in bijection with N. So
we have ©(N) = {xa,}..n. Observe how each function f: N— {0,1} uniquely
identifies the subset {x: f(x) =1} <N.

Define A: N—{0,1} as A(x)=1-ya, (x). Thus A must appear somewhere
in the sequence, i.e., A= x4, for some ke N. Which is impossible since

xA, (k) =A(k)=1-xa,(k) and ya,(k)€{0,1}. Hence the characteristic
functions are not in bijection with N, that is p(N) Z N.

As a side effect, since the functions N — {0,1} are in bijection with the real
interval [0,1] we get that R > N strictly. In other words, infinity is not unique!
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| | | References

Probably, the best introductory text to set theory is Paul Halmos, Naive Set
Theory. D. Van Nostrand Company, (1960), reprinted by Springer-Verlag,
(1974), reprinted by Martino Fine Books (2011).
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| | | Axiomatic set theory

The axioms of Zermelo-Fraenkel set theory are presented and discussed in the
following slides.

As said in the previous lecture, they are deputed to model sets but not classes,
avoiding the formation of paradoxes, which arise when a naive notion of sets
is adopted.

Also, in the background, we already know that formal sets will be bizarre
mathematical objects, in which infinity is not unique. To start analysing this
fact, which proves to be fundamental to sketch and use set theory, we will
introduce the notion of ordinal.
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| | | Axioms: extensionality

Informally a set is uniquely determined by its extension. This fact is captured
by the following axiom:

Axiom (Extensionality). Vx.Vy.(Vz.(zex)=(zey))ox=y.

Proposition 16.1. If x¢g FV(A) then
F(3x.Vy.(yex)=A)>(Ix.Vy.(yex)=A).

Proof.
The formal proof is easy but long to write down. Essentially if z is another set

satisfying Vy.(y € z) = A, it must be that x = z by extensionality. ]

The content of the proposition is that whenever the collection of the y's
satisfying a formula A corresponds to the extension of a set, it identifies a
unique set.
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l | | Axioms: empty set

Axiom (Empty set). Ix.Vy.y & x.
Since by Proposition 16.1 the set x is unique, we will denote it by @ as usual.

This axiom establishes that there is at least one set, the empty one.
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l | l Axioms: pairs

Axiom (Pair). Vx.Vy.3z.Vu.(uez)=(u=xvu=y).

This axiom says that given two elements x and y we can form the set z
whose extension contain exactly x and y. Again, we adopt the standard
notation {x,y} since by extensionality a pair set is uniquely identified.

Note that when x =y, we have singletons, {x}.
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l | l Axioms: union

Axiom (Union). Vx.3y.Vz.(zey)=(Juex.z€u).

The axiom says that given a set x, we can form another set y whose
extension is the collection of elements in the members of x. Since as usual,
the set y is unique by extensionality, we adopt the standard notation Ux for
it, or also, we write {z: Jue x.z € u}, or also Uyex u. When x is a pair {A, B}
we write AU B for y.

Observe how, up to now, all the sets which have been stated to exist by the
axioms, are finite.
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l l l Axioms: infinity

Axiom (Infinity). Ix.@exAVy.yexoyuly}ex.

In general we will write Succ(x) for xu{x}, and we will call it the successor
of x. The axiom says that there is at least one set which contains the empty
set and which is closed under the successor operation.

It is possible to formally prove by extensionality that there is a unique set that
satisfies the axiom minimally, that is, its extension is minimal among all the
collections containing the empty set and closed under the successor operation.
This set is clearly in biijection with the set of natural numbers. We will
denote this minimal set as w in the following.
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| | | Axioms: power set

Axiom (Power set). Vx.3y.Vz.(zey)=(z<x).

The power set of x has as extension the collection of all the subsets of x. We
will denote it as @(x), or also {z: z< x}.

By extensionality we get that if g(x)=x then Vy € p(x).y € x, but x € p(x)
so x € x. Thus, as this behaviour is something we want to ban from our set

theory in order to prevent paradoxes, we want to introduce an axiom which

forbids this phenomenon to happen. The consequence will be that ¢(x) # x
for every set x.
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| | | Axioms: regularity

Axiom (Regularity). Vx.x#@>3yex.mJz.zexNzEy.

Similarly to extensionality and differently from the preceding axioms,
regularity states a property of all non empty sets instead of providing a way to
construct new sets. Precisely, it says that each non empty set x contains an
element y which is disjoint from x.

It is a bit technical to show and beyond the aims of this course, but the
axioms prevents the construction of circular chains of membership, banning
the existence of a set x satisfying xex, or xeyex, ...

Thus paradoxes like the hyper-game and Russell's cannot be constructed in
the framework of formal set theory.
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| | | Axioms: separation

Axiom (Separation). Let P be a formula such that FV(P)={u} then

Vx.3y.Vz.(zey)=(zexAP[z/u]) .

Properly speaking separation provides an axiom schema, i.e., a family of
axioms one for each possible instance of P.

It says that given a set x, the collection of elements in x satisfying P is the
extension of a set y.
Sometimes, this axiom is called restricted or bounded comprehension.

An immediate application is the construction of intersection: An B is defined
as the set formed by separation from A applying the property P(u) = (u€ B).

Another immediate application is the intensional construction of subsets:
{x € A: P} is the result of applying separation to A with the property P.

(346 )



| | | Axioms: replacement

Axiom (Replacement). Let P be a formula such that FV(P) = {x,y} then

(Vx.3ly.P)oVz. 3u.Vy.(yeu)=(Ixez.P) .

It says that whenever P behaves like a function on the proper class of all sets,
mapping x to y, the image of any set x through P is a set.

Again, replacement is an axiom schema whose instance are defined as soon as
P is given.
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| | | Further definitions

With these fundamental definitions together with their justifying axioms, we

can easily define the usual operations on sets like difference, Cartesian
product, sequence, ...

The set theory developed so far is interesting by itself: it is called ZF, for
Zermelo-Fraenkel, its creators.

Although set theory is an important branch of mathematical logic, its
development is far beyond the aim of this course and involves some of the
most stunning results of XX century.

As a matter of fact, the collection of axioms we have shown so far is enough
to develop most of elementary mathematics with a few exceptions for which
in the following we will introduce another couple of axioms.

In particular the so-called Axiom of Choice has a special role as it is needed to
prove some fundamental results in algebra, although it is also responsible for
theorems which are really counter-intuitive like the Tarski-Banach Theorem.
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| | | Well orders

Definition 16.2. An order (A; <) is total when for each pair x,y € A either
X<yory<x.

Definition 16.3. An order (A;<) is a well order when every non empty subset
S < A has a minimum, i.e., there is me S such that for every x€ S, m<x.

Fixed a set A it is always possible to add a relation to it so to make it an
order, e.g., take < to be equality. But it is not clear whether it is always
possible to define an order relation which makes it a well order.

However, a well order, as we will see soon, allows for an induction principle
that is a very powerful instrument to reason about the set and its properties.
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l | l Ordinals

Definition 16.4. A set S is an ordinal if and only if (5;eu=) is a total well

order and for each xe S, xc S.
Thus an ordinal S is a set totally well ordered by the strict order given by €

and, moreover, if x€ S then x< S.
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l | l Ordinals

Proposition 16.5. Every ordinal S is totally well ordered by inclusion.

Proof.

Consider the structure (S;<). Clearly, € forms an ordering relation.

Also, being S an ordinal, for each A,Be S,
m A=Bor
m Ae B, which implies for all xe A, x € B by transitivity, i.e., AS B, or
m Be A, which implies by the same argument B < A.

So, the structure is totally ordered.

Moreover being S an ordinal, for each non empty A< S there is me A such
that for all x € A either m=x or me x, that is, mc x.

So, S is well ordered by inclusion, too. []
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l | l Ordinals

Proposition 16.6. If S is an ordinal and x € S then x is an ordinal and
S= Uxes x.

Proof.
Immediate since x € S implies x £ S being S an ordinal. ]

Proposition 16.7. The collection of all ordinals is not a set.

Proof.
Suppose Ord = {x: x is an ordinal} is a set. Then it is immediate to check

that Ord must be an ordinal. So Ord € Ord contradicting regularity. []

Admitting Ord to be a set generates a contradiction.
This argument is called the Burali-Forti paradox.
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| | | Transfinite induction

Proposition 16.6 intuitively justifies

Principle 16.8 (Transfinite induction). If P is a property and assuming that P

holds for every ordinal less than a, we can prove that P holds for a, then P
holds for any ordinal.

This principle can be relativised to all the ordinals less than some fixed ordinal
B, leading to

Principle 16.9 (Transfinite induction). If P is a property and assuming that P

holds for every ordinal a < B, we can prove that P holds for a, then P holds
for any ordinal less than .
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| | | Transfinite induction

We have to prove that transfinite induction is a sound principle, that is, it
does not allow to derive false consequences from true premises.
Proposition 16.10. If P is a property and assuming that P holds for every

ordinal less than a, we can prove that P holds for a, then P holds for any
ordinal.

Proof.
Assume that if P(x) is true for every ordinal x € @ then P(a) holds. And by
contradiction assume there is an ordinal B for which P(p) is false.

Since B is an ordinal, it is well-ordered. Then there exists the minimal ordinal
y < B such that P(y) is false.

Being ¥y minimal, for every x €y, P(x) is true. So by hypothesis P(y) holds,
which contradicts the existence of y, and thus, the existence of . L]

The relativised principle is an immediate corollary by considering the property
B <xVv P(x).
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||| Transfinite induction

Since @ is an ordinal and whenever x is an ordinal, its successor x U{x} is an
ordinal too, we can classify ordinals in three classes:

m the empty ordinal @;

m the successor ordinals x such that there is an ordinal y for which
X=yuUiyf;

m the /limit ordinals x, which are those ones not falling in the previous
classes. These are characterised by x =Uy<xy.

It is worth reminding that the set of natural numbers is in bijection with w,
the ordinal containing @ and closed under the successor operation.
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| | | Transfinite induction

Principle 16.11 (Transfinite induction). If P is a property and

m jf P holds for @¢;

m supposing P holds for an ordinal x then P holds for the successor of x;

m supposing P holds for any ordinal y < x with x a limit ordinal then P
holds also for x;

we can conclude that P holds for any ordinal. Of course, as before, the
principle can be relativised to the ordinals less than (3.

Transfinite induction is a powerful instrument to reason about infinite sets: we
already used it to prove the Completeness Theorem 12.3 for first order logic.

Also, note how the usual induction principle on natural numbers is equivalent
to the transfinite induction principle relativised to w.
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| | | Transfinite induction

Proposition 16.12. If @ and B are ordinals and a = 8 monotonically then
a=p.

Proof.
Let f: @« — B be a monotone bijection between the ordinals whose is inverse is
monotone. Consider the property P(x)=VueOrd.xZu>x = u.

By transfinite induction on a we show P(a).

If x € a then f(x) € B, but also x < a since a is an ordinal. The restriction of
the bijection f to x is a monotone bijection so f(x) = x and by induction
hypothesis f(x) = x, thus x € 8. Hence, a < .

By transfinite induction on 8 we show P(f).

If y € B then f~1(y) € a but also y < 8 since B is an ordinal. The restriction
of the bijection f~! to y is a monotone bijection so f~1(y) =y, and by
induction hypothesis f~(y) =y, thus y € a. Hence, f<a. ]
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| | | Transfinite induction

We state without proving the following fact, which is deduced by a rather
involved transfinite induction

Proposition 16.13. If S =(S5;<) is a total well order then there is a unique
ordinal a such that « =S monotonically.
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l | | Ordinal arithmetic

Definition 16.14 (Ordinal addition). Let a and B be ordinals then a+ f is the
unique ordinal such that there is h: S — a + B biijective and monotone, i.e.,
such that x<y in S implies h(x) < h(y) in @+ B where S =(a U B;<), the
disjoint union of a@ and B, and x<y ifandonly if x<y in a, or x<y in B, or
x € a and y € B, the lexicographic order on a and .

On finite ordinals, i.e., on natural numbers it is just arithmetical addition. But
on infinite ordinals, it is not commutative. For example 1+w = w but
w+1#w since w+1 has a maximum, while w has not.

The intuition one should keep in mind is that a +  is a followed by .
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We state without proof the following properties of ordinal sum.

l | | Ordinal arithmetic

Proposition 16.15. Let a, B, and y be ordinals. Then

1.

o R

a+(B+y)=(a+p)+y

a+0=a;

a+1=Succ(a);

a + Succ(B) = Succ(a + B);

if B is a limit ordinal then a+ f=Us<p(a+¢).
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l | | Ordinal arithmetic

Definition 16.16 (Ordinal multiplication). Let a and B be ordinals then af is
the unique ordinal such that there is h: S — a8 biijective and monotone
where S = (i @; <) with x <y in S when either x € a; and y € a; with i <,
or x,y €a;j and x <y in a, the lexicographic order on | Jicga.

On finite ordinals it is just arithmetical multiplication, but on infinite ordinals
it is not commutative. For example 2w is the total order formed by w copies
of 0<1, so 2w =w. On the contrary, w2 =w+ w # w since there is a limit
ordinal, w, inside w + w while there is none in w.

The intuition behind ordinal multiplication is that af is the ordinal consisting
of the sequence composed by  copies of a.
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l | | Ordinal arithmetic

We state, without proving
Proposition 16.17. Let a, B, and y be ordinals. Then
= a(fy)=(ap)y;
m a0=0,
= al=a.
m aSucc(f)=af+a;
= /f B is a limit ordinal, aff = Usep(a),
= a(f+y)=aB+ay.

Note how most of these properties do not commute when ordinals are infinite.
For example it is possible that (8+7y)a # fa +ya: indeed

(1+l)w=2v=w#lo+lv=0+w .
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| | | References

The axioms of set theory and the treatment of ordinals derive from the
presentation in Kenneth Kunen, Set Theory: An Introduction to Independence
Proofs, Studies in Logic and the Foundations of Mathematics 102, Elsevier,
(1980). This book covers advanced material, which lies far beyond the scope of
the course. An alternative introduction can be found in Jon Barwise, Handbook
of Mathematical Logic, Studies in Logic and the Foundations of Mathematics
90, North-Holland, (1977).

The theory ZF has been first proposed by Ernst Zermelo in 1908. Then,
Abraham Fraenkel in 1921 pointed out that the original theory was not able
to prove a number of natural properties of sets so he and Thoralf Skolem in
1922 independently proposed an improved formulation, the one we introduced.

Ordinals form in a sense the backbone of set theory providing the main tool
to prove properties of sets at large: transfinite induction.
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| | | Comparing sets, again

Definition 17.1. For any pair of sets A and B, A=< B if and only if there is an
injective function A— B. Also, we write A= B when there is a bijective
function A— B. Finally A< B when A=< B but BXA.

Proposition 17.2. The relation =< is reflexive and transitive, while = is an
equivalence relation.

Proof.

Since the identity function is bijective, x < x and x = x. Since the composition
of injective (bijective) functions is injective (bijective), < (=) is transitive.
Finally, since the inverse of a bijective function is bijective, = is

symmetric. []

Theorem 17.3 (Schroder-Bernstein). If A< B and B=< A then A= B.

(1365 )



l | | Cardinals

Definition 17.4 (Cardinality). If the set A can be well ordered, |A|, the

cardinality of A is the least ordinal a such that A= a.

Observe how, when A can be well ordered, it holds that A= a for some
ordinal a which depends on the well ordering, see Proposition 16.13. Forming
the set of ordinals {a: A= a} it has a minimum, so the definition of
cardinality is well-founded.

Definition 17.5 (Cardinal). An ordinal « is a cardinal if and only if a =|al.
Equivalently, the ordinal «a is a cardinal whenever for all fea, f# a.
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| l | Cardinals

Proposition 17.6. Let a@ and B be ordinals. If |a| < < a then |a| =|p|.

Proof.

Since B<a then B<S a, thus B=<a. Also a = |a| by definition of cardinality
and |a| < B implies |a| < B, thus a < 5. Then a = by Theorem 17.3.

Thus |a|= a= B =|B| so |a]l =|6| by Proposition 16.12. ]

Proposition 17.7. If new then n# n+1 and for every ordinal a, if a = n,
then a = n.

Proof.
By induction on n it follows immediately that n# n+1.
The second part is an instance of Proposition 17.6 noting that |n| = n. []
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| l | Cardinals

Corollary 17.8. Each ne w is a cardinal and w is a cardinal.

Definition 17.9. A set A is finite if and only if |A| <w; A is countable if and
only if |A| <w. Infinite means not finite, and uncountable means not
countable.

Note that when A= a with a an ordinal, then A can be well ordered by the

relation which is the image of < through the bijection a — A.
Hence, |A| is defined.

If A cannot be well ordered, which is possible in the framework described so
far, A is both infinite and uncountable.
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| | | Cardinal arithmetic

Definition 17.10. Let a and f be cardinals. Then a® = |a L f| and

a® f=|axp|l. Note how cardinal addition and cardinal product are different
from ordinal addition and product.

Proposition 17.11. Cardinal addition and product are associative and
commutative operations with units.

Proof.

Since auB=pPUa and a x f= B xa, commutativity follows. Also,
associativity derives from the corresponding property of U and x, up to =. It
is immediate to check that 0 and 1 are the units of addition and
multiplication, respectively. []
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| | | Cardinal arithmetic

Proposition 17.12. Let a and  be cardinals. Then
L. la+pBl=p+al=a&p;

2. lapl=|pal=a® p.
Proof.

Immediate unfolding the definitions of the ordinal and cardinal sum and
product. []

Proposition 17.13. Fornnmew, n®m=n+m and n® m= nm.

Proof.
By induction on me w. []
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| | | Cardinal arithmetic

Proposition 17.14. Every infinite cardinal is a limit ordinal.

Proof.
If a is an infinite cardinal and a =6+1, since 1+ =4,
a=|a|l=|p+1|=|1+B|=1Bl, a contradiction. []

We state without proving

Proposition 17.15. If a is an infinite cardinal, a® a = «.

Corollary 17.16. If either a or (B is an infinite cardinal then
a®f=a®pf=max{a,f}.
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| | | Cardinal arithmetic

Theorem 17.17 (Cantor). For any set A, A<p(A).

Proof.

Clearly, A< @(A) by the mapping x € A— {x}.

Suppose there is a surjective map f: A— ¢(A), and define
B={xeA: x¢f(x)}, which is a set by the Separation Axiom.
Since B A, Be g(A), thus there is a y € A such that f(y)=B.
Now, if y € B then y € f(y), which is impossible by definition of B.

Conversely, if y ¢ B then y € B by definition of B, another contradiction.
Thus f cannot be surjective. []
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| | | Hierarchy of cardinals

We state without proving that

Proposition 17.18. For every cardinal a there is a cardinal f such that a < 3
strictly.

Definition 17.19. For any cardinal a, a™ is the least cardinal strictly greater

than a.
We say that the cardinal B is a successor cardinal when =a™ for some

cardinal a.
We say that the cardinal § is a /imit cardinal when f>w and § is not a

successor cardinal.
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| | | Hierarchy of cardinals

Definition 17.20. By transfinite induction define the map X from ordinals to
infinite cardinals:

= NXo = w;

B Nyl = (Na)Jr;

= for y a limit ordinal, Xy = Ug<y Rq.
By transfinite induction on the ordinal @ one shows

Proposition 17.21. Each X, is a cardinal and every infinite cardinal equals R,

for some a. Also, the map R is monotone, Xy is a limit cardinal if and only if
a is a limit ordinal, and X, is a successor cardinal exactly when « is a
successor ordinal.
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| | | Hierarchy of cardinals

Proposition 17.22. X1 <9(Xp).

Proof.

By Definition 17.20 Xg <R1. By Theorem 17.17 Ro < (Xo).

By definition X1 is the least cardinal greater than Rg, so X1 < [@(Xo)| = ©(Xo),
ie. N1 <p(Ro). L]

This result can be immediately extended to any ordinal a.

Since the collection of functions from the cardinal a to 2, the finite cardinal
composed by two distinct elements, has the same cardinality as g(a), the
notation 2% = p(a) is common.
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| | | References

The presentation of cardinals derives from Kenneth Kunen, Set Theory: An
Introduction to Independence Proofs, Studies in Logic and the Foundations of
Mathematics 102, Elsevier, (1980). An alternative introduction can be found
in Jon Barwise, Handbook of Mathematical Logic, Studies in Logic and the
Foundations of Mathematics 90, North-Holland, (1977).
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| | | Axiom of Choice

We have mentioned the Axiom of Choice many times. In most cases we said
that this principle allows to say that any set can be well ordered, or
equivalently that any set is in bijection with a cardinal.

Axiom (Choice). For any non empty family 1X;},_, of non empty sets such
that Xin Xj =@ for any i,j€l, i #j, there exists a function f: | — Uje; Xi
such that f (i) € X; for every i € I.

The meaning is that, whenever we are given such a family, we have the ability
to make a choice that simultaneously picks an element from each set.

Although this principle seems very natural, it cannot be derived from the ZF
set theory. So when we adopt this axiom, we will speak of ZFC, the
Zermelo-Fraenkel set theory with the Axiom of Choice.
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| | | Axiom of Choice

Some important results in Mathematics require the Axiom of Choice to be
proved: as a small collection of examples

m every non empty vector space has a base;
m every field has an algebraic closure, which is unique modulo isomorphisms;
m the notion of adjunction in category theory;

® the compactness theorem in first order logic.
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| | | Axiom of Choice

But the Axiom of Choice allows to prove critical results, like the
Tarski-Banach theorem.

lts geometric form is: given a sphere S in the usual 3-dimensional Euclidean
space, it is possible to divide it into a finite set of pieces so to obtain, using
only rotations and translations, a reassembling of those pieces in two spheres
both identical to S.

Of course, this seems to be impossible since we consider pieces which are
measurable, or if you prefer, they possess a volume. On the other hand, if we
take pieces, i.e., subspaces of the sphere for which the notion of volume is
meaningless, the above composition becomes possible. In the proof the pieces
are constructed using the Axiom of Choice.
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| | | Axiom of Choice

There a number of equivalent formulation of the Axiom of Choice: the most
common and useful ones are

= the Well Ordering Theorem
m Zorn Lemma
m Hartogs's Theorem

= the Cartesian product of a non empty family {Xi}._, of non empty sets, is
non empty.

The last form is a relaxed version, which is easily derived by imposing
disjointness via the isomorphism X; = {i} x X;.
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| | | Well ordering theorem

Theorem 18.1 (Well ordering). For any set X, X =|X]|.

Proof.

By the Axiom of Choice there is function c: p(X)\{®} — Ugp(X) =X such
that for every non empty Sc X, ¢(S)€S.

By transfinite induction we define a bijection s between X and some ordinal
a: assuming s(B) has been defined for all Be a, if X\{s(B): B a} # @ then
s(a)=c(X\{s(B): Be a}). Observe how s(a) # s(p) for every f€ a, thus s
is injective. Also, when X\{s(pB): Bea} =@, s: a — X is surjective.
Suppose X \{s(B): B€ a} # @ for every ordinal @. Then s defines a functional
map from Ord to X which is invertible on some Y € X, the image of Ord in
X. Hence, by the Replacement Axiom s71(Y) is a set since X is a set and
thus so are all its subsets by the Separation Axiom. But s7}(Y)=0rd, a
proper class, thus we have a contradiction.

By definition | X] is the least ordinal which is in bijection with X, and we know
that there is at least one, a. []
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| | | Well ordering theorem

Assuming the Well Ordering Theorem as an axiom we can prove the Axiom of
Choice: let & be a non empty family of non empty, pairwise disjoint sets.
Consider Uxeg X: by the Well Ordering Theorem for each X € &, X = [x for
some ordinal Ix, that is, there is gx: Ix — X bijective.

Then we can define a choice function f: & — Uxeg X as f(X) =gx(2).
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l | l Zorn lemma

Theorem 18.2 (Zorn Lemma). If (X;<) is a non empty order such that every

proper ordered subset has an upper bound then (X;<) contains a maximal
element, i.e., an element which is not smaller than any other element in X.

Theorem 18.3 (Hartogs). If A and B are two sets it holds that either A< B
or BxA.

Although we are not going to prove these results, they shed some light to the
meaning of the Axiom of Choice: indeed, they say that the notion of
cardinality takes the usual, intuitive meaning only when we assume that
principle to hold.

For this reason when no set theory is specified usually ZFC is intended.
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| | | Continuum Hypothesis

Another axiom which is commonly considered in the theory of sets is the
so-called Continuum Hypothesis:

Axiom (Continuum Hypothesis). Ry =20,
It admits an obvious generalisation:

Axiom (Generalised Continuum Hypothesis). Rj;1 =2 for every ordinal i.

Although the generalised Continuum Hypothesis implies the plain version the
converse does not hold. And both the versions are independent from ZFC,
that is, they cannot be proved from the axioms of ZFC nor it can be proved
them to be false.
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| | | Continuum Hypothesis

While the Axiom of Choice justifies the intuitive notion of cardinality, the
(generalised) Continuum Hypothesis is more technical and not easy to accept.

In fact, assuming the Continuum Hyothesis the collection of all sets becomes
a quite regular structure. On the contrary assuming the Continuum
Hypothesis to be false, the collection of all sets provides a very rich universe.

Intuition does not help: the effects of the Continuum Hypothesis are sensible
for large sets and the trade between regularity and wealth becomes difficult.
In the common practice of higher set theory, which is far beyond the scope of
this course, the Continuum Hypothesis is generally assumed not to hold,
although some weaker regularity conditions may be considered.
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| | | What is a set?

As we said in the beginning the notion of set is not simple.

The intuitive notion of a set as a collection of elements does not work because
of Russell’s paradox. So, formal theories like ZFC have been introduced.

In those theories a large number of principles, like the Axiom of Choice or the
Continuum Hypothesis, are admissible but not provable: they are consistent
with the theory but also their negation is consistent with.

So, at least from the formal point of view we do not know exactly what is a
set. We have a variety of structures (theories if you prefer) that provide a
reasonable notion of set. In some of these structures we are able to prove
results which are difficult to accept, like the Tarski-Banach Theorem. But
avoiding the principles underlying these structures, like the Axiom of Choice,
we loose some basic, intuitive notion like the cardinality of a set.
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| | | References

A nice reference to elementary set theory, which explains the nature of the

Axiom of Choice with some detail is Patrick Suppes, Axiomatic Set Theory,
Dover Publishing, (1972).

The classical text Kenneth Kunen, Set Theory: An Introduction to Indepen-
dence Proofs, Studies in Logic and the Foundations of Mathematics 102,
Elsevier, (1980) provides a more in-depth discussion extending far beyond the
limits of this course.

Another reference of interest is Nicholas Bourbaki, Elements of Mathematics:
Theory of Sets, Springer, (1968).

The continuum hypothesis is the main subject of the essays in Paul Joseph
Cohen, Set Theory and the Continuum Hypothesis, Dover Publishing, (2008).
This text contains the proof that the continuum hypothesis is independent
from the other axioms of ZFC. Students should be warned that its content is
advanced material.
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| | | Motivation

Computability theory is a branch of logic that explores the fundamental
concepts of computation. While it shares connections with both mathematics
and theoretical computer science, it is worth reminding that computer science
was born as a spin-off of computability theory.

From a mathematical perspective, understanding the limits and capabilities of
computation is a cornerstone of 20t"-century mathematics. The concept of an
algorithm has proven to be invaluable across various disciplines.

For logicians, computability theory provides essential insights into the
underlying principles of constructive mathematics. It also serves as a crucial
tool for investigating the limitations of formal reasoning.
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| | | Computable functions

Computability theory aims at describing the functions N — N which can be
effectively calculated.

We observe how the vast majority of functions from naturals to naturals
cannot be calculated. Indeed if we think that calculation is a process which
mechanically transforms the argument of a function in its result, we have to
pose a few limits on this process:

® it must take a finite number of steps;
® it must operate on a finitely generated formal language;

® it must rely on a finite description of the process which precisely describes
the steps to be performed.
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| | | Computable functions

We have a language, used to describe all the computable processes, on a
finite or countable alphabet <.

No matter how we interpret the language, we know that the set &2 of all the
possible procedures is contained in the collection of finite sequences of
symbols in the alphabet. So, the cardinality of &2 has Xg as an upper bound
since &/ is at most countable.

Moreover |22| is at least Xg as we may write an infinite amount of different
procedures. But the cardinality of the set of functions from N to N is
2INI=2%0 “which is strictly greater than Ng.

So most functions are not computable.
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| | | Computable functions

There are many ways to describe computations. For our purposes, which are
not aimed at studying computations themselves but rather using the
computable functions to reason about what can be effectively proved inside a
formal system, we will use partial recursive functions.

In fact, we admit a computation may not terminate, hence partial functions,
in which non termination is modelled as the function being undefined for the
non terminating input.

Instead of using some abstract machine which ‘performs’ the computation we
will directly define computable functions as the class of functions that can be
written in a special form. Although it is not immediately clear that this class
contains all the computable functions, it is best suited to application in logic.
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| | | Primitive recursive functions

Definition 19.1 (Primitive recursive functions). A function f: N¥ — N is
primitive recursive when

1. f is the zero function 0(n) =0 for all neN;
2. f is the successor function S(n)=n+1 for all neN;
3. f is a projection function Ul.k(nl,...,nk) =n; with k=1, 1<i<k;

4. f is obtained by substitution: if g, hg,..., hy, are primitive recursive,
f(ni,....,nk)=g(ho(n1,...,nk)se.c,hm(ng,...,ng)) ;
5. f is obtained by primitive recursion: if g and h are primitive recursive,

f(ni,...,n,,0)=g(ny,..., ng)
f(n,....,ng,m+1)=h(ny,...,ne,m,f(n1,...,n,,m)) .
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| | | Primitive recursive functions

It is clear that primitive recursive functions are computable. It is also evident
that there are computable functions which are not primitive recursive: for
example the function everywhere undefined.

Observe how function composition fog is a special case of substitution.

Example 19.2. The identity function id(x) = x is primitive recursive: id = U].

Example 19.3. The constant function k(x) = k is primitive recursive. Indeed

by induction on k, if k=0, 0 is primitive recursive by definition; if k=k"+1,
k =Sok’ by substitution and k' is primitive recursive by induction hypothesis.
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| | | Primitive recursive functions

Example 19.4. Addition, multiplication and exponentiation are primitive
recursive.

n+0=id(n) n-0=0(n)
n+(m+1):S(U§’(n,m,n+m)) n-(m+1)=m+m-n
n° =1(n)
nm™tl=p.pm

Note how 00 =1 which sounds odd.
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| | | Primitive recursive functions

Example 19.5. The predecessor function defined by

n—1 when n>0
0 otherwise

pred(n) = {

is primitive recursive: pred(0) =0(0), and pred(n+1) = UZ(n,pred(n)).
Example 19.6. The recursive difference defined by

m—-n ifm=n
m-=n=

0 otherwise

is primitive recursive: m=0=m and m~=(n+1)=pred(m=n).
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| | | Primitive recursive functions

Example 19.7. The absolute difference |m— n| is primitive recursive:
Im—nl=(m=n)+(n=m) .
Example 19.8. The sign function defined by

0 ifn=0
1 otherwise

sg(n) = {

is primitive recursive: sg(0) =0(0), and sg(n+1) = U3 (n,1(n)).
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| | | Primitive recursive functions

Example 19.9. Integer division and the remainder function are primitive
recursive: write x/y =d(y,x) and x mod y = r(y,x), then

r(n,0)=0
r(n,m+1)=sg(n=S(r(n,m)))-S(r(n,m)) ,

and

d(n,0)=0
d(n,m+1)=d(n,m)+sg(n=S(r(n,m))) .

Again, 0/0=0 and 0 mod 0 =0 which sounds pretty odd.
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| | | Primitive recursive functions

Example 19.10. The integer logarithm is primitive recursive:

log,(0)=0
logp(n+1) =log(n) +sg (S(n) - bs(logb(”))) :

Note how the logarithm is defined everywhere in N x N, in opposition to the
standard definition in Mathematics.

(1400 ) l



| | | Primitive recursive functions

There are functions which are computable but not primitive recursive.

Definition 19.11 (Ackermann). The Ackermann'’s function A is defined as

A(m,0)=m+1
A(0,n+1)=A(1,n)
Am+1,n+1)=A(A(m,n+1),n) .

To give an impression: A(0,0)=1, A(1,1)=3, A(2,2)=7, A(3,3) =61, but
A(4,4) =227

The function N— N given by n— A(n,n) can be shown to grow faster than
any primitive recursive function, so it is not primitive recursive.
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| | | Partial recursive functions

Definition 19.12 (Partial recursive functions). A partial function f: N — N is
recursive when

1. f is the zero function 0(n) =0 for all neN;

2. f is the successor function S(n)=n+1 for all neN;

3. f is a projection function Ul.k(nl,...,nk) =nj with k=1, 1 <i<k;

4. f is obtained by substitution: if g, hg,..., h, are partial recursive,
f(ni,...,nk) =g (ho(nt,...,nk)s..c,hm(ny,..., ng));

5. f is obtained by primitive recursion: if g and h are partial recursive,
f(ni,...,ng,m+1)=h(ny,...,ng,m,f(n1,...,n,,m)) and
f(ni,...,n,0)=g(ny,...,ng);

6. f is obtained by minimalisation: if g is partial recursive, then

f(ni,...,ng)=pum.(g(n1,...,n,,m)=0) ,

the minimal m such that g(ny,...,ngk, m) =0 if it exists.
We will call recursive a total function which is partial recursive.

( 402 )



| | | Partial recursive functions

Definition 19.13. Let S be a set and R a relation. The characteristic
functions of S and R are given by

(x) 1 ifxeS

X) =

xs 0 ifx¢gS

1 if (x1,...,xn) €ER
0 otherwise

XR(Xl,...,Xn)Z{

We say that S or R is recursive when ys or ygr are recursive functions.

We say they are primitive recursive when the corresponding characteristic
functions are.

Example 19.14. The relation = <N x N is primitive recursive:
¥<(n,m)=1=sg(n=-m).
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| | | Partial recursive functions

Example 19.15. If P and Q are (primitive) recursive relations on N¥, then so
are 7P, PAQ, and PV Q.

Y-pP(X1,..o,xk) =1=xp(x1,..., Xk)
XPAQ(X1y - xk) = X P (X1, Xk ) - X Q(X1, -+, Xk)
xPvo(xt, - xk) =sg(xp(x1,--xk) + xo(x1,--,Xk)) -

Example 19.16. Every finite set is primitive recursive.

Example 19.17. If R,S <N are (primitive) recursive, so are N\ R, RnS, and
RUS.
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| | | Partial recursive functions

Proposition 19.18. If R(n1,...,n,, m) is a recursive relation, then f: NA — N

defined by
f(ny,...,nK)=pum.R(ny,...,ng, m)

i.e., the least m such that R(ny,...,n,,m) holds, is partial recursive.
Proof.
Immediate by noting that f(ny,...,nx) =um. (x-r(n1,...,nk, m)=0). ]

Church-Turing Thesis
A function f: NK — N is computable exactly when f is partial recursive.
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l | | Universal function

Theorem 19.19 (Enumeration). There is a partial recursive e(x,y) that

enumerates all the partial recursive functions, that is, {e(x,y)}, . iS the set
of all the partial recursive functions.

Proof. (i)

In the first place, we note that since for any k € N, N =N and the bijection is
computable, we may enumerate the computable functions N — N only.

Partial recursive functions can be coded as naturals:
= [0]=2;
= [§]=3
= [UK]=5-17%-19"; —
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l | | Universal function

— Proof. (ii)

= substitution: let {p;}, , be the sequence of prime numbers, then

8 (ho(R1,ees 1 )s e A1, .., )] = 7- 17181 10lRO] . plAm]

= primitive recursion: [f]=11-17l8l.19l"].
= minimalisation: [f]=13-17!8],

The coding is clearly recursive; it is also injective thanks to the unique
factorisation in primes of any natural number.
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l | | Universal function

— Proof. (iii)

Moreover, given n, one computes the factorisation of n, and depending on the
least factor, one decides which kind of partial recursive function is, the other
factors providing the parameters, which are recursively dismounted.

If the process succeeds, a partial recursive function whose code is n is
constructed; if the process fails, no partial recursive function has n as its code.

Then we can associate to those x not being a code the partial recursive
function L = pux.1(x)=0:

f(y) if there is f such that [f] = x
1 otherwise .

e(x,y) = {

Thus e(x,y) enjoys the enumeration property by construction. ]
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l | | Universal function

Proposition 19.20. There is no enumeration {fy} _ of all total computable
functions which admits a computable enumeration function e(x,z) = f((z).

Proof.
Consider the function h(x) = f(x)+1. It is total since each £ is.

Assume there is a recursive function e enumerating {£} _.-

Then h(x)=e(x,x)+1, so h is recursive.
Thus h occurs in {f} ., so there is k € N such that f; = h.
Thus h(k)=e(k,k)+1=f(k)+1=h(k)+1 hence 0=1, a contradiction. []
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l | | Universal function

Theorem 19.21. Let myn=1. Then there is a computable function
ST Nt N such that

fo (X1, os Xmy Y1) Yn) = Tsm(axq,im) (V1o -2 V) -

Although we will not prove the theorem we want to remark its meaning: it
shows that considering some arguments as parameters is an admissible
operation in the computational world.

We can start the study of computable functions by considering a good
enumeration of all of them. An enumeration is good when it is recursive and
it satisfies the S/ theorem. Then

Theorem 19.22 (Turing, 1936). There is a computable partial function

U: N? — N such that f,(x) = U(n,x).
Such a function is called universal and it has been the first computer.
But this is another story. . .
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| | | Fixed points

Theorem 19.23 (Kleene). [If f is a partial recursive function then exists k € N

in any good enumeration of the partial recursive functions such that
G (ky = Pk whenever f(k) is defined.

Proof.
Let h(x) = ¢px(x). This partial function is computable because it can be
written as h(x) = U(x,x). Then foh is computable too.

So, foh=¢, for some eeN.

Therefore (»bf(h(e)) = (Pgbe(e) = ()bh(e)-
Thus k = h(e) is the sought fixed point. ]
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| | | References

Computability theory also known as recursion theory is a major branch of
mathematical logic. A nice introduction is Barry Cooper, Computability Theory,

Chapman & Hall/CRC Mathematics, (2004).

This lecture is mainly based on that text.
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l | l A-calculus

The A-calculus is a family of formal systems based on Alonzo Church’s work
in the 1930s. These systems are deputed to describe computable functions
using the simplest syntax. Surprisingly not only they describe computable
functions, but when equipped with types they show a hidden and deep link
between logic and computability.

In this lectures, we want to introduce the A-calculus and its simplest typed
version. Our aim is to illustrate the general aspects of the theory and to
derive a few results we will use in the following lessons.

In many cases we will avoid proving all the results we introduce. This is done
on purpose: the simplicity of the formal system has as a natural counterpart a
deep and complex technical development. Although this technical part has
many pearls, which shed light to some important aspects of computability, it
lies beyond the aims of this course.

(414 )



l l l A-term

Definition 20.1 (A-term). Fixed a set V' of variables, which has to be both
infinite and recursive, a A-term is inductively defined as:

= any x€ V is a A-term and FV(x) = {x};

= if M and N are A-terms, so is (M- N) called application and
FV(M-N)=FV(M)uFV(N);

m if xe V and M is a A-term, so is (Ax. M) called abstraction and
FV(Ax.M)=FV(M)\{x}.

The set FV(M) is called the set of free variables in M and the variables in M
not occurring in FV(M) are said to be bounded.

Example 20.2. (Ax.x) is a A-term with no free variables representing the
identity function.

(415) i



l l l A-term

As usual, to simplify notation we introduce a number of conventions:
m outermost parentheses are not written: Ax.x instead of (Ax.x);

m a3 sequence of consecutive abstractions is grouped: Ax,y.x-y instead of
Ax.(Ay.x-y);
m we treat application as a product omitting the dot: xy instead of x-y;
= we assume application associates to the left: xyz instead of (xy)z.
Also, we use the term combinator to denote a A-term having no free variables.

Example 20.3. The following are important combinators
m [ =Ax.x;
B K=Ax,y.X;
m S=Ax,y,z.(xz)(yz);
Q= (Ax.xx)(Ax. xx).
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| l | Substitution

Definition 20.4 (Substitution). For any M, N A-terms and x variable,
M[N /x] is the substitution of x with N in M defined by induction on M as:
= x[N/x]=N,
= y[N/x]=y when x £ y;
= (PQ)[N/x]=(P[N/x])(QIN/x]);
m (Ax.P)[N/x]=Ax.P;
m (Ay.P)[N/x]=Ay.P[N/x]| when x#y and y ¢ FV(N);
m (Ay.P)[N/x]=Az.(Plz/y])[N/x] if x££y, ye FV(N), and
z¢ FV(P)UuFV(N).
In the last clause the z variable is said to be new and it is always possible to

choose a z which satisfies the constraint.
The purpose of the last clause is to prevent variable capturing.
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| l | a-equivalence

Definition 20.5 (a-equivalence). The A-terms M and N are a-equivalent,
M =, N when

m M=N,;

s M=PQ, N=P'Q and P=, P, Q=4 Q";

m M=Ax.P, N=Ay.P', and P=, P'[x/y], Ply/x]=a P'.
So two A-terms are a-equivalent when they differ for the names of bounded
variables only.

From now on, we identify terms which are a-equivalent.
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| l | a-equivalence

It is immediate to see that a-equivalence is an equivalence relation, but it is
also a congruence with respect to substitution:

Proposition 20.6. If M=4 M" and N =4 N' then M[N /x| =4 M'[N'/x].
Therefore, using a-equivalence as equality between A-terms is sound.

As a side note, we observe that a-equivalence is decidable, i.e., there is a
recursive function to decide whether two A-terms are a-equivalent.
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| I l p-reduction

Definition 20.7 (B-reduction). The binary relation between A-terms M g N,

spelt M B-reduces to N in one step, holds if and only if M= M'[(Ax.P)-Q/z]
and N = M'[(P[Q/x])/z], where the z variable occurs in M’ exactly once.
We say that M B-reduces to N, M>g N, when there is a finite sequence
P1,..., Py such that M =P, N=P, and for each 1 <i<n, Pi>q15Pj41.

In the A-calculus, computation is performed by B-reduction.

Definition 20.8 (B-normal form). A term N is said to be in -normal form

when it does not contain any subterm of the form (1x.P)Q.
With respect to computations A-terms in B-normal form represent values.
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| | | Church-Rosser theorem

Theorem 20.9 (Church-Rosser). If M>gP and M>g Q then there is a A-term
R such that P>g R and QDﬁ R.

Corollary 20.10. If M>gN and N is a f-normal form then N is unique up to
a-equivalence.

Church-Rosser Theorem and its corollary say that although computation in
A-calculus is non-deterministic, the resulting value, when it exists, is uniquely
determined.
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| | | p-equality

Definition 20.11 (fB-equality). We say that P is f-equivalent to Q, P =4 Q,
when there is a finite sequence Rjy,..., R, such that

= P=hy,
u QE an
= forall 1=i<n, Ri>1gRit1, or Riy1>18R;.

p-equivalence models the fact that two A-terms are equal as computations.

It is easy to prove that B-equality is an equivalence relation, and a congruence
with respect to substitution.

It is significant that B-equality, in general, is not decidable, i.e., its
characteristic function is not computable. Thus, in general, there is no
computable way to decide whether two recursive functions are equal.
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| | | Fixed point theorem

Theorem 20.12 (Fixed point). There is a combinator Y such that
Yx=px(¥x).

Proof.
Let U= Au,x.x(uux) and let Y = UU.
Then Yx = (Au,x.x(uux))Ux>g (Ax.x(UUx)) x> x(UUx) = x(¥x). O]

The proof of the fixed point theorem as above is due to Alan Turing.

The fixed point theorem says that every A-term, when thought of as a
function, has a fixed point which is calculated by the Y combinator. This is
an important property which suggests that each function which can be
represented as a A-term, has to be continuous in an appropriate space.
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| | | Representable functions

Definition 20.13 (Numerals). For every neN, the Church numeral n is a
A-term inductively defined as:

m 0=Ax,y.y;
= n+1=Ax,y.x(nxy).

Definition 20.14 (Representable functions). Let f: NK —N be a partial
function. A A-term F is said to represent the function f when

= for all ny,...,nc €N if f(ny,...,ng) =m then Fny,...,ng =g m;

m for all ny,...,ngeNif f(ny,...,nx) is undefined then Fny,...,ng has no
pB-normal form.

Theorem 20.15. Every partial recursive function can be represented in the
A-calculus.
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| | | Representable functions

The proof of the theorem is difficult beyond the aim of this course.
But we show a few examples to justify it.

Example 20.16. The successor function is represented by Ax,s,z.s(xsz).

Addition is represented by Ax,y,s,z.xs(ysz).
Multiplication is represented by Ax,y,s,z.x(ys)z.
Exponentiation is represented by Ax,y,s,z.yxsz.
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| | | Representable functions

Example 20.17. The Boolean values T and L are represented as Ax,y.y and
Ax,y.x, respectively. Then ‘if x then y else z' is represented by Ax,y,z.xzy.

if L then A else B
= (Ax,y,z.xzy)(Ax,y.x)AB
=g (Ay,z.(Ax,y.x)zy)AB
=5 (Ay,z.z)AB=4B ,

if T then A else B
= (Ax,y,z.xzy)(Ax,y.y)AB

=5 (Ay,z.(Ax,y.y)zy)AB
=5 (Ay,z.y)AB=5A .
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Example 20.18.

(427 )

Representable functions

1+1

= (Ax,y,s,z.xs(ysz))11
>5(Ay,s,z.1s(ysz))1
> As,z.15(1sz)

=1s,z.(Ax,y.x(0xy))s(1sz)
> As,2.5(0s(1sz))

=1s,z.5((Ax,y.y)s(1sz))
>gAs,z.5(1sz)

=2



| | | Representable functions

To get a clue why these representations are sound we could read them as
computations over logical structures. For example natural numbers are
inductively defined from 0 and the successor. Hence a model for the naturals
is specified when we provide a set together with a way to interpret 0 as some
specific element and the successor as a function which transforms an element
into another.

Consider 0= Ax,y.y: this is a function from the model which provides an
element of the model. The model is specified by providing the specification of
the successor and the specification of zero. The result is the specification of 0.
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| | | Representable functions

Consider n+1 = Ax,y.x(nxy): since n transforms a model into a number, the
term nxy evaluates to n in the model (x,y). But x stands for the successor
function so we are taking the successor of n in the model.

Thus, x+y=Ax,y,s,z.xs(ysz) is calculated by interpreting x in a model
where the successor function is the given one but the zero element is ysz, i.e.,
the number which stands for y in the model.

Similarly, the product xy is calculated by interpreting x in a model where the
successor function moves by y steps at once.
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| | | References

A classical and still excellent introduction to A-calculus is J. Roger Hindley and

Jonathan P. Seldin, Lambda-Calculus and Combinators, Cambridge University
Press, (2008).

The classical reference for the A-calculus is Henk P. Barendregt, Lambda-

Calculus: Its Syntax and Semantics, Studies in Logic and the Foundations of
Mathematics 103, North Holland, (1985).

(420) 11



Mathematical Logic: Lecture Ill — 7

RSITq
‘?Osm“§

7
A . 3‘5\%

Syllabus:
Computability theory:

m The simple theory of types



l | | Simple theory of types

The simple theory of types is, in essence, a A-calculus with an extended
syntax, in which terms are equipped with types.

The general idea is that functions must take arguments in their domain and
produce results in their codomain.

The types are deputed to model this behaviour and to prevent the formation
of terms which do not conform.

Hence, typed terms behave as A-terms with respect to computation, but they
are a subset of all the possible A-terms, so we do not expect they capture the
whole realm of computable functions.
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| l | Types

Definition 21.1 (Type). Fixed a denumerable set V' of type variables, a type
is inductively defined:

m xe VT is a type;
m 0 and 1 are types;
= if @ and B are types, so are (a x ), (a+B), and (a — B).

As usual, we omit parentheses when they are not strictly needed: x binds
stronger that +, and + binds stronger than —, so

axf+y—(a+y)x(B+7y)

stands for

((axp)+y)—((a+y)x(B+7)) .

A type is used to constrain the main entity of interest, the term.
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| | | Terms

Definition 21.2 (Term). Fixed a family {V,}, of variables indexed by the

collection of types such that for each a, V, is denumerable and distinct from
the set of type variables, and such that VN Vg =@ whenever a # B, a term
t: a of type a along with the set of its free variables is inductively defined as:

= if x € V, for some type @, x: a is a term and FV(x: a) ={x: a};
m x:1isatermand FV(*:1)=g;
= for each type a, (y: 0— a is a term and FV(Oy: 0— a) = @;

m if A: @ and B: 8 are terms, (A,B): a x 8 is a term and
FV((A,B): ax B)=FV(A: a)UFV(B: B);

m if A: axfis aterm, so are 11A: a and n2A:  and
FV(r1A: a) =FV(m2A: B) =FV(A: a x B); —
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| | | Terms

— (Term)

m if A: a is a term then for any type S, ifA: a+ f and ifA: B+ a are
terms and FV(ifA: a+p)= FV(ifA: B+a)=FV(A: a);

m if C:a+B, A:a—7y, and B: B—y are terms, so is 6(C,A,B): y and
FV(3(C,A B): y)=FV(C: a+B)UFV(A: @ —y)UFV(B: B—7);

m if A: Bis aterm and x€ V, then Ax: a.A: a — f is a term and
FV(Ax: a.A: a— B)=FV(A: B)\{x: a};

m if A a and B: a — 8 are terms then B-A: § is a term and
FV(B-A: B)=FV(A: a)UFV(B: a — B).

Terms represent the primitive computational statements.
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| I l Reductions

Terms can be reduced according to the following rules where it is assumed
that both sides of the equalities are correctly typed:

= 11{A,B) = A; m2(A, B) = B;
m (Ax: a.A)-B=A[B/x] the act of substituting B for x (B-reduction);
m Ax: a.(A-x)=A when x: a¢FV(A: a — ) (n-reduction).

It is clear that these rules, which should be read as oriented from left to right,
are computable.

Observe how equality = is a-equivalence, and substitution is defined
analogously to the pure A-calculus.
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| I l Reductions

Moreover, the [ operator is subject to the following reductions:
s (Oa—pA)-B=0pA
u ﬂlmaxl@A = DaA; ﬂQDaxﬁB = D,BB;
= §(HaspA B, C)=0,A;
= [,(0oA) =04 A.

Although these reductions seem obscure, their meaning will become
transparent when interpreting the type system in logic.
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| l | Reductions

Finally, the 6 operator is subject to the following reductions:
m §(i1C,AB)=A-C,; 6(ihC,A,B)=B-C,
= 716(p1,p2,p3) =6(pl,w1p2, w1p3); m20(p1, P2, p3) =8(pl,m2p2, M2 P3);
= 0,6(p1,p2,p3) =0(p1,0yp2, 00, p3);
= 5(p1,p2,p3)-pa=08(p1,P2-Pa,P3-pa);
= 5(6(p1,p2,P3), Parps) = 6(p1,6(p2, pa, P5),6(p3, Pa, ps))-
Observe how most of these reductions are distribution laws.

Again, to fully understand these reductions, one needs to interpret the type
system in logic.
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| | | Intended interpretation

The intended meaning of types is not too difficult to grasp:

a type variable stands for a generic type.

0 stands for the empty type, and 1 stands for the type inhabited by a
single, distinct element, the term x.

the a x B type stands for the Cartesian product of the a and B types; it is
inhabited by the pairs (A, B) and its computational behaviour tells that
the first (second) projection w1 (72) yields the first (second) element in a
pair.

the a + B type stands for the disjoint union of a@ and B, and the ifA, ifA
terms are the injections of the A term in the disjoint union, on the left

and on the right, respectively.

the a — B type stands for the function space having a as domain and f3
as codomain. Application is then function application, and abstraction is
like in the pure A-calculus.
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| | | Intended interpretation

In this respect, the 6 operator is a selector for the disjoint union: given an
element A in the disjoint union, it computes an element in the y type by
applying the second argument to A if A lies in the first component of the
union, and applying the third argument to A if A lies in the second
component of the union.

The B-reduction rule tells that given the description of a function, its
application to some argument can be computed by substituting the argument

inside the description.

The n-reduction, Ax: a.(Ax) = A, is more complex, and ultimately says that
functions are to be interpreted extensionally, that is, f = g if and only if
f x =gx for every x.
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| | | Church-Rosser theorem

Church-Rosser theorem holds in the simple theory of types as presented here.
However its proof is significantly more complex than the one in pure
A-calculus.

To prove it, one has to show that reductions are closed with respect to typing,
that is, if A B as pure terms, and A: a then B: a.

This property, called subject reduction, is fundamental and subtle.
Indeed, in type theories more complex than the simple theory of types, it may
fail in unexpected ways.
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| l | Enriching the system

We can easily derive in the simple theory of types a representation of the
natural numbers together with the operations of addition, multiplication and
exponentiation, the Boolean values, the if-then-else construction, and so on.

Indeed, these representations are nothing but the same we used for the pure,
non-typed A-calculus.
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l | | The formal system

We consider the subsystem of the Simple Theory of Types whose types are
m type variables;
= function spaces A — B;
® products Ax B.
and whose terms are variables, applications f - t, abstractions Ax:A.t, pairs
(t1, t2), and projections m1t, mmot.
The one-step reduction >1 is the congruence generated by
m 711{(a,b)» a;
m 715{(a,b)» b;
= (Ax:A.t)-aw tla/x].

As usual > is the reflexive and transitive closure of [>1.
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| l | Strong normalisation

Definition 22.1 (Strongly normalisable). A term t is said to be strongly
normalisable when no reduction sequence starting from t, t>t;>--->t, can

be indefinitely extended.
In more formal terms, there is bound meN to the length of every reduction

sequence starting from t.

In computational terms, it means that t eventually terminates.

Definition 22.2 (Neutral term). A term t is said to be neutral when t is a
variable, a projection t=m1t;, t=7motp, or an application t =t; - to.

A term is said to be neutral when it does not interact with the context in
which it may appear.
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| l | Strong normalisation

Definition 22.3 (Reducibility candidates). The set of reducibility candidates of
type T, denoted as Z(T), is a set of terms of type T defined by induction:

m if T is a type variable, t€ Z(T) if t is strongly normalisable;
mif T=AxB, teR(T) if mite Z(A) and nat € Z(B);
mif T=A—-B, teZ(T) if, for all ae Z(A), t-aec Z(B).

The idea is to collect all the strongly normalisable terms of a given type, and
then to show that they comprehend all the possible terms of that type.
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| l | Strong normalisation

Proposition 22.4. The following three properties hold for reducibility
candidates:

1. If te Z(T) then t is strongly normalisable;
2. Ifte R(T) and tr>t' then t'e Z(T),;
3. If t is neutral and for all t' such that tt>1t', '€ Z(T) then te R(T).
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| l | Strong normalisation

Proof. (i)
By induction on the type T.

If T is a type variable then:
1. the result follows by definition of 22(T).

2. since t is strongly normalisable every term to which t reduces has to be
strongly normalisable and thus in 22(T).

3. A proper reduction sequence starting from t must pass through some t’'
as for the hypothesis. By definition of Z(T) all these terms t’ are
strongly normalisable and thus also t must be, which implies t € Z(T).—
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| l | Strong normalisation

— Proof. (ii)
If T=AxB then:

1. if te Z(Ax B) then mite %Z(A), so w1t is strongly normalisable by
induction hypothesis. Every reduction sequence from t maps into a
reduction sequence from w1t applying m1 to every element, thus t has to
be strongly normalisable.

2. If t>t' then myt>mit’ and mot>mat’. Since t € Z(A x B) by hypothesis
then w1t € Z(A) and ot € Z(B) by definition of Z.
Hence, by induction hypothesis m1t’' € Z(A) and nat' € Z(B), thus
t' € R(A x B) by definition of .

3. If t>1 t' then mt>mit’. Since t' € Z(A x B) by hypothesis, m1t' € Z(A)
by definition of Z. Also, since t is neutral, in particular not a pair,
mitr>1m1t’. Since myt is neutral, by induction hypothesis 1t € Z(A).
Symmetrically, one proves mot € Z(B), so t € Z(A x B) by definition. —
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| l | Strong normalisation

— Proof. (iii)
If T=A— B then:

1. Let x:A be a variable: x is irreducible and neutral so by induction
hypothesis on A, x € Z(A). Then t-x e Z(B) since te Z(A— B).
By induction hypothesis on B, t-x is strongly normalisable. Hence, every
reduction sequence starting from t can be mapped in a reduction
sequence starting from t-x applying x to every element. Thus, the
sequence from t cannot be indefinitely extended and so t is strongly
normalisable.

2. Let ae Z(A). Since t € Z(A— B) by hypothesis, t-ae€ Z(B) by
definition of #. Also tr>1t' maps to t-ar>t'-a. By induction hypothesis
on B, t'-ae R(B), thus t' € Z(A— B) by definition of %. —
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| l | Strong normalisation

— Proof. (iv)
If T=A— B then:

3. Let ae Z(A). Then a is strongly normalisable by induction hypothesis.
By induction on the reduction sequences from a to show that if t-a>1r
then re Z(B):

0 if t-a>qt'-a because t>1 t' then t’' € Z(A— B) by hypothesis so
t'-ae #Z(B) by definition of Z.

0 if t-ar>1t-a because a1 a’ then a’ € Z(A) by the main induction
hypothesis (2) on A, so the secondary induction hypothesis on a’ tells
t-a' € #(B).

O t-a does not reduce as a whole since t is neutral by hypothesis, in particular
t is not an abstraction, so we already considered all the possible cases.

Hence t-ae %(B) by induction hypothesis (3) on B.
Thus by definition of Z, te Z(A— B). ]
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| l | Strong normalisation

Proposition 22.5. If a€ Z(A) and be Z(B) then (a,b) € Z(A x B).

Proof.
By induction on the reduction sequences starting from a or b to show that if

m1{a, by>1t then te Z(A):
m if m1(a,by>1a, ae€ Z(A) by hypothesis;
m if m1(a,b)>1m1(a’, b) because ar>1 a’ then a’ € Z(A) by (2) in
Proposition 22.4, so m1(a’, b) € Z(A) by induction hypothesis;
= if m1(a,b)>1m1(a,b’) because br>1 b’ then b’ € Z(B) by (2) in
Proposition 22.4, so m1{a, b’y € Z(A) by induction hypothesis.

Since m1{a, by is neutral, by (3) in Proposition 22.4 m1({a, b) € Z(A).
Symmetrically, one shows that m2(a, b) € Z(B).
Hence by definition of Z, (a, by € Z(A x B). ]
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| l | Strong normalisation

Proposition 22.6. If for all ae€ Z(A), bla/x| e Z(B) then

Ax:A.be Z(A— B).

Proof.

By (3) of Proposition 22.4 x € Z(A), so b[x/x]|=be Z(B) by hypothesis.
Fix a€ Z(A). By induction on the reduction sequences starting from a or b
to show that if (Ax:A.b)-ar>1t then t € Z(B):

m if (Ax:A.b)-ar>1 b[a/x]| then b[a/x]| e Z(B) by hypothesis;

m if (Ax:A.b)-ar>1(Ax:A.b")-a because br>1 b’ then b’ € Z(B) by (2) of
Proposition 22.4, so (Ax:A.b")-ae RZ(B) by induction hypothesis;

m if (Ax:A.b)-ar>1(Ax:A.b)-a" because ar>1 a’ then a’ € Z(A) by (2) of

Proposition 22.4, so (Ax:A.b)-a € Z(B) by induction hypothesis.
Since (Ax:A.b)-a is neutral, by (3) of Proposition 22.4 (Ax:A.b)-ae 2Z(B),
so Ax:A.be Z(A— B) by definition of Z. O]
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| l | Strong normalisation

Proposition 22.7. Let t: T be a term and let FV(t) S {x1:A1,...,xn: An}. Let
ai€ R(A;) forall1<i<n. Then tlai/x1,...,an/xn| € Z(T).

Proof. (i)
By induction on the term t
mif t=x; forsome l<i<nthen T =A; and
tlai/x1,...,an/xn] = aj € Z(A;) by hypothesis.
m if t=m1t’ then t'[a1/x1,...,an/xn] € Z(T x B) by induction hypothesis.
So tla1/x1,...,an/Xxpn] =1t [a1/X1,...,3n/Xxn] € Z(T) by definition of Z.
m if t=mot’ then t'[a1/x1,...,an/xpn] € Z(B x T) by induction hypothesis.
So t[a1/x1,...,an/Xxpn] = W2t [a1/X1,...,3n/Xxn] € Z(T) by definition of Z.
m if t=(t1,tp) then T = T1 x T, and by induction hypothesis
t1[a1/x1,...,an/Xxn] € Z(T1) and to[a1/x1,...,an/xn] € Z(T2). Then

tlai/x1,...,an/xn] =(t1[a1/x1,...,an/xn], t2[31/X1,-..,an/xn]) €
R(T1 % T2) by Proposition 22.5. —
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| l | Strong normalisation

— Proof. (ii)

m if t=ty-tp then t1[a1/x1,...,an/xn] € Z(B— T) and
tola1/x1,...,an/Xxn] € Z(B) by induction hypothesis.
Hence
t[al/xl,...,a,,/xn] = t1[al/x1,...,a,,/xn] . tg[al/xl,...,an/xn] 6%(7—) by
definition of Z.

m if t=Ay:B.t; then T=B— Ty and for all be Z(B),
t1[a1/x1,...,an/Xn, b/y]l € Z(T1) by induction hypothesis.
Hence tla1/x1,...,an/xn| = Ay :B.t1|a1/x1,...,an/xn| € Z(B — T1) by
Proposition 22.6. []

(456 )



| l | Strong normalisation

Theorem 22.8. For every term t of type T, te Z(T).

Proof.

Let FV(t) S {x1:A1,...,xn:An}. By (3) of Proposition 22.4 being x;
irreducible and neutral, x; € Z(A;).

Hence by Proposition 22.7, t[x1/x1,...,xn/xn| =t € R(T). []

Theorem 22.9 (Strong normalisation). Every term is strongly normalisable.

Proof.
Let t be a term of type T. By Theorem 22.8 te€ Z(T) so t is strongly
normalisable by (1) in Proposition 22.4. []
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| l | Discussion

The strong normalisation property is extremely powerful: it tells that every
element in the class of computable functions which can be represented in the
simple theory of types is a total function.

In more complex type theories this result is critical, and often invalid.

Also, it has deep consequences in logic, which will be remarked in due time,
after introducing the so-called Curry-Howard isomorphism.
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| I l Dependent types

The simple theory of types is a nice theory with many good properties, like

strong normalisation. But it fails to model complex mathematics.

The situation is similar to propositional logic which have to be extended to

first-order logic to cope with real mathematical theories. Indeed, as we will

see in the following, the comparison with propositional logic is quite precise.

There are many ways to extend the simple theory of types. However, one way,
introducing dependent types, proved to be extremely useful and with deep
consequences, both practical and theoretical.

In this lecture we want to sketch the fundamentals of dependent types, to
grasp the main idea but leaving out most of the theory, which is far more
complex than the one of simple types, and still researched.
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| I l Dependent types

The basic idea is to define types and terms together by induction, by means
of a set of inference rules. Along with the presentation of the inference rules,
we describe and comment the related concepts.

The conclusion and the premises of each inference rule are judgements:
m a context judgement has the form I'ctx, where I' is a context;

m a regular judgement, or simply a judgement, has the form I'-=t: T where
tisa termand T is a type;

m an equivalence judgement, or simply an equivalence, has the form
'ty =ty: T where t1,ty are terms and T is a type.

Therefore, the terms and types are those expressions which are generated as
conclusions of valid derivations formed by the inference rules shown in the
following slides.
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| I | Contexts

First, we introduce contexts: a context is a finite list of distinct typed
variables. As usual, we assume to have a predefined infinite and recursive set
of variables. We write A:%; with i € N to mean that the expression A is a
type (this will be refined shortly).

Then, the inference rules governing context judgements are

' A:%
ctx—EMP ctx—EXT
o CtXx [ x: Actx

that is, the empty context is a valid context, and if A is a type in I', then
I',x:Ais a valid context provided the variable x does not appear in T.

The fundamental inference on a context allows to derive a typed variable:

X1:A1,...,Xn AyCtX
X1: A1, .. Xn Ap e XD A;

Vble

with 1 <i<n.

(463)



| | | Judgemental equivalence

Equivalence judgements are governed by a number of rules. Some of them are
specific for each type constructor, and they will be introduced later.
First of all, we want to say that = is an equivalence relation between terms:

I'Ha:A I'Fa=b:A I'Fa=b:A THb=c:A
=—refl =-—sym =—trans

Fa=a:A 'HFb=a:A 'Fa=c:A

and substituting equivalent types is licit:

I'a:A TH-A=B:%; I'a=b:A TTH-FA=B:%
=—subst =—subst—eq

'a:B I'Fa=b:B

Equivalence, or judgemental equivalence, wants to model the fact that two
terms are equivalent with respect to the reduction rules, similarly to
pB-equality. However, the reduction rules are more complex, and they will be
specified as inference rules.

( 464 )



l | l Universes

An important feature of dependent types is that there is no strict distinction

between terms and types: every type is also a term. However, types as terms
have a universe as a type.

Universes are organised in a cumulative hierarchy indexed by natural numbers,
thus %; is a term in the type %j.1. Also, if A is type in the i-th universe, it is
SO in every universe above .

I'ctx
% —intro
I'E=%; %1
I'=A:% I'A=B:%;
9 —cumul % —cumul—eq
[ ] [ ]
(1465 ) .



l | l Universes

It is important to remark that there is no maximal universe.
In fact, it could be proved that the existence of a maximal universe induces

the Burali-Forti paradox.

Hence, it makes sense to not have universes at all, or to have an infinite
amount of them, indexed by a limit ordinal. We consider the only possibility
for the second case which provides an effective theory.

The system with no universes is interesting, anyway: it enjoys some properties,
like normalisation, which are difficult, if not impossible, to show in the system

with universes.

This fact also makes evident that adding universes really makes the type
system more powerful, essentially a real higher-order system.
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| | | Dependent function spaces

Dependent function spaces, sometimes called dependent products, are types
describing the dependent functions from A to B.

A dependent function f from A to B, notation f :IIx:A.B, maps an element
a of Ain an element f a of Bla/x].

For example, an n-vector of reals can be represented as a list of reals whose
length is n. Then, the 0 vector is a dependent function, taking n as an
argument, and yielding the list of length n whose elements are all 0.

Indeed, to show significant examples, one should say that IT can be
interpreted as the V quantifier of x of type A, and the type B, depending on
x, is a formula describing the elements of the target type.

When B does not depend on x, i.e., when x ¢ FV(B), we get the usual
function space A— B as in the simple theory of types.
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| | | Dependent function spaces

The rules to form a dependent function space are the following:

'A% T,x:A-B:%
I'-TIx:A.B:%
r-A=A":% T,x:A-B=B":%;
FFIx:A.B=TIx:A.B":%;

I[T—form

[I-form—eq
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| | | Dependent function spaces

The rules to construct a dependent function, using the A constructor, are

I'x:Arb: B
I'FAx:A.b:IIx:A.B
I'x:A-b=b":B THA=A":%;
FFAx:Ab=Ax:A.b :TIx:A.B

I[I-intro

[T-intro—eq

The equivalence introduced in the —eq rule says that = is a congruence with
respect to abstraction.
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| | | Dependent function spaces

The rules to apply a dependent function, using the - operator, are:

'Hf:Iix:A.B TFa:A
I'+fa:Bla/x]
'Ff=g:MlIx:A.B THa=b:A
I'Hfa=gb:Bla/x]

[T—elim

[T-elim—eq
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| | | Dependent function spaces

The reductions associated to dependent function are 8 and n, captured by the
following inference rules:

ILx:AFb:B TFHa:A
[F (Ax:Ab)a=ba/x]: Bla/x]
I'Ef:IIx:A.B
I'FAx:Afx=f:IIx:A.B

—comp

[T—uniq

It is worth observing that, when x ¢ FV(B), i.e., when the function space is
not dependent, these rules coincide with the f and 7 reductions of the simple
theory of types about the A— B type.
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| | | Dependent pair types

A dependent pair type, written as Zx:A. B, also called dependent sum, is a

type whose extension could be described as the set of pairs (a,b) such that
a:A and b:B[a/x].

As an example, in Computer Science, consider a record in a data base
describing employees at the university: if the employee is a professor, their
record will contain a list of taught courses; if the employee is a lab technician,
their record will contain a list of the served laboratories.

Indeed, many examples can be easily shown when considering that X can be
interpreted as the 3 quantifier of x of type A of a formula B depending on x.

When B does not depend on x, i.e., when x ¢ FV(B), we get the usual
Cartesian product A x B as in the simple theory of types.
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| | | Dependent pair types

The rule to form a dependent pair type is

'A% T, x:AFB:%;
I'-2x:A.B:%

>—form

And the rule to construct a dependent pair is

I'-2x:A.B:% Tka:A I''x:A-b:B

I'(ab):Zx:A.B

(473)
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| | | Dependent pair types

The elimination rule for dependent pairs codes induction:

I'-2x:A.B:%
I'Findsy.a g:TIC: (Zx:A.B) — %,
g:Tx:Ally:B.C(x,y),
p:(Zx:A.B).Cp

Y—elim

It says that, given a formula C depending on a dependent pair, given a proof
g mapping x and y to C(x,y), and given a point p which is a dependent pair,
the induction tells that the property C holds on p.
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The reduction associated to dependent pairs is
['F2x:A.B:% I'EC:(Zx:A.B) — %

I'H(a,b):Zx:A.B THg:TIx:Ally:B.C(x,y)
['~indsy.aB Cg(a)b)Egab: C(a) b)

2—comp

that is, computing induction on a pair, yields the property on that pair as
established by g.
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In a similar vein, more types can be defined, each one equipped with a
formation rule, a number of introduction rules, one for each constructor, an
elimination rule stating the induction principle, and a number of computation
rules, showing how induction reduces when applied to an instance of a
constructor. Indeed, even a generic syntax to model types can be developed.

In particular, the unit type (1), the empty type (0), the coproduct type A+ B
of the simple theory of types can be easily defined.

Interestingly, an important type can be defined: equality a=4 b, with a,b: A.
Its elements are the ways to show that equality between a and b holds.
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The type theory illustrated so far is one of the many variants of Martin-Lof
type theory. This theory has been used to define many contemporary
functional programming languages, e.g. Haskell, and it has many deep and
not yet completely understood properties.

However, identity types, i.e. a=4 b, can be interpreted as the space of paths
from a to b in a topological space. Together with a subtle axiom, univalence,
the theory of dependent types can be then interpreted in homotopy spaces
and shown to be a good and deep description of them.

This theory is known as homotopy type theory, which has been under deep
research in the last years.
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Homotopy type theory has been introduced in The Univalent Foundation
Program, Homotopy Type Theory: Univalent Foundations of Mathematics,
Institute for Advanced Studies, Princeton (2013).

The core of dependent type theory, as described in this lecture, has been
derived from Chapter 1 of that book.
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| I l Motivation

Consider the following
Proposition 25.1. There are a and b irrational numbers such that a® is

rational.

Proof.
Let a=b=+2. Then ab =v?2
case the statement is proved, otherwise pose a= \/5\/§ and b=+v2. Then

ab:(\/ﬁﬁ)ﬁz\/f:z. u

is either rational or irrational. In the former

This proof is correct but still unsatisfactory: at the end we don’t know a pair
of irrationals with the stated property. We have a choice between two
candidate pairs but no way to decide which pair satisfies our requirement.
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On the contrary the following proof is different:

Proof.

Let a=+/2 and b=log,9. It is well known that a is irrational but also b is.
Indeed, if log,9=m/n for some m,neN then by the properties of logarithms,
2M =9" which is impossible since the left-hand of the equality is even while

the right-hand is odd. But a? = v/2'°82° = 2(l0g29)/2 — plog3 _ 3 []

Here the statement says that there are two irrationals a and b such that a? is
rational and the proof provides an evidence for this exhibiting such a pair.
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In general, we would like that any time we prove a statement of the form
AV B or dx. P, we can indicate which disjunct holds between A and B or a
value for x. And we would like that these pieces of information lie in the proof.

More precisely we would like to say that a proof for statements of these forms
would consist of an algorithm that indicate the true disjunct or constructs a
value for x.

This attitude is perfectly reasonable but comes with a price: we cannot use
anymore axioms that directly violate the requirement. Indeed, the Law of
Excluded Middle says that Av = A for any formula A, but it provides no way
to decide which of these mutually exclusive facts holds.
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But rejecting the Law of Excluded Middle is not sufficient. There are other
common principles posing problems.

For example the Axiom of Choice. In one of its consequences, the already
cited Tarski-Banach theorem, we can cut a sphere into a finite number of
pieces so that we can reassembly two spheres identical to the original one.
The proof ‘constructs’ the pieces using the Axiom of Choice. But any
non-mathematician would call that result a miracle unless you show how to
cut the original sphere and how to reassemble the pieces! And any
mathematician would note that the proof does not provide an effective way
to calculate the shape of the pieces.
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Indeed, we are interested in systems where proofs are a sort of algorithm to
construct the results implicit in their statements.

This attitude toward Mathematics is called constructivism and it produced a
different kind of logical systems. In these systems, principles like the Law of
Excluded Middle are rejected or accepted on the basis that they permit or
deny the possibility to ‘construct’ the objects their statement imply to exists
or the possibility to make the choices required in the proofs.

There are many constructive systems and many variations on the theme.
Different philosophical foundations have been proposed to support the
constructive approaches, and there are degrees of constructiveness in the
logical system which claim themselves to adhere to these approaches.
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| | | Intuitionistic logic

Among the many constructive system, intuitionistic logic has a special place.
Historically it has been the first attempt to capture in a formal system the
original idea of a constructive approach to Mathematics. Practically, it is the
simplest, most studied, and best understood system in this line of thought.

In the following we will introduce intuitionistic first-order logic showing some
of its main features. Differently from the study we pursued of classical
systems, we will not prove every result and we will easily skip over some
important parts: the field of constructive mathematics is wide, deep, and
complex, and our objective is to show how and why a non-classical system
could be of interest.
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Syntactically, intuitionistic logic is very similar to classical logic. In the
propositional case formulae are formed in exactly the same way. In the
first-order case terms and formula are constructed identically.

The difference lie in the construction of proofs: the valid intuitionistic proofs
are the classical proofs in natural deductions where the Law of Excluded
Middle does not appear. In other words, the propositional calculus and the
first-order calculus are identical to the corresponding classical calculi except
that the Law of Excluded Middle is dropped.

However, this is not enough when dealing with theories: we must ensure that
axioms are constructive as well.
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We may think that intuitionistic logic is less expressive than classical logic:
possibly there are statements which are provable in the classical system, but
cannot be proved in the intuitionistic system because they use the Law of
Excluded Middle in an essential way. On the contrary, every result which can
be proved in an intuitionistic system is also valid in the corresponding classical
system because each intuitionistic proof is also a classical derivation where
there is no application of the Law of Excluded Middle.

In a sense the above remark is correct. But in another sense it is not. ..
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...since the ability to prove more having an additional inference rule, may
lead to prove more theories to be not consistent.

For example, Church Thesis in computability theory says that a function

N — N is computable if and only if there is a Turing machine computing it.
If we say that every function we can write in arithmetic is computable, we get
the so-called formal Church Thesis. It turns out that the formal theory of
arithmetic plus the formal Church thesis is a perfectly reasonable intuitionistic
theory, which can be proved to be consistent with respect to (classical)
arithmetic. On the contrary, the very same theory in classical logic turns out
to be contradictory.

The reason is simple: in classical logic it is possible to prove that a non
computable function exists by contradiction. So the formal Church thesis,
which asserts that every function is computable, leads to inconsistency.

In intuitionistic logic the proof which says such a function is not computable,

cannot be carried on.
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It is important to remark the deep mathematical meaning of the example: we
would like to write a theory of computable functions. However, this is
impossible in classical logic, unless we accept to describe a wider class of

functions.

We really want to study what happens when considering computable functions
only. In the end, it is the mathematical theory of Computer Science!
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From another point of view, every theorem in classical logic can be proved in
intuitionistic logic modulo a translation. The precise statement is as follows:

Definition 25.2. The Godel-Gentzen translation is a map of formula to
formulae inductively defined as:

= (MY=T1, (W"=1;

= for any A atomic (A)"N = 2-4;
= (AnB)Y =(A)" A (B)Y;

= (AvB)N ==(-(4)" A= (B)")
= (458)" = (4)" 5 (B)";

s (Vx:s. AV =vx:s AV,

s (Ax: s.A)V = vx: s.o(A)V.
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Proposition 25.3. In classical logic, for any formula A there is a pair of proofs
m1: FAS (AN and 15 F(A)V S A

Proof. (i)
By induction on the formula A:

s A=1,T: thus (L)VN=Land (T)N=T,soFL>Land -FT>T by ol.
= Ais atomic: hence (A)N =--A and

AP [2A]

1 2 E
Al [HA] 1
~E ———— lem 1 — IE
1 Av A [A] A
—]2 vE!
1= A A
:)I1 :)I2
A> 1A —ADA o
(510) : [ :
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— Proof. (ii)
s A= BAC: by induction hypothesis there are - B> (B)V, +(B)N > B,
FCo(CO)V, F(CO)N o C, and (AN =(B)NA(CON so

BACT [BACE o [(B)VAOM (B AN

5 c T e T v "
8" (" . c
B A BAC IAl'
BAaCo(BYNA(C)N ” (BYNA(C)NsBAC ” o
(511) ! 1 !
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— Proof. (iii)

= A= Bv C: by induction hypothesis there are - B> (B)V, (B)N > B,
FCo (O, H(CO)VNoC, and (AN == (~(B)N A=(C)V) so

B (o
DAY b B AN
B)Y =BV QN SV 2
[Bv C]* 1 o 1 F
vE?2
L iy

- (~(B)N A=(O)Y) |1

Bvcaﬁ(ﬂ(B)’Vm(C)’V) _
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— Proof. (iv)
(B[O
B8] B __ [~C)? C .
= —13 L —14
~(B)" ~(O)V R
(B AN (B A~(OM]
]’ 1
[B]1 Cv—uCIelm BVCVI2 BVCLE2
Bv-B " BvC " BVC vE
Bv C o vE
~ (—I(B)N A —I(C)N) >BvC
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— Proof. (v)

= A= B> C: by induction hypothesis there are - B> (B)V, - (B)N > B,
FCo (O, H(ONSC, and (AN =(BYN o (C)N so

(B 8]
LELS R (B> (B
: ()"
(L c
(B)ND(C)N 1 B> C ! ;|
(B> C)D((B)ND(C)N) ((B)ND(C)N)D(BD C) o

(514) |||
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— Proof. (vi)

s A=-B: by induction hypothesis there are - B> (B)N, (B)N o B, and
(AN ==(B)N so

(BN 181
L S () 4 N L
= |2 1 P2 )
-(B)N | B p
—|B:)—|(B)N i —|(B)N:)—|B ” .
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— Proof. (vii)

= A=Vx.B: by induction hypothesis there are - B> (B)N, - (B)N > B,

and (A)N =vx.(B)N so

[Vx.B]* [vx.(B)N]*
B VE (B)N VE
(B)" ;8
vx.(B)N ’ Vx.B !

:)I1

(Vx.B)> (‘v’x. (B)N) (‘v’x. (B)N) > (Vx.B)
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— Proof. (viii)

= A=3x.B: by induction hypothesis there are - B> (B)V, - (B)N > B,
and (A)N =-vx.~(B)N so

[B]°
- [vxa(B)V)
RTINS
[3x. B]* 1 "
N JE2
wx (BN

(3x.B) > ~vx.~(B)N
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— Proof. (ix
9 (B
B
[~(3x. B)}_1 dx.B iIE
©"
vx.(B)" RICARCIL
1
(3x.B) v =(3x. B) e [3x. B]* Ix.B lEl
dx. B 3 .
_I(VX._I(B)N)DHX.B
. J



| | | Expressive power

Proposition 25.4. If n: T+ A in classical logic then there is
y {(y)N Y€ F} = (AN in intuitionistic logic.

We will not prove this theorem: who is interested can inspect it having a look
at the references at the end of this lesson.

The proposition has a number of consequences: the relevant ones to us are

m each classical theory and thus each classical proof can be translated into

intuitionistic logic, yielding a classically equivalent result. So classical
logic is not really more expressive than intuitionistic logic.

m |ntuitionistic logic is more expressive than classical logic since it allows to
distinguish formulae which are classically equivalent.
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A good introduction to the constructive way of reasoning can be found in Anne
Sjerp Troelstra and Dirk van Dalen, Constructivism in Mathematics, volume |,
Studies in Logic and the Foundations of Mathematics 121, Elsevier, (1988).

There are many ways to translate intuitionistic logic into classical logic. A
survey can be found in Anne Sjerp Troelstra and Helmut Schwichtenberg,
Basic Proof Theory, Cambridge Tracts in Theoretical Computer Science 43,
Cambridge University Press, (1996).
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| | | Heyting algebra

Definition 26.1 (Heyting algebra). A Heyting algebra # =(H;<) is a
bounded lattice such that for every x,y € H there is c € H, the relative
pseudo-complement of x with respect to y, notation x >y, such that

1. xANc<=y;
2. for every ze H such that xAz<y, z<c.

In other terms, c is the maximal element such that xAc<y.
The relative pseudo-complement of x € H with respect to L is called the
pseudo-complement of x and it is denoted by —x.
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Examples:
m Every Boolean algebra is also a Heyting algebra.

m Every totally ordered set forming a bounded lattice is a Heyting algebra.
In particular x>y =y when y <x, and x>y =T otherwise.

m The lattice of open sets in any topology is a Heyting algebra. In
particular A> B is the interior of AU B.

The last example shows that a Heyting algebra is not always a Boolean
algebra since the interior of A°u B is usually different from AU B, or in
logical terms A> B# AV B.
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Proposition 26.2 (Adjunction). In every Heyting algebra, for every x,y, z,
x<y>zifandonly ifxAny<z.

Proof.
If x<y>zthen xAy<yA(y>z) since A is monotone, and yA(yDz)<z
by definition of o, thus x A y < z by transitivity.

If x Ay <z then x <y >z by definition of o. []
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Fact 26.3. In any Heyting algebra for each element x, x A x = L.

Proof.
By definition of bottom and pseudo-complement L <xA-x< 1. []

Fact 26.4. In any Heyting algebra for all elements x and y, x <y if and only if
x>y=T.

Proof.
Since x=xAT if x<y, xoy=T being T the maximal element z such that

xAz<y. Conversely, if xoy =T then xA(xDy)=xAT=x<y by
definition of pseudo-complement. []
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Fact 26.5. There is a Heyting algebra such that for some element x,
XV x#T.

Proof.
Consider the total order 0 <1/2 < 1. It is immediate to check that it is a
Heyting algebra. But 1/2v—1/2=1/2v0=1/2#1=T. ]
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Proposition 26.6. Every Heyting algebra is a distributive lattice.

Proof.

It suffices to prove x A(yVvz)=(xAy)V(xAz).

By definition of v, y<yvz and z<yV z, thus by definition of A, xAy <x
and XAy<y<yvz soxAy<xA(yVz).

Symmetrically, it holds that xAz<xA(yV z).

Then by definition of v, (xAy)V(xAz)<xA(yV2z).

Conversely, by definition of v:
XAy <(xAy)V(xAz)and xAz<s(xAy)V(xAZz).
So, by definition of o:
y<(xo2(xAy)Vv(xAz))and z<(x2(xAy)V(xAZ)).
Thus by definition of v, yvz<(x2(xAy)V(xAZz)).
Then by definition of o, xA(yVvz)<(xAy)V(xAZz). ]
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For the sake of simplicity we will consider just pure logic instead of a generic
theory in the following. The results can be naturally generalised.

Definition 26.7 (Semantics). Fixed a Heyting algebra # = (H;<) and a map

v: V — H evaluating each variable in some element of H, the meaning [A] of
a propositional formula A is a map from the set of formulae to H inductively

defined as
1. if A=x a variable, [A] = v(x);
2. [T1=T and [L] = L;

3. [BACI=IBIAIC], [BvCl=I[BIvIC], [B2C]=1B]1>1C], and
[-B] =~I[Bl.
We say that a formula A is valid or true in the model (#,v) when [A] =T.
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Theorem 26.8 (Soundness). Ifm: T+ A is a proof in the intuitionistic natural

deduction calculus then in every model (#€,v) such that each G €T is valid,
A is true.

Proof. (i)

Fixed a generic model, by induction on the structure of a proof n: A+ B with
A a finite set of assumptions, we prove that ApealD] < [B]:

m if  is a proof by assumption B€ A, so ApealD] < [B] by definition of A.

m if  is an instance of T-introduction B=T, thus by definition of T,
ApealD]l =T =[BI.

m if 7 is an instance of L-elimination by induction hypothesis and by
definition of L, ApepalDl <[L]=L<[H].

m if 7 is an instance of A-introduction B = B; A B> and by induction
hypothesis ApealD] < [B1] and ApepalD] < [B>], so by definition of A,
ADealD] = [B1] A [B2] =[B1 A Bo] = [BI. —
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— Proof. (ii)

m if m is an instance of Aj-elimination or Ax-elimination then by induction
hypothesis ApealDl < [BA B1] =[BIA[B1]l or ApealDl =By A Bl =
= [B1] A [B1, respectively. Thus by definition of A, ApealD] <[B] in
both cases.

m if 7 is an instance of Vvi-introduction or Va-introduction then B= B Vv B>
and by induction hypothesis ApealD] < [Bi1] or ApealD] < [Bol,
respectively. Thus by definition of v,

ApealDl < [B1l vIB2]l =1B1 Vv B2] =[B] in both cases. —

Observe how all the cases till now have been proved exactly in the same way
as we did on Boolean algebras.
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— Proof. (iii)
m if 7 is an instance of v-elimination, by induction hypothesis

[C1] A ApepalD] < [B] and [Co] A ApealD] < [B], so by definition of o,
[C1] = ApealDI > [B] and [C2] = ApealDl > [BI, thus
[G1IVIG] =1C v Gl < ApealD] o [B]l. Hence by definition of o,
[C1V G A ApealDI < [BI.
Since by induction hypothesis ApealD] < [C1 v (5], by definition of A,
[C1V Gl AApealD] = ApealD] = [B]. —

Observe how this case and the following ones use the properties of Heyting
algebras. Also, note that by its definition "A=A> 1 in a Heyting algebra.

(531) !l!
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— Proof. (iv)

m if 7 is an instance of >-introduction, B = B; > B> and by induction
hypothesis [B1] A ApealD] < [B]. So by definition of o,
ADealD] = [B1] o [B2] = [B1 = Bo] = [B].

m if 7 is an instance of >-elimination by induction hypothesis
ApealD] < [C > B] =[C] > [B] thus by definition of >,
[CI A ApepalD] < [B]. Since by induction hypothesis ApealD] < [C1, by
definition of A, [C] A ApealD] = ApepalD] < [B].

m if 1 is an instance of —-introduction, B =-C and by induction hypothesis
[CIAApepalD] <[L] = L. So by definition of —,
ADealD] = [C] =[~C] =[BI. —
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— Proof. (v)

m if 7 is an instance of —-elimination, by induction hypothesis
ApealDl < [~ C] = ~[C] thus by definition of =1, [C]1 A ApealDl < [L].
Since by induction hypothesis ApealD] < [C], by definition of A,
[CI A Apeal Dl = Apeal Dl < [L] = L < [B] by definition of L.

Now consider m: I'= A as in the statement of the theorem: since the proof &
uses just a finite number of assumptions I'g €T, by the induction above
AGer,[G] < [Al. But for each GeT, [G] =T by hypothesis, thus

AGery,[Gl = T =< [A] =T by definition of T. So by anti-symmetry [A] =T. L[]
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We will show a simplified completeness result. A more general result, which
comprehends assumptions and theories, can be easily obtained by extending
the presented core along the guidelines we followed in the classical case.

Theorem 26.9 (Completeness). [If the propositional formula A is valid in any

Heyting model (#€;v) then A is provable in the propositional natural
deduction calculus for intuitionistic logic.

Proof. (i)

Let F be the collection of all formulze. We define A~ B if and only HFA=B.
Evidently, ~ is an equivalence relation over F:

m A~ AsinceFADA;
m if A~Bthen+FFA>Band -B>A, so B~ A;

mif A~Band B~C then HFA>B and - B> C, thus -V A> C but also
FCoBand FBoA so-C>A thus A~ C. >
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— Proof. (ii)
Let H=F/~ and let [A]. <[B]~ exactly when A+ B.
Then (H; <) is an order since
= if [Al. =[A]~, [B]~ =[B']~, and [A]. <[B]-, then [A’]. <[B']~ because
A~A"and B~ B’ thus A+ A, BEB’, and from [A]. <[B]., AF B,
hence A’ B, i.e., [A]l~ <[B']~;
m [A]. <[A]- because AF A;
= if [A]. <[B]~ and [B]. <[A]-. then A B and B+ A, so - A= B, that is
A~ B, ie., [A]~=][B]-~;
= if [A]l. =[B]~ and [B]~. =[C]-~ then A-B and B+ C, so Al C, that is,
[A]. < [C]-. —
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— Proof. (iii)
Also, (H: <) is bounded:
m | =[1]., indeed L+ A for any formula A by LE, so [L]. <[A]-;
m T=[T]., indeed AT for any formula A by TI, so [A]. <[T]-~.
Moreover, (H;<) is a lattice:

m [Al-A[B]-=[AAB]-, indeed AABF A and AABF B by AE, so
[AA B]. <[A]~ and [AA B]. <[B]-; if [C]~ =[A]~ and [C]-~ < [B]- then
CHAand CHB,so CHAAB by Al, that is [C]. <[AA B]-;

= [Al.Vv[B]-.=[AVB]., indeed A Av B and B-Av B by VI, so
[Al~ <[AvV B]~ and [B]- <[AvV B].; if [A]~ <[C]~ and [B]-~ <[C]-~ then
AR C and B+ C,so AvBFE C by VE, thatis [Av B]. <[C]-~. —
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— Proof. (iv)

Observe how up to now, the proof is identical to the one for constructing the
canonical Boolean algebra.

Finally (H; <) is a Heyting algebra: [A]. > [B]. =[A> B]., indeed
AAN(ADB)E B, so [AA(A> B)]. =[A]~ A[A> B]. <[B]~; when

[Al-A[C]. =[AAC]. <[B]., AANCFB,so C+A>B, thatis [C]. <[A> B]..
It is worth noting that —1[A]. = [7A]~ since FA=(A>1).

Let v: V — H be v(x) = [x]|~ for any variable x. —
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— Proof. (v)

By induction on the structure of A we prove that [A] = [A]~ in ((H;

= if A=x, a variable, by definition [A] =v(x) = [x]~ =[A]-;
nif A=T, [Al=T=][T].;
s if A= 1, [Al=L=[1];
m if A= BAC, by induction hypothesis

[Al = [BIAICl =[B]-A[C].=[BAC]-.=[A]-;
m if A= Bv C, by induction hypothesis

[Al=[BlvICl=[B]-Vv[C].=[BvC(C]-.=[A]-;
m if A= B> C, by induction hypothesis

[Al = [Bl>[Cl=[B].>[C].=[B>(C].=[A]-;
m if A=-B, by induction hypothesis

[A] = ~1B] = ~[B]- = [~B]- = [A]-.

(538)
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— Proof. (vi)

By hypothesis of the theorem, A is valid in any model so in particular [A] =T
in (H;<),v).

But in ((H;<),v), [Al~-=1Al=T=[T]., thus A~T, from which T I A.

By Tl and T+ A we get that - A. []

Observe how the proof in the last two slides follows the same line as the one
on Boolean algebras.

(539)



| | | References

Heyting algebras have been introduced by Arend Heyting in 1930 to formalise
intuitionistic logic. An algebraic introduction to Heyting algebras is in George
Gratzer, General Lattice Theory, second edition, Birkhauser, (1996).

The soundness theorem as presented is folklore: the actual presentation derives
from the generalised result on the internal logic of topos theory, which is based
on the fact that the lattice of subobjects of the terminal object in a topos
forms a Heyting algebra. The details can be found in Robert Goldblatt, Topoi:
The Categorical Analysis of Logic, Dover Publishing, (2006).

The proof of the completeness theorem has been adapted from the categorical
version in Peter Johnstone, Sketches of an Elephant: A Topos Theory Com-
pendium, two volumes, Oxford University Press (2002).
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l | | Propositions as types

If we put side by side propositional logical formulae and types in the simple
theory of types, we get:

types | formulae
variable | variable
0 1
1 T
axf anp
a+f avVvp
a— f a>f

This correspondence shows that we can translate any logical formula in a type
and any type in a formula by a one-to-one map.
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l | | Propositions as types

If we put side by side the inference rules in the intuitionistic natural deduction
system, and the term constructors in the simple theory of types, we get:

proof‘assumption Tl LE Al AE1o Vi VE ol SE
term‘ variable « Uo (L) mm iy 6 A

There is an evident one-to-one correspondence which perfectly matches the
one on types.
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l | | Propositions as types

Example 27.1. If A: @ and B: B are terms then (A, B): a x  becomes

A B
a p

anp

Al

Example 27.2. If A: B is a term and x: a a variable then Ax: a.A: a —
[a]”
A

p

a>p

becomes

*

ol

where the label * stands for x.
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l | | Propositions as types

Example 27.3. Consider the proof:

AN A7
1

—=A

ADﬁﬁA B

-E
Il

|2

It gets translated in the typed term:

Axo: Ax1: A—0.x1-x0: A= ((A—0)—0) .
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l | | Propositions as types

The correspondence illustrated so far is known as the propositions-as-types
interpretation and also as the Curry-Howard isomorphism.

At a first glance the simple theory of types is just a way to write proofs and

formulae as linear expressions instead of adopting the tree-like syntax of
natural deduction.

However the logical syntax is coupled with a semantics, and the type theory
with a computational meaning given by the reduction rules.
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| | | Computations, logically

Since every formal proof in intuitionistic logic corresponds to a typed term,
each proof is a program which computes something.

It is possible to associate to each proof an object, which is an evidence of its
type, or its conclusion if you prefer. So the evidence of AA B is a pair of
evidences for A and B; the evidence of Av B is a pair (w,e) with we {1,2}
telling us which disjunct holds and e an evidence for it; the evidence of Ao B
is a function mapping any evidence of A into an evidence of B.

These evidences are the intermediate results of the computation performed by
reducing the A-term associated to the proof. So in a constructive system
proving a statement is essentially equivalent to write a computer program
satisfying a specification given by the conclusion.
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| | | Proofs, computationally

Since typed terms are proofs under the correspondence, we can reduce them
to a normal form. Formalising this process leads to state that every proof
possesses a normal form.

Thus, considering any proof m: = Av B it can be reduced to a proof
n': + AV B in normal form whose last step is either an instance of vl or Vvis.
Hence the conclusion of the last but one step would be either A or B.

Similarly, considering any proof m: - 3dx: s.A it can be reduced to a proof
' F3x: s.A in normal form whose last step is an instance of 3l. Hence the
conclusion of the last but one step would be A[t/x] for some term t,
providing a witness to the existential statement.
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| l | Normalisation

We want to discuss the normalisation process, which has been sketched
before, in the case of intuitionistic propositional logic.

The objective of normalisation is to eliminate the redundant steps in a proof
and to give it a standard format, minimal in a sense.
Here, minimal means “most direct’.

A natural requirement for a proof in natural deduction is that no conclusion of
an introduction rule must be the major premise of an elimination rule. The

major premise is the formula containing as principal connective the one which
is eliminated by an elimination rule.

Also another natural requirement is that discharged assumptions should be

used in disjunction elimination, while the false elimination rule has to derive a
conclusion which is not L.

Finally, although the previous requirements seem evident they can be hidden,
because of multiple subsequent elimination rules which can be permuted.

(549 ) .



| | | Normalisation

The detour conversions are deputed to eliminate detours, i.e., redundant
elementary steps in a proof given by an introduction rule in the major premise
of an elimination rule:

® A rules: . . . .
P o | P |
A_B . in A_B . i
ANB A ANB B
NEq ANE2
A B
® O rules: [A]l
: .
L p
: 1 A
B . - P2 M
ol .
A> B A e
B 5
2 1
( 550 ) -



® V rules:

(551 )

Normalisation

- [A]l [i?]1 L p1
A D pp 1 op3 A
vy .

Av B C C - P2
vEL )
C C
: 1 1 :

. p1 [A] [B] . P1
B . p2 ip3 B
Vio .

Av B C C ' pa
vEL )
C C



| | | Normalisation

Since "A= A> 1 we do not need detour conversions for = rules as soon as
we rewrite them as instances of the o rules. The conversions for > and v are
justified by Proposition 6.2, which allows to join proofs.

There are no detour conversions for 1 and T since these connectives lack an
introduction and elimination rule, respectively.

It is instructive to see these conversions through the propositions-as-types
correspondence:

= A rules: m1{p1, p2)~ p1 and ma{p1, p2) ~ p2;
® D rules: (/lei A.pl)-pgwpl[pg/xl];

= V rules: 6(i1p1,p2,p3)~ p2-p1 and O6(i2 p1,p2,p3)~> P3-p1.

This observation shows that the conversion rules are precisely the reduction
rules of the simple theory of types.
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| l | Normalisation

Detour conversions eliminate obviously redundant steps in a proof. However,
there are instances of the disjunction elimination rule that are indeed
redundant, those in which one of the discharged assumptions is not used.
This fact leads to define the following simplification conversions: if in

[AI' (8]
ip1 ip2 P

Av B C C
C

vE!?

either the assumption A in po is not used or the assumption B in p3 is not
used then we can use po or p3, respectively to prove the conclusion.
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Normalisation

§P1§P2 : P3
AvB C C

[A]*
P P2 o3
Av B C C

vE!?

. P2

- P3



| l | Normalisation

Moreover, the instances of the L elimination rule in which the conclusion is L
are obviously redundant and we can apply another simplification conversion to
eliminate them.

In the Curry-Howard isomorphism, these conversions map to the admissible
reductions:

= §(p1, K p2,p3) ~ p2;

= 5(p1,p2, K p3)~ p3;
= Llop~p.
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| l | Normalisation

Sometimes detours and simplifications cannot be directly applied because they
are hidden inside a proof. This happens when we apply an elimination rule
whose major premise is an application of the disjunction elimination rule.

In those cases, we can move the disjunction elimination downwards,
eventually revealing hidden detours and simplifications.
The rules to do so are called permutation conversions.
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l | | Normalisation

® A elimination:

ik
ip1 P2 i op3
AvB CaAD CAD
vE!
CnAD
/\E1
C
(Al (8]
Cpr ip iops
AvB CaAD CAD
vE!
CnAD
/\E2
D

(557)

(Al [B]*
| L po : p3
pir CAD CAD
/\E1 /\E1
Av B C C
c vE!
1 1
A] 8]
| L po : p3
Pt CAD CnAD
AE2 AE2
Av B D D
D vE!
1,0



| | | Normalisation

®m | elimination:

[A]* ['5.3]1 [f\]1 18"
pL P2 P | L p P3
AvB 1 Lo, p1 L R
— 1 — 1
1 Y AvB C
?J_E C vE!L
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| | | Normalisation

® DO elimination:

(A" (8]
Pt ip iop3 |
AvB Co>D Co>D B
vE!
CoD C
oE
D
A LI
. P2 i opa . p3 i pa
~ - P11 CoD C - CoD C .
Av B D D
vE!
D
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| | | Normalisation

® Vv elimination:

AN (8]
. . . 2 2
P1 P2 P3 [{5] [L?]
AvB CvD CvD ot §P4 §P5 ~
CvD S FEE
vE?
E
(A" [C]? D] B [c]’ [D
. P py lps ops Pp3 lps ops
N - p1 CvD E E CvD E E
Ay B = VE? = vE3
V
vE!L
E
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| | | Normalisation

By applying all these conversions, mimicking the reduction process of the
simple theory of types, we get the following result

Theorem 27.4 (Normalisation). Each derivation in intuitionistic natural

deduction reduces to a normal derivation, in which none of the detour,
simplification, and permutation conversions can be applied.

Although we are not going the see the proof since it relies on a very complex
induction, we are able to derive a few consequences which are relevant.

Theorem 27.5 (Subformula property). Let m: T+ A be a normal derivation in
intuitionistic propositional logic. Then each formula in 7 is a subformula of
some formula in TU{A}.
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| l | Normalisation

By looking at the proof of the Normalisation Theorem,

Corollary 27.6. Let m: = A be a normal derivation in intuitionistic
propositional logic.

If A is not atomic or L then the last step is an introduction rule.
An immediate consequence is that disjunction is decidable.

Corollary 27.7 (Disjunction property). Let m: = Av B be a normal derivation

in intuitionistic propositional logic. Then there is a subproof n' of m whose
conclusion is either A or B.

Similar results hold for intuitionistic first order logic, and in particular

Corollary 27.8 (Explicit definability). Let m: +3x.A be a normal derivation in

intuitionistic first order logic.
Then there is a subproof ' of m whose conclusion is A[t/x] for some term t.
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| l | Normalisation

It is important to remark that we have proved these results about
normalisation in the natural deduction system for pure propositional logic.
Choosing a different deductive system although sound and complete, does not
necessarily lead to the same result.

Also adding a theory and thus instances of the axiom rule may lead to
alternative normalisation procedures, or to systems in which normalisation
cannot be obtained.

In these cases the constructive nature of intuitionistic logic, stemming from
Corollaries 27.7 and 27.8 is not automatically achieved.

As an obvious counterexample consider that classical logic is just intuitionistic
logic plus the theory {Av -A: A formula}.
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| l | Normalisation

An extremely important consequence of normalisation is that intuitionistic
propositional and first order logics are consistent.

Suppose = L. Then there is a normal proof m: F L by Theorem 27.4.

Moreover, by Theorem 27.5, every formula occurring in 7 must be a
subformula of L.

Also, by Corollary 27.6, the last step of 7 must not be an introduction rule.
Hence, the last step of 7 is necessarily an instance of LE from the premise L.

Which is impossible, being 7 in normal form.

Observe that, if - L in classical propositional logic or in classical first-order
logic, then ()N in the corresponding intuitionistic logic via the
Godel-Gentzen translation. But this is impossible since (L)N = L.

Hence, the classical systems are consistent, too.
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| | | References

The propositions-as-types interpretation and the normalisation theorem are
illustrated in many textbooks: the lesson has been adapted from Anne Sjerp
Troelstra and Helmut Schwichtenberg, Basic Proof Theory, Cambridge Tracts
in Theoretical Computer Science 43, Cambridge University Press, (1996).
An analysis of normalisation can be found in Sara Negri and Jan Von Plato,
Structural Proof Theory, Cambridge University Press (2001).

A more computer science oriented text is Benjamin C. Pierce, Types and
Programming Languages, The MIT Press, (2002).
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l | l Semantics

The algebraic semantics based on Heyting algebras can be generalised to
provide a meaning to intuitionistic first-order logic.

There are many ways to achieve this result, obtaining a soundness and
completeness theorem:

m Heyting categories;

m Kripke semantics.

(567 )



| | | Heyting categories

Heyting categories are categories with a somewhat involved structure such
that the class of sub-objects of any object form a Heyting algebra, ordered by
the factorisation of morphisms.

Although it is beyond the scope of these lessons to provide a formal account,
the idea is that quantifiers get a meaning by considering the maximal and the
minimal element in a Heyting algebra which is related to the algebra used to
interpret the quantified formula, so these extreme elements are generated by
the relation of algebras, modelling the elimination of the quantified variable.
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l | l Toposes

Since any topos is also a Heyting category, one can limit the class of models
to toposes. It turns out that it suffices to prove a completeness result.

Moreover, a further limitation to Grothendieck toposes suffices too. This

becomes interesting because a topos of sheaves, the prototypical Grothendieck
topos, provides a model which is composed by a collection of almost classical
models a la Tarski, but in the internal set theory of the topos linked together

by a relation modelling the growth of knowledge implicit in the constructive
nature of intuitionistic first-order logic.

These models suffice to prove a completeness result, too.
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l | l Toposes

Models based on Heyting categories, toposes, or Grothendieck toposes are
extremely useful and interesting. However, their study lies far beyond the

scope of this course.

Interested students may find more about this fascinating topic in the courses
about Topos Theory and Categorical Logic.
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| | | Kripke's semantics

The semantics based on Grothendieck toposes can be further specialised to
the category of sets and functions. Again, it is possible to prove a soundness
and completeness result.

This semantics is closer to Tarski's semantics for first-order classical logic, and
it is called Kripke's semantics.

Its precise definition and its properties will be sketched in the next slides: the
definition is quite technical, and difficult to justify (indeed, it is much easier
looking at the categorical description). The soundness theorem poses no
difficulties: it is proved, as usual, by an induction on the structure of proofs to
show that the inference rules preserve validity.

The completeness theorem is similar to the one for classical logic, with a more
involved saturation (the analogous of the construction of a Henkin set given a
consistent set). In the end, using sets, the saturation is just more complex
than the one for Tarski's semantics, but with no conceptual novelties.
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| | | Kripke's semantics

Definition 28.1 (Kripke's structure). Let X be a first-order signature with just

one sort s. A Kripke's structure on X is A = (W,s,{MW}W€W> where (W, <)
is a preorder with a minimum wg € W and M,, is a Z-structure for every
w € W such that

® [sly, € [slp, when u<v;

= for every function symbol f in X, if u<v then [flp, = [flpm, | [SInm,, with
| the restriction of the function on the left to the domain on the right;

= for every relation symbol r in Z, if u<v then [rlp, = [rlm, | [SIpm,. with
| the restriction of the relation on the left to the domain on the right.

Intuitively, a Kripke's structure is a collection of classical X-structures,
extending each other in accord with the indexing preorder.
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| | | Kripke's semantics

In a figure:
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| | | Kripke's semantics

Definition 28.2 (Forcing). Fixed a Kripke's structure (W,s,{MW}MW), a

world w € W, and an evaluation of variables e in M,,, the forcing I of a
formula in w under e is inductively defined as:

B wlke T;

= wlfel;

® wlker(ty,...,tn), with r a relation symbol, if and only if
(It1lw,er s [tnlw,e) € [rlw;

m wlFe AAB if and only if wlF¢ A and wike B;

m wiFe AVB if and only if wilFo A or wik¢ B;

" wlke AD B if and only if, for every u=w, ulf-e¢ A or ulk-¢ B;

= wlke3x. A if and only if there is a€ My, such that wlkgp,/4 A

" wlke Vx.A if and only if, for every u=w and for every ae M,, it holds
ull—e[a/x] A.
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| | | Kripke's semantics

Observe how the forcing relation, when one does not take into account the
worlds beyond w, reduces to the usual semantics for first order classical logic.

In other terms, Kripke's semantics extends the classical semantics by
considering multiple models, each one connected to the others via the <
relation. The interesting aspect is that the ordering of the worlds induces a
coherent extension of domains, and thus of interpretations.

So, we can recover the classical semantics by considering Kripke's semantics
on the trivial preorder with just one element.
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| | | Kripke's semantics

Fixed a Kripke's structure, a formula A is valid in the w world under the
evaluation of variables e on M,, when w I, A.

In turn, fixed a Kripke's structure and an evaluation of variables e on wyg, the
initial world, a formula is valid in the structure under e when it is valid in wp.

A Kripke's model for a theory T is a pair composed by a Kripke's structure
and an evaluation of variables on wg, making all the formulzae of T valid.

Theorem 28.3 (Soundness and Completeness). Fixed a theory T and a
formula A:

m jf =1 A in intuitionistic first order logic, then A is valid in every Kripke's
model for T;

m jf A is valid in every Kripke's model for T, then 1 A.
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| I l Realizability

On a different line, some intuitionistic theories admit a very interesting
semantics that links them to computability.

The prominent one is Kleene's realizability, which interprets the (intuitionistic)
truth of arithmetical statements on natural numbers.

To understand the key idea, let’s fix a good enumeration of all the partial
recursive functions {¢;},_ . Observing that T can be defined as 0=0 and L
as 0 =1, we can decide (realise) whether a formula F with no free variables is
true by providing just a number.

Indeed, any atomic formula has the form t =s which is decidable, so no
additional information is needed to realise it; AA B is realised when we have
two numbers a and b realising A and B, so the pair (a, b) realises AA B; to
realise Av B it suffices to have a number n which tells which disjunct holds,
and another number to realise that disjunct; to realise A> B it suffices to
have the index i of a function ¢; mapping realizers of A into realizers of B.
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| I l Realizability

Definition 28.4 (Kleene's realizability). Let E be a sentence in the language

of arithmetic. Fix a good enumeration {¢;}.  of all the partial recursive
functions.

Then eeN realises E, notation el E, when

IEw

= if E is atomic, i.e., E=(s=1t) then el E exactly when E is valid;
moelfl:
m el AA B when there are a,beN such that e={(a,b), al-F A and bl B;

m el Av B when there are ¢,d € N such that e={c,d), and dIF A when
c=0, and dIF B when ¢ #0;

= el A> B when, for every a€ N such that alk A, ¢.(a) is defined and
pe(a) I B;
= el Vx.A when, for every neN, ¢pe(n) is defined and ¢ (n) - A[S"(0)/x];
= elF3x.A when e=(n,a) and alF A[S"(0)/x].
For a formula A, el A when el Vxq,...,xp. A with FV(A) ={xi1,...,xn}.
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| I l Realizability

The fundamental result is soundness:
Theorem 28.5 (Nelson). IfT'+ A in Heyting arithmetic, and every hypothesis
in T is realisable, so is the conclusion.

Heyting arithmetic is the standard intuitionistic formal theory of naturals: it
will be introduced in the next lecture.

There is not a corresponding completeness theorem because some principles
which cannot be derived in Heyting arithmetic, are still realised. For example,
the already cited formal Church Thesis.

However, the Law of Excluded Middle is easily shown to be non-realisable.
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| | | References

Heyting categories are defined in Peter Johnstone, Sketches of an Elephant: A
Topos Theory Compendium, two volumes, Oxford University Press (2002).

The internal logic of a topos has been introduced by William Lawvere and
an approachable text is Robert Goldblatt, Topoi: The Categorical Analysis of
Logic, Dover Publishing, (2006).

The presentation of Kripke's semantics derives from Saul A. Kripke Se-
mantical analysis of intuitionistic logic, pages 92-130, in J. Crossley and
M.A.E. Dummett editors, Formal Systems and Recursive Functions, North-
Holland Publishing (1965).

Realizability as presented here has been introduced in Sthephen C. Kleene On
the interpretation of intuitionistic number theory, Journal of Symbolic Logic
10, 109-124 (1945).
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| | | Peano arithmetic

Peano arithmetic is the standard formal theory describing natural numbers
and their properties.

It is composed by a series of axioms divided into groups, and it is interpreted
in classical first order logic.

The very same theory interpreted in intuitionistic first order logic is called
Heyting arithmetic. Despite they are syntactically identical, their
interpretations are quite different. For example, in Peano arithmetic it is
possible to show that there are functions which cannot be computed, while
every function which can be proved to exist in Heyting arithmetic, is
computable because of the constructive nature of the logic.
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| | | Peano arithmetic

Peano arithmetic is based on the language generated by the the signature
(N} {0: N, S:N—=N,+,-: NxN—N}; {=: NxN})y .
The first group of axioms defines what is a natural number:
Vx,y.Sx=Syox=y ; (1)

Vx.Sx#0 . (2)

The idea is that natural numbers are the elements of the free algebra
generated by 0 and S. The successor function S given a number x calculates
the next number, x + 1. So natural numbers are written in the unary
representation and they are naturally equipped with a total order structure
with minimum.
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The second group of axioms defines addition and multiplication:

Peano arithmetic

Vx.0+x=x ;

Vx,y.Sx+y=S(x+y) ;

Vx.0-x=0 :

Vx,y.Sx-y=x-y+y .

It is worth remarking the inductive nature of these definitions.

( 584 )
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| | | Peano arithmetic

The third and last group of axioms is a schema: for any formula A

Al0/x] A (Vx.AD A[Sx/x]) > Vx.A

This schema formalises induction on the structure of natural numbers:

®m if A holdsonO

= and assuming that A holds on x we can show that it holds on S x,

= then A holds for every x e N.
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l | | Standard model

The intended model for Peano arithmetic is the structure which interprets the
signature as

® the unique sort into the set of natural numbers denoted by N;

m the function symbols into the zero number, the successor function, and
the usual addition and multiplication, respectively.

Any model, i.e., any pair (.,0) is said to be standard when ./ is the
structure above, up to isomorphisms, while no restriction is posed on the
evaluation o of variables. Although it may be apparently confusing, we adopt
the notation which uses the same symbols to denote the formal elements of
the syntax and their intended interpretation.

In any standard model this convention makes no difference.

Since the purpose of the theory of arithmetic is to characterise the class of
standard models, it would be nice if these were the only models of the theory.
Unfortunately this is not the case.
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| | | Non-standard models

Definition 29.1 (Non-standard model). Any structure A4 on the language of

Peano arithmetic which is not isomorphic to the standard model . but for
some evaluation o of variables is a model (A/,0) of Peano arithmetic, is
called a non-standard model.

In the definition above an isomorphism between structures f: A& — . is
® an invertible function between the universes:
= for each term t, f([tl 4 ) = [t] 4.

If a non-standard model exists it means that there is a structure A4 which

makes Peano arithmetic true but interprets some term into an element e in
the universe which cannot be mapped in some natural number.
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| | | Non-standard models

Proposition 29.2. There is a non-standard model for Peano arithmetic.

Proof.

Define S9(0) =0 and S™™1(0) = SS/(0). Let M =(4,0) be a standard model
of Peano arithmetic, and fix a variable x. Finally, let £ = {x # S'(0): i e N}
and consider the theory T which extends Peano arithmetic with X.

If Zc T is finite, m=max({0}u{n: (x #S"(0)) € £}) is defined.
Posing 0’(x) =m+1 and 6'(y) =0(x) for all the variables y # x, it is clear
that (,0') is model for =.

Then T has a model 91 by the Compactness Theorem 13.1, and 91 is also a
model for Peano arithmetic. Suppose there is an isomorphism 7: 971 — 1.
Since [x]gir = n for some neN, then

[57(0)1on =7 ([S"(0)1om) = 7 (Ix1om) = [XImm
thus [x = S5"(0)]9 =1 which is impossible. ]
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| l | Discussion

The existence of a non-standard model for Peano arithmetic shows that this
theory does not describe exactly the natural numbers and their properties
which can be expressed in the language. Here, not exactly means not only.

The first thought is to try to complete Peano arithmetic to prevent the
construction of a model like the (A", o) above.

Clearly, the shape of the proof using the Compactness Theorem, does not
allow to obtain this result in a direct way.

However, it is not evident whether the existence of a non-standard model is
disturbing: we cannot use the proof of Proposition 29.2 to write a formula
which holds in the non-standard model while it does not in any standard

model. Indeed we used this property to synthesise the non-standard model
from the standard one.
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| l | Discussion

Of course, we can use a theory to separate the non-standard model from any
standard one: this is exactly the purpose of the X theory in Proposition 29.2.

But still it is not clear whether there is closed formula, i.e., a formula with no
free variables, allowing to separate standard models from non-standard ones.

This would be crucial since such a sentence ¢ does not depend on the
evaluation of variables, thus its truth would be defined by the structure of the
model only.

Thus ¢, if it exists, even if true in any standard model, would be false in some
non-standard model, so by the Soundness Theorem it cannot be proved.

If such a ¢ exists, it means that we have a way to separate models within the
theory of Peano arithmetic just by adding an axiom ¢, or its complement —¢.
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| | | References

Peano arithmetic is illustrated in most textbooks about logic.

The existence of non-standard models can be shown in many different ways.
Proposition 29.2 is adapted from John Bell and Moshé Machover, A Course
in Mathematical Logic, North-Holland, (1977).
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| | | Representable entities

Definition 30.1 (Numerals). Given neN the numeral n representing n is
defined as 0=0 and n+1=S 7.
Definition 30.2 (Representation). A relation R =NX is representable in Peano
arithmetic if and only if there is a formula ¢ such that

m if (ng,...,nk) € R then Fpp ¢(n1,...,1%);

m if (nl,...,nk) ¢ R then Fpp —l(/)(n_l,...,n_k);

where Fpa means ‘provable in Peano arithmetic’.

A function f: NK — N is representable in Peano arithmetic if the relation
R={(n1,...,nk,m): m=1(ny,...,ng)} is representable.

A set S <N is representable in Peano arithmetic if it is so when interpreted as
a unary relation.
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Proposition 30.3. [If the relation P, Q < NK are representable in Peano
arithmetic, so are °P, PAQ, and PV Q.

Proof.
Since P and @ are representable there are ¢p and ¢ as in Definition 30.2.

So (n1,...,ng) € =P if and only if (n1,...,n) € P. Thus =¢pp represents =P

because == pp(ny,...,ng) =dp(ni,...,nk).
Also (n1,...,nx) € PAQ if and only if (ng,...,ng) € P and (ny,...,n) € Q.

Thus ¢pprg =dp Adg. Similarly ppyo=¢ppVdg. L]
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Proposition 30.4. The O function is representable.

Proof.
Since 0: N— N we have to find a formula representing Z = {(n,m): m=0(n)}.

Consider ¢po(x,y)=(y =0).
= If (n,m)€e Z then m=0(n), so m=0. Thus ¢o(n,m)=(m=0)=(0=0),
so pa ¢o(n, m) by reflexivity.

= If (n,m)gZ then m#0(n), so m#0. Thus m=S m’ and
¢po(n,m) = (m=0)=(S m =0), so Fpa —po(n, m) from the axioms. [
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Proposition 30.5. The successor function is representable.

Proof.
The formula y = x + 1 represents the successor function S(x) =y. []

Proposition 30.6. The projection functions are representable.

Proof.
The formula y = x; represents the projection U,.k(xl,...,xk) =y. H
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Proposition 30.7. If g and ho,..., hy are representable, so is f obtained by
substitution:

f(x1...,xm) =g (ho(x1 ..., xm)yee s hie(X1 .., Xm)) -

Proof.

Let ¢g and ¢y, ...,¢p, be the formulae representing g(zo,...,zx) =y and
ho(X1,..»Xm) =¥,-.., hi(x1,...,Xm) = y respectively, making explicit the link
between variables, arguments and results. Then the formula

¢r=320,.... 2k Prolz0/Y]
/\.o.

Npn |z /y]
Npg

represents f(x1,...,Xm) =Y. ]
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Proposition 30.8. If g is representable, so is f obtained by minimalisation:

f(xt,..o,xk) =(um.g(x1,...,xx,m)=0) .

Proof.
Let ¢4 be the formula representing g(x1,...,xk, m) = z.
Then f(x1,...,Xx) =y is represented by

bgly/m,0/z] AVm.m<y>-¢pg[0/z] . -

Proposition 30.9. Addition, multiplication and the relation ‘equal to 0" are all

representable.

Proof.
Clearly x+y =2z and xy = z represent addition and multiplication.

Also x =0 represents the relation ‘equal to 0. []
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Fact 30.10. The pairing function {x,y) =(x+y)(x+y+1)/2+x is

representable.
So are its projections m1 and 7».

Proof.

The pairing function is represented by 2z = (x+y)(x+y+1)+2x; m1(z) = x is
represented by Jy.2z=(x+y)(x+y+1)+2x and m2(z) =y is represented by
Ix.2z=(x+y)(x+y+1)+2x. []

Fact 30.11. The function rem(x,y) =z with z the remainder of y /x is
representable.

Proof.
It is represented by Id.y =dx+zAde.eZO0AXx=z+e. []
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To show that a function constructed by primitive recursion is representable we
need a few preliminary results.

Proposition 30.12 (Bézout identity). Let a,beN, be strictly positive.
If gcd(a,b) =1 then there are x,y €N such that ax = by +1.

Proof. (i)

Let S={ax+by: x,y € ZAax+ by >0}. Observe that a€ S for x=1,y =0,
and be S for x=0,y =1, and each element of S lies in N.

Since pcScN, thereis d=minS, thus d€ S so d =au+ bv.

Since d<a, a=dqg+r for some g,re N with 0<r<d.

Thus r=a-dg=a(l-qu)+b(—qv).

Suppose r >0: then re S so d <r, impossible. Hence r =0, i.e., d divides a.
Analogously, d divides b.

Hence 0 <d<gcd(a,b)=1and deN, so d=1. —
1,1
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— Proof. (ii)

Then au+bv =1, that is au=b(—v)+1 with u,veZ.

Let u=bp+s for some p,se Z with 0 <s<b.

Pose x=u—-(p—1)b and y=—-v—(p—1)a. Clearly x,y € Z.
Then ax=au—(p—-1)ab=b(-v)+1—-(p—1)ab=by+1.

Also, x=bp+s—bp+b=b+s5s>0so xeN.
Moreover, ax = by +1>0 thus by =0, but b>0so y=0, i.e., yeN. []
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Theorem 30.13 (Chinese remainder). Let xg,...,xx €N be positive and
pairwise coprime, i.e., gcd(xi,xj) =1 when i #j. Then for every ag,...,ax €N
there is do € N such that do = a; (mod x;) for every 0<i<k.

Proof.

Let N=T1%,x and N;=N/x;, 0<i<k, so N,N;eN.

Observe that gcd(N;,xj) =1 so there are pj,gi € N such that g;/N; = pixj+1 by
Bézout identity.

Define e; =q;N;. Then ;=1 (mod x;) and ¢; =0 (mod x;) for i # .

Let dp = Zl'(:o eja;. Hence

I

k k
do = (e,-a,- + ) ejaj) = (la,- + Y Oaj) =a; (mod x;) . ]
. . i
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Fix ag,...,ak. Let m=max{k,ap,...,ak}+1 and x;=1+(1+i)m!, 0<i<k.

Proposition 30.14. xp,..., X, are pairwise coprime.

Proof.

Suppose p >0 divides x; and Xx;j, i #j. Then p divides x; — ;.

Unfolding the definition of x;,x;, p has to divide (i —j)m!.

Since p divides x;, it holds (1+i)m!=-1 (mod p), thus p does not divide m!,
which implies p > m.

Hence p has to divide i—j, that is i=j (mod p). However, 0<i<k<m<p
and 0<j<k<m<p, hence i =, contradiction. []

Fact 30.15. For each 0<i<k, aj<x;.

Proof.
ai<m<ml<x;. L]
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Definition 30.16 (B function). Define f*(do,d1,i)=rem(1+(i+1)di,dp) and
pd,i) = p*(m1(d), m2(d), ).

Fact 30.17. The functions B* and B are both representable and primitive
recursive.
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Proposition 30.18. For every sequence ag,...,ax € N there is a value d such
that B(d,i) = aj for each 0<i<k.
Proof.

As before let m=max{k,ao,...,ax}+1and x;=1+(1+i)m!, 0<i<k.
Then xg,...,x, are pairwise coprime and all bigger than ay,..., ak.

Hence by Theorem 30.13 there is dp € N such that dp = a; (mod x;) for every
0<i<k. Since x; > aj, rem(x;,a;j) = a; = rem(x;,dp).

Pose d = (dp, m!).
Then B(d,i)=B*(do,m!,i)=rem(1+(i+1)m!, dy) =rem(x;,do) = a;. ]
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Proposition 30.19. If g and h are representable, so is f constructed as:

f(Xl,...,Xk,O) Zg(Xl,...,Xk)
F(X1yees X, m+1)=h(x1,...,x, m, f(x1,...,xk, m)) .

Proof.
If ¢4 represents g(x1,...,xn) =y and ¢y represents h(xy,...,x,,m,q) =y then
we could represent f(xi,...,Xn,y) =z supposing there are py,...,p, such that

Py =z Npglpo/y]|AVi0<i<y>¢pli/m,pi/q,pisi/y] -

This requirement, which is not a representation formula by itself, can be
expressed as a proper formula in Peano arithmetic using the B function:

3p. Blp.y) =21 dg[B(p,0)/y]
AYi.0<i<yoopli/m,B(p,i)/q B(p,i+1)/y] . []
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Theorem 30.20. All recursive functions are representable in Peano arithmetic.

Proof.

Immediate consequence of Propositions 30.4, 30.5, 30.6, 30.7, 30.8,
and 30.19. ]

Corollary 30.21.  All recursive sets and relations are representable in Peano
arithmetic.

Note that it is a constructive proof: given a partial recursive function f it
provides an effective method to build a formula representing f.
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The representation of relations, sets, and functions is taken from Barry Cooper,
Computability Theory, Chapman & Hall/CRC Mathematics, (2004).

The proof of Theorem 30.20 has been adapted from Elliott Mendelson, Intro-
duction to Mathematical Logic, CRC Press.
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| | | Incompleteness theorem

Theorem 31.1 (Godel's Incompleteness Theorem). Let T be an effective

theory which is consistent, and able to represent all the partial recursive
functions. Then there is a closed formula G such that

TWHGandTW-G .

A theory is said to be effective when the set of axioms is recursive, that is
applying a coding to its axioms so that they become a set of numbers, this
set Is recursive.

A coding of Peano arithmetic is a total map g from the expressions of the
syntax (terms, formula, proofs) to N such that

B g is injective;
B g IS recursive;

= g~! on the image of g is recursive too.
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The proof of the incompleteness theorem is complex. It has a difficult part,
the fixed point lemma and a lot of technicalities.
The strategy is to consider the sentence “this sentence is not provable”.
= we will show that there is a coding function that maps terms, formulz,
and proofs into natural numbers;
m hence it is possible to write a formula which says “there is a number p
which is the code of a proof of the sentence x";
m negating that formula we can express the fact that x is not provable;
= we will show a fixed point theorem saying that there exists a fixed point
of the transformation which maps each sentence x to the code of the
sentence expressing that x is not provable;
m thus the sentence G becomes the formula stating that x is not provable
with x substituted with the fixed point;
m the meaning of G is that G is not provable;
m but G must be true in the standard model otherwise the theory would be
contradictory, so the result follows.
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In the following for the sake of simplicity, we will assume the set of variables
in the language of Peano arithmetic to be V = {x;: i e N}.

Definition 31.2 (Coding terms). The Gdédel’s coding function g on terms is
inductively defined as follows:

= g(0)=2-3;

= g(xj)=2-3%-5""1;

s g(St):2.33.5g(t);

s g(t+s)=2-3%.58(t).78(s),
» g(t-s)=2-3°.58(1).78(s),

Thanks to the theorem saying that natural numbers admit a unique
factorisation in primes, g is computable, injective, and g‘1 is computable.
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A few remarks are needed:
®m each code for a term is of the form 2-n with n odd:

m the exponent of the factor 3 tells whether the term is 0, a variable, a
successor, a sum, or a multiplication;

m the parameters of a term, i.e., the index of the variable, or the arguments
of the successor, the sum, or the multiplication, are the exponents of the
factors 5 and 7, in that order.

Hence, it is possible to write a formula in Peano arithmetic that tells whether
its argument is a code of a term by Proposition 30.21. Observe how, by the
same result, one can write representations of the functions extracting the
various pieces of information about a coded term.
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Definition 31.3 (Coding formulae). The Gédel’s coding function g on formulae
extends the coding of terms and it is inductively defined as follows:

= g(T)=2°-3;

= g(1)=2%-3%

o g(tzs):22.33.5g(t).7g(5);
s g(nA)=22.3%.58(A).

— g(A/\B):22.35.5g(A).7g(B);
o g(AVB):22.36.5g(A).7g(5);
s g(A> B)=22.37.58(A).78(B).
o g(VX.A):22.38.5g(A).7g(X);
s g(Ix.A)=22.39.58(A) . 78(x)

Again the coding g is computable, injective, and g~! is computable too.
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A few remarks are needed:

= each code for a formula is of the form 22 n with n odd, so we can
separate the codes of terms from the ones of formulae just looking the
exponent of the factor 2;

m the exponent of the factor 3 tells which kind of formula the code
represents;

m the parameters of a formula are the exponents of the factors 5 and 7, in
that order.

Hence, it is possible to write a formula in Peano arithmetic that tells whether
its argument is a code of a formula, and formulze to tell the various pieces of
information about a given coded formula.
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Definition 31.4 (Coding finite sequences). The Gédel’s coding function g of a

n,-+1

finite sequence ny,...,n, of natural numbers is g(ny,...,ng) = 23-H15;§kp,.+1

with p; the j-th prime number.

It is clear that the coding function is injective, computable, and its inverse is
computable too. Also the codes for sequences can be separated by the codes
of terms and formulz, and the set of codes for sequences can be represented
in the sense of Proposition 30.21 by some formula of Peano arithmetic.
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Definition 31.5 (Coding proofs). The Gédel’s coding function g on proofs
extends the previous coding g and it is inductively defined as:

= if Ais a proof by assumption from T'={y1,...,¥n},
g(A)=2%3-138(.198(0) with g(I') = g(g(r1).-..&(¥n));

. g[FLIEA 72 THE M):24.32.5g<n1).7g(n2).13g(AAB).19g<r);
\ ANB
o g(n: FI;\AAB ,\El):24.33.5g(ﬂ).13g(A).19g(F);
\
. [ Z F;AAB AEQ) _ ot .34 .58(n) . 13¢(B) . 19(D).
\
A _1
(617 ) 0



| l | Coding proofs

— (Coding proofs)
=g (7:TFA vll) —04.35.58(7) . 138(AVB) . 19&(I).
Av B

\
(n:T'+B
\ AVvB
(
\

vI2) — 04.36.58(7).138(AvB) . 198(T)-

m1:THFAVB n: TARC n3:T,B-C

C
24 .37.58(m) . 78(72) . 118(n3) . 138(C) . 198(1).

VE| =

3|) —24.38.58(7) . 138(A=B) . 198&(I).
Ao B

(

\

(11: THFADB 7n5: THEA
\ B
(
\

:E) —24.39.58(m1) . 78(72) . 138(B) . 19&(I)-

—|I) —24.310 . 58(7) . 138(7A) . 19&(I). .



| Coding proofs

— (Coding proofs)

(m1: THF-2A n:THA
\ 1

(— TI) _ 4 212 T S
(1) = 24312, 138(7) 105,

(n: T _L

J_E) —24.313.58(7) . 138(A) . 198(T).
\

| —_n4 714 Av-A 8.
Av A em)_2 .3 13g( Vv )19 :

n:THA

VI) =24.315, 5g(7r) . 13g(VX-A) . 19g(F);

EII) —04.317 .5e(n) . 138(3x-A) . 178(t) . 198(T)-

VE) = 24 . 316 . 5g(ﬂ) . 13g(A[t/x]) . 17g(t) . 19g(F);

_,E) —24.311 . 5g(m).78(72) . 138(L) . 1098(1).

—



| l | Coding proofs

— (Coding proofs)
(nl:FI—EIX.A ny: I,A-B )
=g IE| =

B
04 .318 .5e(m1) . 78(m2) . 138(B) . 198(I).

24 319 13g(VXX =x) . 198

'g‘v’xxx)

— 04,319, 13g(‘v’x,y.X:yDy:X) . 198;

[ ]
0

ax
VX,y.x=yDy=Xx )

x) — 24,319, 13g(‘v’x,y,z.x:y/\y:zDX:z) . 198;

[ |
0

(‘v’xy,zx YAy=zZDX=Z
(nl I'FA[t/x] mo:THt=r )
ax

Alr/x]
2%4.319.56(m) . 78(72) . 136(Alr/x]) . 198(D);

"8

g( Vx1,...,xp. N z.z2=f(x1,...,%pn) ax) -
24 .319 . 138(Vx1,.Xn. 32 2=F(x1,...Xn)) . 1 98- .
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— (Coding proofs)

) — 04,320, 13g(‘v’x.5x750) . 198;

_n4 220 Vx,y.Sx=Syox=y) . 1qg8.
* 8(Vx ) Sx=Syox=y X)_2.3 .138(¥x.y.Sx=Syox=y) .1 8.

ax| — n4 220 Vx.0+x=x 8.
Vx.0+x=x )_2 320 138(¥x.00x=x) . 108,

[ |
0

x) —04.320, 13g(VX.O-x=O) i 198;

[ ]
0

Vx

_n4 220 Vx,y. Sx-y=x- 108.
VX, y.5x-y=x-y+y) X)‘2 13201380y Sxy=xy1y) 168,

[ |
0

"8l A[0/X] A (Vx.AD A[Sx/x]) D Vx.A X) -
24,320, 13g(A[O/X]/\(VX ADA[S x/x])2Vx.A) . 198

i
|
. g(ny5X+y S(x+y) )—
[
|
|

(621 )
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| l | Coding proofs

Although it is long and tedious to verify, g is injective, computable, and g1
is recursive. Also, the coding function is written down to make easy to tell

pieces apart. For example, the code of the conclusion is always the exponent
of the 13 factor.

As before, all the functions telling apart the pieces of information about a

coded proof can be represented in Peano arithmetic, as well as the fact that a
number is the code of a proof.

(622)



l | l Numeral

Definition 31.6 (Numeral). The numeral " A" of a formula A is defined as

"A7 = 5&(A)(0), that is the code of A written in the syntax of Peano
arithmetic.

Similarly, the numeral of a term t is "t = S8(t)(0);
the numeral of a proof m is "7 '= Sg(”)(O);
and the numeral of a sequence is "ey, ..., e, " = S8(e1-en)(().

Numerals allow to internalise the codes: we can indirectly speak of a formula
(term, proof, sequence) by stating a property of its code. As soon as the
property does not rely on the value but on the “meaning” of the code, this is
a perfectly reasonable way to proceed.
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Lemma 31.7 (Fixed point). Let E be a theory in which every partial recursive

function is representable and let A be a formula such that FV(A)={y}.
Then there is a formula 6 5 such that FNV(0a)=® andbF=6a=A["64"/y].

Proof. (i)
First it is provable in pure logic that

- Blk/z] =(3z.z=k A B)

for every formula B and for every term t of the same sort as z.

Let Ag be the map from formulae to formulae defined by
Agz(B)=3z.z="B'AB .

Evidently this function is recursive. —
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— Proof. (ii)
Thus the map Ay defined by

An(g(B)) =g(A#(B))

is total on the image of g and partial recursive.

By hypothesis there is a formula A with FV(A) ={x,y} such that A
represents the function Ayn. In particular it is provable that

F=(y="An(g(B)) ) =A[B/X] .
With no loss of generality we may define
oa=Az(F)
for some formula F to be determined.
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— Proof. (iii)

Al"6a7y]
=Al"Az(F)"/y]
=Al"An(g(F)) /Y]
=3y.y="An(g(F)) " AA
=3y.A["F/x]AA
=dx.x="F'Ady.ANA

Hence posing F =3dy.AAA,

=dx.x="F'AF
=Ag(F)
E6A

(626 )
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| | | Provability predicate

Definition 31.8 (Provability predicate). The formula @ with FV(2) = {x,y}
is defined as

9 = isConclusion(y, x) AisHypotheses(" (), x) AisProof (x) AisFormula(y) .

The provability predicate T is the formula 3x.2 having FV(T)={y}.

Clearly 2["n/x," A7/y] holds exactly when A is the conclusion of the proof
n: = A. Consequently T[TA™"/y] holds when A is provable.

The formulae isConclusion(x, y), isHypotheses(" (), x) (with ()" the numeral
of the empty sequence), isProof(x), and isFormula(y) in the definition of 2
have not been made explicit.

Their definitions come from the fact that the collections of proofs and
formulae are recursive, and the functions to tell pieces apart are computable,
as already remarked.
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| | | Incompleteness theorem

Theorem 31.9 (Godel's Incompleteness Theorem). Let S be an effective

theory which is consistent and able to represent all the partial recursive
functions. Then there is a closed formula G such that

¥s G and ¢ G .

Proof.
Consider the formula = T[x/y]: applying the fixed point lemma there is G

such that FV(G) =@ and Fs G=~T[ G /y].

Assume there is 1: g G. Then g T[T G"/y]. But because 7n: k5 G it
holds that Fs 2["n'/x," G/y], and thus 5 3x.2[" G/y], that is
=5 T[” G/y] making the theory non consistent. Hence ¥¥5 G.

Oppositely suppose there is m: Fs—G. Then ks T[" G/y] by definition of G,
so g Ix.2[" G '/y]. But this means that there exists 6: Fg G with x="60"
since x is interpreted in some number in a standard model.

Thus again we get a contradiction. Hence ¢ G. []

(628) !'!



| | | References

The original proof of the first incompleteness theorem can be found in Kurt
Gédel, Uber formal unentscheidbare Satze der Principia Mathematica und
verwandter Systeme, |, Monatshefte fiir Mathematik und Physik 38, 173-198,
(1931).

The proof has been generalised and polished by Rosser and we have shown
a slightly reworked version of Rosser’s result. The reference is John Barkley

Rosser, Extensions of some theorems of Godel and Church, Journal of Symbolic
Logic 1, 87-91 (1936).

An account can be found in John Bell and Moshé Machover, A Course in
Mathematical Logic, North-Holland, (1977). Nevertheless the lecture has been

prepared roughly following some unpublished notes from the course held by
Silvio Valentini in 1991.

(29 11



Mathematical Logic: Lecture IV — 8

R
Zaen1 W

Ny 3‘5\%

Syllabus:
Limiting results:

m Godel's Second Incompleteness Theorem
= Meaning and consequences



| | | Properties of provability

Proposition 32.1. In Peano arithmetic, - A if and only if = T[T A7/ y].

Proof.

Let m: HA. Then F9["n"/x," A7/y] by Definition 31.8, thus F T[T A7/y].
Conversely, if = T[T A7/y] then in the standard model there is a number which
is the code of a proof = A by Definition 31.8. ]

However, in the core results in this lecture, it suffices implication.

Proposition 32.2. In Peano arithmetic, if = T["A7/y]| then
=TTEAY Yyl

Proof.
This is just Proposition 32.1 with A=T["A7/y]. []
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Proposition 32.3. In Peano arithmetic, if - T["A> B'/y]| then
FT[AY Y= T[T Byl

Proof.

Let - T[TA> B7/y], then by Proposition 32.1 - A> B.

Assume A. Then A+ B by implication elimination and A+ T["B/y] by
Proposition 32.1.

Since T["A7/y] is equivalent to A by Proposition 32.1,

FT[FA"/y] 2 T["B"/y| by implication introduction. ]
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Theorem 32.4 (Lob). In Peano arithmetic let 6 be a closed formula.
Then =T[0"/y]>0 if and only if - 6.

Proof. (i)

If =6 then FT["07/y] 20 obviously.
Conversely assume - T[707/y] 286.
By Lemma 31.7 there is a sentence ¢ such that ¢ =(T["¢/y]>0). Then

== (T[¢7/y]=0)
=>FT[ ¢o(T[M ¢ /y]260)"/y] (by Proposition 32.1)
=>FT[ ¢ /y] 2T T[ ¢/ y]207/y] (by Proposition 32.3)
= ET[ oy = (T[T /y]"/y] > T[767/y]) (by Proposition 32.3)
By Proposition 32.2 = T[ ¢ /y]|>2T[ T[T ¢/ y]/y]. —
(633) "o



l | | Lob theorem

— Proof. (ii)
So
- (T[¢7/y]20)
= T ¢/ y]>T[07/y]
= +T[¢"/y]>0 (by hypothesis)
= ¢ (by definition of ¢)
=>FT[ ¢/ y] (by Proposition 32.1)

Hence F 6 by definition of ¢. []

Lob’'s Theorem extends to any theory for which Propositions 32.1, 32.2,
and 32.3 hold.
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| | | Second incompleteness theorem

Theorem 32.5 (Godel's second incompleteness theorem). There is no

provable formula C in Peano arithmetic which codes the consistency of the
theory, i.e., such that = Co> T[T L7/y].

Proof.

Since Peano arithmetic is consistent i L.

Then by Theorem 32.4 T[T L7/y]o L, ie. T[T L/y].

If = C then = =T["L7/y], obtaining a contradiction. []

It is important to remark that Lob's theorem and Godel's second
incompleteness theorem can be immediately extended to all the consistent
theories able to represent all the computable functions with a provability
predicate T for which Propositions 32.1, 32.2, and 32.3 hold.
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| | | Mathematical meaning

The incompleteness theorems closes the quest for a universal, self-contained
foundation of Mathematics which is able to prove its own consistency.
Simply, such a system cannot exist.

Nevertheless these theorems opened the way to many developments, and to
some of the fundamental results in XX century:

m the effective construction of non-computable functions

m the idea of coding lead to reason “modulo a coding function”, which has

been greatly influential in algebra, algebraic geometry, algebraic topology,
number theory, ...

m examples of independent statements arose in many fields and they shed
light to a variety of hidden aspects of apparently clean notions, like for
example the assumptions behind cardinality in set theory.
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| | | Foundational consequences

Having a mathematical theory T which is powerful enough to represent Peano
arithmetic has the consequence that we cannot prove its consistency within T.
We need a theory T' containing T, and more powerful.

This fact led to the development of many hierarchies of formal systems to
classify the power of mathematical theories: we scratched just the surface by
showing that the consistency of Peano arithmetic can be proved in a stronger
system. But how much stronger? Since the proof of Godel's results much
deeper analyses have been conducted, and nowadays this part of Logic is a
complex, intricate, difficult field on its own.

In constructive mathematics the same fact led to doubt that “truth” is the
right concept to analyse, and there are approaches favouring the notion of
provability as the real foundation of Mathematics. This has a number of
consequences, which we do not want to discuss here.

(637)



| l | Understanding

For a very long time mathematicians regarded the incompleteness theorems as
strange beasts: something which is important, but essentially with no
influence in the mathematical practise.

For example the textbook of Bell and Machover we referred to many times
explicitly says that the sentences which are not provable in Peano arithmetic
are not important in arithmetic because they have no "arithmetical” content,
but just a logical one. This is true for the sentence G and most other
sentences we can construct within the logical analysis.

Unfortunately there are purely arithmetical properties of genuine interest for
mathematicians not working in logic which are independent from Peano
arithmetic. And the same holds in other mathematical theories.
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| | | References

The original proof of the second incompleteness theorem can be found in Kurt
Gédel, Uber formal unentscheidbare Satze der Principia Mathematica und
verwandter Systeme, |, Monatshefte fiir Mathematik und Physik 38, 173-198,
(1931).

The proof we have shown uses Lob theorem. An account can be found in John
Bell and Moshé Machover, A Course in Mathematical Logic, North-Holland,

(1977). Nevertheless the lecture has been prepared roughly following some
unpublished notes by Michael Rathjen.
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| | | A different incompleteness result

Consider the so-called Berry’s paradox:
The smallest positive integer not definable in under sixty letters.

Fix a language, say English. The set of English sentences with length at most
59 letters is finite. Thus the sentences defining a number in less than 60
letters are finite.

The set of positive integer is infinite. Thus necessarily there is number which
cannot be defined by a short sentence. Since positive integers are
well-ordered, there is a minimal one.

Hence, the sentence of the paradox defines exactly that number, which is
undefinable by definition.

The Chaitin’s incompleteness theorem formalises this paradox, showing that a
sentence like the one of the paradox is non provable.
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| | | Kolmogorov complexity

Consider all the finite strings on the {0,1} alphabet.

Fix a partial recursive function f, seen as going from {0,1}" to {0,1}" via
the bijection x € {0,1}" — (‘1' ox) — 1 where the string on left of — is
interpreted as a natural number in binary notation.

Finally f generates o€ {0,1}" if there is T€{0,1}" such that (1) =0.

Definition 33.1 (relative Kolmogorov complexity). Fixed o €{0,1}" and a
partial recursive function f, the Kolmogorov complexity of o relative to f is

Zf(o)=min{lt|: f(1) =0} ,

where |7| is the length of the string 7, and £¢(0) =00 if 0 is not in the
image of f.
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| | | Kolmogorov complexity

If we imagine T as a description of o through f, Kolmogorov complexity
measures the length of the minimal description of o which f makes available.
Think to f~! as a data compression algorithm: given o we would like to find
7 such that it expands to o and it is as short as possible.

We are interested in measuring the length of the minimal string 7 which could
generate o independently of f.

Of course, this concept does not make sense, since the constant function
g(1) =0 clearly generates 0 when 1 is the empty string.

But it makes sense to ask the minimal size of a pair (f,7) such that f(7)=0.
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| | | Kolmogorov complexity

Fix an acceptable enumeration of all the partial recursive function {¢;},_
with a distinguished universal function U(i,x) = ¢i(x).

Definition 33.2 (Kolmogorov complexity). The Kolmogorov complexity of

oe{0,1}" is
K (o) =min{lz|: U(r) =0} .

Observe how £ (o) = £y(0).
Also, think to T as a sequence representing a pair (/,x).
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| | | Kolmogorov complexity

Theorem 33.3 (Optimality). For every partial recursive function f there is

c € w such that, for every 0 €{0,1}", # (o) < Z7(0) +c.

The proof amounts to observe that there is i € w such that f = ¢;, so
U(i,x)=f(x). The constant c is then constructed by choosing the i of
minimal length for which this happens.

Theorem 33.4 (Invariance). If Uy and U> are universal functions, there is

c €  such that, for every o € {0, 1}*, | £y, (0)— &y, (o) <c. The proof is
immediate from Theorem 33.3.

Hence, up to constants, the choice of the universal function does not matter.
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| | | Incompressible strings

Note that £ (o) <|o|+ c for some ¢ independent from o because the identity
function is recursive.

Observe how there are 2" strings of length n, while there are

n-1
Z 2'=2"-1
i=0
strings of length less than n.
Hence, for each ne w, there is at least one string o of length n such that
K(o)=lol .
These strings are called incompressible.
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| | | Incompressible strings

More in general, fix kew: if o€ {0,1}* satisfies & (o) = |g| — k, the o string
is called k-incompressible.

Clearly, for each n€ w, there are at least 2" — (2”"‘ —1) k-incompressible
strings of length n. Therefore, at least

1
1=5%

strings of length n are k-incompressible.

Observe how the k-incompressible strings of length n depend on the particular
choice of universal function in the definition of Kolmogorov complexity.
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l | | Chaitin’s theorem

Definition 33.5. Fix o € {0,1}" and a good enumeration {¢)}; of the partial
recursive functions. The pair (i,7) is nice if ¢p;(1) =0 and ¢;(&) # o for every
pair (j,&) such that |(j,&)| <|(/,7)|.

Hence a pair k is nice when it identifies the “simplest” program and input
that generates o. Thus k is the pair whose length is the Kolmogorov
complexity of o.

Observe how k€{0,1} is nice when it is the code of a nice pair.
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l | | Chaitin’s theorem

Theorem 33.6 (Chaitin). There is N € N such that the set
Cy =1ik: |kl> N and k is nice}

IS not recursive.

Proof. (i)

Suppose there is a recursive function y: {0,1}" —{0,1} such that y(k)=1
exactly when k is nice.

Let g(x) =U(uk.x(k)Alkl>x), with U a distinguished universal function in a
fixed good enumeration {¢;}..

Since [{0,1}7| =g, there are Rq nice pairs, thus g is total.
Moreover, g is evidently partial recursive by definition.
Hence g is recursive and let y €N be such that ¢, = g. —
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l | | Chaitin’s theorem

— Proof. (ii)

Assume the paring function (x,y) satisfies |x| < |(x,y)|, Iyl <|(x,y)|, and
|(x,y)| < kmax{Ixl,|yl} for some constant k € N.

This assumption is tenable as the usual pairing function we used so far in the
course satisfies it.

Since |y| = ||y||. by easy calculations it follows that there is a constant K € N
such that |(y, K |y])| < Ky|.

Hence g(K |y|) = U(k) with k nice such that |k| > K |y| by definition of g.
However |(v, K |y|)| < K |y| < 1kl and ¢y (K |y|) = g(K|y|). contradicting the
fact that k is nice.

Therefore y cannot be recursive. In particular Cy |y is not recursive, proving
the theorem. []
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| | | Discussion

The Chaitin’s incompleteness theorem tells that there is barrier N such that
all the sufficiently incompressible strings, i.e., those whose Kolmogorov
complexity is at least \/, cannot be proved to be so much incompressible.

The interesting aspects of the theorem are:

m |t is based on a different paradox, which is not of a logical nature, but
rather of an information-theoretic nature.

m |[ncompressible strings are random strings in a quite strict sense. This
incompleteness result tells that randomness is not a concept that can be
fully formalised.

m There is a link between information theory, an essentially probabilistic
theory, and limiting results in Logic, a quite unexpected and surprising
fact.
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| | | References

The original development of Chaitin's incompleteness result can be found in
Gregory Chaitin, Information-Theoretic Limitations of Formal Systems, Journal

of the ACM 21(3), 403-424 (1974).

The background on information theory can be found in Claude Shannon and
Warren Weaver, Mathematical Theory of Communication, University of lllinois

Press (1963).
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| | | Incompleteness and computability

The proof that there are non-computable functions, based on a counting

argument, is unsatisfactory. It is correct, but it does not show an example of
a non-computable function.

The example we want to show is the so-called halting problem: given the
code of a program and a value as an input, we ask whether we could always
establish that such a program computing on the given value terminates.

Let {¢i} . be a reasonable enumeration of all the partial recursive functions.

Consider the function

1 if ¢pi(x) is defined
0 otherwise

h(i,x) :{
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| | | Incompleteness and computability

Let f: NxN — N be a total recursive function.

Define
_ 0 if f(i,i)=0
g(/) B {J_ otherwise

Clearly, g is partial recursive. Thus, there is an index e € N such that ¢ =g.
Consider f(e, e):

= if f(e,e)=0, then g(e) =¢e(e) =0, thus h(e,e) =1;

= if f(e,e)#0, then g(e) =¢e(e) =L, thus h(e,e)=0.
Observe that h is total.

Suppose h is recursive.
Hence, posing f = h, we have h(e,e) =1 if and only if h(e,e) =0, getting a
contradiction. Therefore h is non-computable.
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| | | Incompleteness and computability

Theorem 34.1 (Weak incompleteness). No theory of arithmetic is consistent,

able to prove all the true sentences in the standard model, and such that that
there is a recursive function &: N— N for which

E(N)={g(A): THFAAFV(A) =g} with g Gédel’s coding.

Proof. (i)

Suppose there is a theory T as in the statement.

Let {¢;}..n @ good enumeration of all the partial recursive functions, and let

U be universal function in it: U(/,x) =¢;(x). Also let I be the set of all the
true sentences in the standard model.

Since € ={A: THAAFV(A) =g} contains I by hypothesis, € =T . Indeed,
if Be ¢ but B¢ 9, then "B € J because every sentence is either true or
false in a model, so "B € %€, thus T is not consistent, contradiction. —
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| | | Incompleteness and computability

— Proof. (ii)
Consider the universal function U. It is representable in Peano arithmetic,
thus there is formula F with FV(F) ={i,x,y} such that

m if Uim,n) =k then Fpp F["m7/i,"n"/x,"k"/y]. Thus by 43I,

Fpa dy. F["m™/i,"n/x], and this sentence is true in every model by the
Soundness Theorem, in particular in the standard model, thus
(Iy.F["m/i,"n"/x])eT =%€. Hence, TH3Iy.F["m'/i,"n"/x].

m if U(m,n)#k then Fpp =F["m/i,"n"/x,"k"/y]|. By the Soundness
Theorem, this sentence in true in every model, in particular in the
standard one, so (=F["m/i,"n/x,"k/y]) e T =€.

Hence TH=F["m/i,"n"/x,"k/y].

When U(m, n) is undefined then (=F["m"/i,"n/x,"k/y]) e T for
every keN, thus (=3y.F["m/i,"n"/x]) € I =€ by definition of
semantics. Hence T +=3y.F["m™/i,"n"/x| by definition of €. —
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| | | Incompleteness and computability

— Proof. (iii)

Hence, when ¢,(n) is defined, TH=3y.F["m/i," n"/x]|, while when ¢, (n) is
undefined, T+-=3y.F["m"/i,"n7"/x].

Also exactly one of these sentences lies in € =9 . Thus

f(mn)=puk. &(k)="3y.F["m'/i,"n"/x]"
VE(k)="-3y.F["m"/i,"n"/x]"

is recursive and total.

Define
h(m,n) = sg(|<5"(f(m, n))—"-3y. F[rm—'/i,rn—'/x]—'|) .

Then h(m,n) =1 if ¢pm(n) is defined, while h(m,n) =0 when ¢,(n) is
undefined, and it is recursive.
Thus it solves the Halting Problem, impossible. []
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| | | Natural incompleteness

Historically, the first theorem which states a result beyond Logic that is true
but non-provable in Peano arithmetic is:

Theorem 34.2 (Paris, Harrington). For all e,r,k €N there is M € N such that
for every f: {F <{0,...,M}: |F|=e} —10,...,r} there is H<{0,..., M} such
that

= |H| =max{k,min H} and

m exists v <r such that for all F< H with |F|=e, f(x)=v for each xe F.
By using the Infinite Ramsey’'s Theorem it is not too difficult to derive a value
M e N which makes the statement true on naturals. This proof is carried out

either in second-order arithmetic with the full induction principle, or in a
suitable set theory, e.g., ZFC.
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| | | Natural incompleteness

Nevertheless, it is possible to show, within Peano arithmetic, that the
combinatorial principle in Theorem 34.2 implies the consistency of Peano
arithmetic, thus it is impossible to prove according to Godel's second

incompleteness theorem.
This theorem is natural in the sense that changing the first condition in

Theorem 34.2 to |H| = k, we get the Finite Ramsey's Theorem, which is
provable inside Peano arithmetic, and which is the starting point for a large

branch of Combinatorics.
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| | | Natural incompleteness

By the way, the cited Ramseys’ Theorems are:

Theorem 34.3 (Ramsey, finite). Let ceN,c>1. Let ny,...,nc€N. Then
there is N € N such that if the edges of a complete graph 6 of order N are
coloured with c different colours, then for some 1 <i<c, 6 must contain a
complete subgraph of order nj whose edges have all colour i.

Theorem 34.4 (Ramsey, infinite). Let X be an infinite set and colour the

subsets of X of size n in ¢ different colours. Then there exists some infinite
subset M < X such that the subsets of size n in M all have the same colour.
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| | | Natural incompleteness

Another important theorem from a different branch of combinatorics is
independent from Peano arithmetic: it holds in the standard model but we
cannot prove it in the theory. This is the famous Kruskal's theorem on trees.
A simplified version suffices to yield the independence result.

Theorem 34.5. There is some ne N such that if T1,..., T, is a finite sequence

of trees where Ty has k+ n vertices, then for some i <j there is an injective
map f: T; — T; between the vertices of the trees which preserves paths.

The independence proof for this theorem follows a different pattern: it is
possible to show that any function which provably exists in Peano arithmetic
cannot grow too fast, but the above theorem allows to construct a function
which grows faster. And this suffices to establish that the theorem is
unprovable in Peano arithmetic.
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| | | Natural incompleteness

Definition 34.6 (Well quasi order). A quasi order is a structure (€; <) such
that < is a reflexive and transitive relation over O.
A well quasi order is a quasi order such that

m every proper descending chain is finite: a proper descending chain is a
sequence {e;}. in @ such that e; <e; when j </,

m every antichain is finite: an antichain is a subset A< @ such that, if
a,be Aand a#b, then a£ b and b £ a.
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| | | Natural incompleteness

Kruskal's Theorem admits a simple and useful generalisation:

Theorem 34.7 (Kruskal). The set of finite trees with the embedding relation
is a well quasi order.

The embedding relation is defined as: T < S if and only if there is an injective
function f from the nodes of T to the nodes of S which preserves paths, that

is, if there is a path from a to b in T, then there is a path from f(a) to f(b)
in the S tree.

( 664 )



| | | Natural incompleteness

Definition 34.8 (Graph minor). Let ¢ and A be two finite undirected graphs.

Then A is a minor of 4 if and only if there is an equivalence relation ~ on
the nodes of ¢ and an injective function from the nodes of A/ to the nodes
of ¢ such that

m if 3~ b then there is a path from a to b;

= if (a,b) is an arc in A, then there are two nodes ¢ and d in ¢ such that
c#d, f(a)~c, f(b)~d and (c,d) is an arc in 4.

The idea behind the definition is that we can partition the nodes of ¢ in
connected subsets, and from these subsets we can construct a quotient graph
%/~ whose nodes are the subsets, and whose edges are the arcs between
nodes in distinct subsets. Hence, # <% when A is a subgraph of ¢ /~.
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| | | Natural incompleteness

Theorem 34.9 (Graph Minor). The set of finite undirected graphs together
with the graph minor relation forms a well quasi order.

This theorem whose proof is one of the major achievements in the XXt"
century Mathematics, is easily shown to be unprovable in Peano Arithmetic
since it allows to derive Kruskal's Theorem.
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l | | Ordinal analysis

There is a branch of proof theory, called ordinal analysis, devoted to study the
“power” of deductive systems showing which is the minimal ordinal to which
transfinite induction can be relativised to prove a consistency statement.

This is a deep, delicate, and difficult part of logic, still in development: it is
sometimes referred to as “reverse mathematics” when the goal is to find the
minimal theory in which a given theorem can be shown to hold.
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| | | References

The discussion is general, and there is no specific reference for it. Some ideas
could be found in Jon Barwise, Handbook of Mathematical Logic, Studies in
Logic and the Foundations of Mathematics 90, North-Holland, (1977).

As an example of a (very) popular book which deals with incompleteness, we
signal Douglas Hofstadter, Godel, Escher, Bach: an Eternal Golden Braid,
Basic books, (1979). It is an enjoyable account for non-specialists but it also
contains many debatable points and opinions. Nevertheless, the mathematical
content is, essentially, precise—and the author won the Pulitzer prize for
non-fiction.
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A dated, but still valid reference for Ramsey theory is Ronald L. Graham,
Bruce L. Rothschild, Joel H. Spencer, Ramsey Theory, 2nd edition, John
Wiley and Sons, (1990).

The original paper Joseph Bernard Kruskal, Well-quasi-ordering, the tree
theorem, and Vazsonyi's conjecture, Transactions of the American
Mathematical Society 95(2), pp. 210-225, American Mathematical Society,
(1960) is an inspiring introduction to the theorem and its motivation.

Although there are many texts providing a general overview of combinatorics,
my preferred one is Miklés Béna, A Walk Through Combinatorics, 2"¢ edition,
World Scientific, (2006).
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Henri Gallier, What's so special about Kruskal's theorem and the ordinal T'g?
A survey of some results in proof theory, Annals of Pure and Applied Logic

53(3), pp. 199-260, (1991).

The original publication about the Paris-Harrington theorem can be found
in Jon Barwise, Handbook of Mathematical Logic, Studies in Logic and the
Foundations of Mathematics 90, North-Holland, (1977).

Finally a fine introduction to ordinal analysis can be found in Michael Rathjen,
The art of ordinal analysis, Proceedings of the International Congress of
Mathematicians, volume 2, pp. 45-70, (2006), written by a master of the
field.
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