Strong normalisation in the full simple theory of types Categorical Logic and Constructive Mathematics

Dr Marco Benini

marco.benini@uninsubria.it

Dipartimento di Scienza e Alta Tecnologia Università degli Studi dell'Insubria

October 23rd, 2024

Full simple theory of types

Assume the separated variables convention and suppose to fix a set of *type constants*. The full simple theory of types is then

where x, x_0 , x_1 are variables, and λ and δ bind x and x_0 , x_1 respectively.

Elimination-oriented syntax

Eliminator: an element R such that $t \cdot R$ is a term. May be a term a, π_1 , π_2 , ϕ_T , or $\delta(x_0 : A.a, x_1 : B.b)$.

Vector notation: \overrightarrow{r} denotes a list $r_1, ..., r_n$ of terms; \overrightarrow{R} denotes a list $R_1, ..., R_n$ of eliminators.

Vector application: $t \cdot \overrightarrow{R}$ is t when n = 0, and $(t \cdot \overrightarrow{S}) \cdot R_n$ with $\overrightarrow{S} = R_1, \dots, R_{n-1}$ when n > 0.

Vector relations: $\overrightarrow{R} \in X$ is a shorthand for $R_1 \in X, ..., R_n \in X$, where the π_1 , π_2 , and ϕ_T eliminators vacuously satisfy membership, and $\delta(x_0, a, x_1, b) \in X$ means $a \in X$ and $b \in X$. Other relations, e.g., $x \notin FV(\overrightarrow{R})$, are similarly defined.

(3)

Reductions

 \triangleright_1 , one-step reduction, is the minimal congruence containing \blacktriangleright .

 \triangleright , reduction, is the reflexive and transitive closure of \triangleright_1 .

Computation contractions:

- $(\lambda x : Ab) \cdot a \triangleright b[x/a]$
- $(a,b)\cdot\pi_1$ a $(a,b)\cdot\pi_2$ b
- $(\operatorname{inl}_B a) \cdot \delta(x : A.b, y : B.c) \blacktriangleright b[x/a]$ with $x \notin FV(a)$ $(\operatorname{inr}_A a) \cdot \delta(x : A.b, y : B.c) \blacktriangleright c[y/a]$ with $y \notin FV(a)$ renaming the bounded variables if needed

Uniqueness contractions:

- $\lambda x : Aa \cdot x \triangleright a$ where $x \notin FV(a)$
- $(a \cdot \pi_1, a \cdot \pi_2)$ a
- $a \cdot \delta(x : A. \text{inl}_B x, y : B. \text{inr}_A y) \triangleright a$
- a · φ₀ ► a

Reductions

Permutation contractions:

- $\bullet a \cdot \phi_{A \times B} \blacktriangleright (a \cdot \phi_A, a \cdot \phi_B)$
- $a \cdot \phi_{A \to B}$ ► $\lambda x : A a \cdot \phi_B$ with $x \notin FV(a)$
- $a \cdot \phi_{A+B}$ ► $\text{inl}_B(a \cdot \phi_A)$
- if $r \cdot \delta(x : A.a, y : B.b) : C \times D$ then

$$r \cdot \delta(x : A.a, y : B.b) \triangleright (r \cdot \delta(x : A.a \cdot \pi_1, y : B.b \cdot \pi_1),$$

 $r \cdot \delta(x : A.a \cdot \pi_2, y : B.b \cdot \pi_2))$

• if $r \cdot \delta(x : A.a, y : B.b) : C \rightarrow D$ and $z \notin \{x, y\} \cup \mathsf{FV}(r \cdot \delta(x : A.a, y : B.b))$ then

$$r \cdot \delta(x : A.a, y : B.b) \triangleright \lambda z : C r \cdot \delta(x : A.a \cdot z, y : B.b \cdot z)$$

• if $x \notin FV(c)$ and $y \notin FV(d)$ then

$$(r \cdot \delta(x : A.a, y : B.b)) \cdot \delta(z : C.c, w : D.d)$$

$$\blacktriangleright r \cdot \delta(x : A.a \cdot \delta(z : C.c, w : D.d), y : B.b \cdot \delta(z : C.c, w : D.d))$$

Strongly normalisable

A term t is strongly normalisable (sn) if (α) there is a bound $m \in \mathbb{N}$ to the length of every reduction sequence starting from t.

Equivalently, a term t is strongly normalisable when (β) every term r such that $t \triangleright_1 r$ is strongly normalisable.

A theory of types is strongly normalisable when every term which can be typed in it, is strongly normalisable.

[(α) and (β) are induction principles]

Naive strong normalisation

Lemma 2.1

- $\lambda x : Aa$ is sn iff a is sn
- (a,b) is sn iff a and b are sn
- inl_T a is sn iff a is sn
- inr_T a is sn iff a is sn
- \blacksquare π_1 a is sn iff a is sn
- \blacksquare π_2 a is sn iff a is sn
- $a \cdot \phi_T$ is sn iff a is sn

Lemma 2.2

If a[x/b] is sn, so is a.

Naive strong normalisation

Lemma 2.3

- If $a: A \to T$ is sn and x: A is a variable such that $x \notin FV(a)$, then $a \cdot x$ is sn
- If $a \cdot b$ is sn, so are a and b

Lemma 2.4

- If t, f, and g are sn, and t is neither a δ -term nor an injection, then $t \cdot \delta(u.f, v.g)$ is sn.
- If $e_1 \cdot \delta(x.e_2, y.e_3)$ is sn then e_i is sn

The proofs of these lemmata are straightforward inductions on one-step reductions or the length of reductions, possibly augmented by an external induction on the types of whole terms.

[from now on, these lemmata are taken for granted]

SN is the minimal set of typable terms closed by the rules in the following.

We claim that:

- if $t \in SN$ then t is sn
- if t: T is term, then $t \in SN$

Strong normalisation is an immediate consequence.

$$\frac{\overrightarrow{R} \in SN}{x \overrightarrow{R} \in SN} (V_1) \qquad \frac{x \overrightarrow{R} \in SN \quad a : T \in SN \quad b : T \in SN}{x \overrightarrow{R} \delta(y, a, z, b) \in SN} (V_2)$$

$$\frac{a \in SN}{\lambda x : T a \in SN} (\lambda) \qquad \frac{a \in SN \quad b \in SN}{(a, b) \in SN} (\rho) \qquad \frac{a \in SN}{\inf_{T} a \in SN} (i_1) \qquad \frac{a \in SN}{\inf_{T} a \in SN} (i_2)$$

$$\frac{(a[x/b]) \overrightarrow{D} \in SN \quad b \in SN}{(\lambda x : T a) b \overrightarrow{D} \in SN} (\beta)$$

$$\frac{\overrightarrow{aD} \in SN \quad b \in SN}{(a, b) \pi_1 \overrightarrow{D} \in SN} (\pi_1) \qquad \frac{a \in SN \quad b \overrightarrow{D} \in SN}{(a, b) \pi_2 \overrightarrow{D} \in SN} (\pi_2)$$

- In the rules, \overrightarrow{R} is a list of eliminators containing no δ 's and ϕ 's. Oppositely \overrightarrow{D} is a generic, unconstrained list of eliminators.
- In (V_2) the type T is required to be either atomic or a sum.
- x is a variable.

$$\frac{(b[x/a])\overrightarrow{D} \in \mathbf{SN} \quad a \in \mathbf{SN} \quad b\overrightarrow{D} \in \mathbf{SN} \quad c\overrightarrow{D} \in \mathbf{SN}}{(\operatorname{inl}_{B}a)\delta(x.b,y.c)\overrightarrow{D} \in \mathbf{SN}} \quad (\delta_{1})}{(\operatorname{inl}_{B}a)\delta(x.b,y.c)\overrightarrow{D} \in \mathbf{SN}} \quad (\delta_{2})}$$

$$\frac{(c[x/a])\overrightarrow{D} \in \mathbf{SN} \quad a \in \mathbf{SN} \quad b\overrightarrow{D} \in \mathbf{SN} \quad c\overrightarrow{D} \in \mathbf{SN}}{(\operatorname{inr}_{A}a)\delta(x.b,y.c)\overrightarrow{D} \in \mathbf{SN}} \quad (\delta_{2})}{(\operatorname{inr}_{A}a)\delta(x.b,y.c)\overrightarrow{D} \in \mathbf{SN}} \quad (\delta_{2})}$$

$$\frac{(a \cdot \delta(y.b \cdot \pi_{1}, z.c \cdot \pi_{1}), a \cdot \delta(y.b \cdot \pi_{2}, z.c \cdot \pi_{2}))\overrightarrow{D} \in \mathbf{SN}}{a \cdot \delta(y.b,z.c)\overrightarrow{D} \in \mathbf{SN}} \quad (\delta_{\times})}{a \cdot \delta(y.b,z.c)\overrightarrow{D} \in \mathbf{SN}} \quad (\delta_{-})}$$

$$\frac{(\lambda u : Aa \cdot \delta(y.b \cdot u, z.c \cdot u))\overrightarrow{D} \in \mathbf{SN}}{a \cdot \delta(y.b,z.c)\overrightarrow{D} \in \mathbf{SN}} \quad (\delta_{-})}{a \cdot \delta(y.b,z.c)\delta(u.f,v.g)\overrightarrow{D} \in \mathbf{SN}} \quad (\delta_{+})}$$

(11)

$$\frac{a \in SN}{a \cdot \phi_{T} \in SN} (\phi_{a}) \qquad \frac{(a \cdot \phi_{A}, a \cdot \phi_{B}) \overrightarrow{D} \in SN}{a\phi_{A \times B} \overrightarrow{D} \in SN} (\phi_{\times})$$

$$\frac{(\lambda x : Aa \cdot \phi_{B}) \overrightarrow{D} \in SN}{a\phi_{A \to B} \overrightarrow{D} \in SN} (\phi_{-}) \qquad \frac{(\operatorname{inl}_{B} (a \cdot \phi_{A})) \overrightarrow{D} \in SN}{a\phi_{A + B} \overrightarrow{D} \in SN} (\phi_{+})$$

- In (δ_{\times}) the type of $a \cdot \delta(y.b,z.c)$ is a product $A \times B$.
- In (δ_{\rightarrow}) the type of $a \cdot \delta(y, b, z, c)$ is a function space $A \rightarrow B$.
- In (ϕ_a) the type T is required to be atomic.
- In all the rules, the same constraints as for contractions apply on free and bounded variables.

Definition 4.1

To cope with nested δ -eliminators and their permutations, it is useful to define Δ_n and ∇_n :

$$\Delta_n(a,b_1,c_1,\ldots,b_n,c_n)=a\cdot\delta(x_1,b_1,y_1,c_1)\cdots\delta(x_n,b_n,y_n,c_n)$$

and

$$\nabla_n(a, b_1, c_1, \dots, b_n, c_n) = a \cdot \delta(x_1, \nabla_{n-1}(b_1, b_2, c_2, \dots, b_n, c_n),$$
$$y_1, \nabla_{n-1}(c_1, b_2, c_2, \dots, b_n, c_n))$$

with
$$\Delta_0(a) = a = \nabla_0(a)$$
.

Lemma 4.2

For every n and for every a, $b_1, \ldots, b_n, c_1, \ldots, c_n$ sn terms, $\Delta_n(a, b_1, c_1, \ldots, b_n, c_n)$ is sn iff $\nabla_n(a, b_1, c_1, \ldots, b_n, c_n)$ is so.

Proof. (i)

Suppose $\Delta_n(...)$ is sn. Since it reduces to $\nabla_n(...)$, $\nabla_n(...)$ is sn, too.

Conversely, for every n and for every $a, b_1, \ldots, b_n, c_1, \ldots, c_n$ sn, if $\nabla_n(a, b_1, c_1, \ldots, b_n, c_n) : T$ is sn and $\Delta_n(a, b_1, c_1, \ldots, b_n, c_n) \rhd_1 r$ then r is sn. The proof is by induction on

$$(n, T, maxred(a) + \sum_{j=1}^{n} maxred(b_j) + \sum_{j=1}^{n} maxred(c_j))$$

lexicographically ordered.

[maxred(t)] is the length of the longest reduction sequence starting from t]

→ Proof. (ii)

Considering the possible one-step reductions:

- $r = \Delta_n(a', b_1, c_1, ..., b_n, c_n)$ and $a \triangleright_1 a'$. Since n and T are unchanged in r, but maxred $(a') < \max(a)$, r is sn by IH. Likewise for $b_i \triangleright_1 b'$ or $c_i \triangleright_1 c'$.
- $r = \Delta_{n-1}(b_1[x/a'], b_2, c_2, ..., b_n, c_n)$ and $a = \text{inl}_{C_1} a'$. Since

$$\nabla_n(a, b_1, c_1, ..., b_n, c_n) \triangleright_1 \nabla_{n-1}(b_1[x/a'], b_2, c_2, ..., b_n, c_n)$$

and the lhs side is sn, so is the rhs side, thus the subterm $b_1[x/a']$ is sn. Then r is sn by IH. Similarly when $a = \operatorname{inr}_{B_1} a'$.

• $r = \Delta_{n-1}(a, b_1, c_1, ..., b_{i-1}, c_{i-1}, b_{i+1}, c_{i+1}, ..., b_n, c_n)$ and $b_i = \operatorname{inl}_{C_{i+1}} x_i, c_i = \operatorname{inr}_{B_{i+1}} y_i$. Thus r is sn by IH.

 $T = C \times D$ and

$$r = (\Delta_n(a, b_1, c_1, \dots, b_{n-1}, c_{n-1}, b_n \cdot \pi_1, c_n \cdot \pi_1) : C,$$

$$\Delta_n(a, b_1, c_1, \dots, b_{n-1}, c_{n-1}, b_n \cdot \pi_2, c_n \cdot \pi_2) : D) .$$

Since $b_n \cdot \pi_1$, $b_n \cdot \pi_2$, $c_n \cdot \pi_1$, and $c_n \cdot \pi_2$ are sn, $\Delta_n(a,b_1,c_1,\ldots,b_{n-1},c_{n-1},b_n\cdot\pi_1,c_n\cdot\pi_1)$ and $\Delta_n(a,b_1,c_1,\ldots,b_{n-1},c_{n-1},b_n\cdot\pi_2,c_n\cdot\pi_2)$ are sn by IH, since n is the same, but their types are proper subtypes of T. Hence r is sn.

■ $T = C \rightarrow D$ and $r = \lambda w : C \Delta_n(a, b_1, c_1, ..., b_{n-1}, c_{n-1}, b_n \cdot w, c_n \cdot w)$. Since $b_n \cdot w$ and $c_n \cdot w$ are sn

$$\Delta_n(a, b_1, c_1, ..., b_{n-1}, c_{n-1}, b_n \cdot w, c_n \cdot w)$$

is sn by IH since its type D is a proper subtype of T. Thus r is sn.

→ Proof. (iv)

• *r* is the result of a permutation contraction on a sum type:

$$r = \Delta_{n-1}(a, b_1, c_1, \dots, b_{i-1}, c_{i-1}, b_i \cdot \delta(x_{i+1}, b_{i+1}, y_{i+1}, c_{i+1}), c_i \cdot \delta(x_{i+1}, b_{i+1}, y_{i+1}, c_{i+1}), b_{i+2}, c_{i+2}, \dots, b_n, c_n)$$

and $1 \leq i < n$. Considering $R = \nabla_{n-i}(b_i, b_{i+1}, c_{i+1}, \ldots, b_n, c_n)$, this term is a subterm of $\nabla_n(a, b_1, c_1, \ldots, b_n, c_n)$, which is sn by hypothesis, thus R is sn, too. Hence $\Delta_{n-i}(b_i, b_{i+1}, c_{i+1}, \ldots, b_n, c_n)$ is sn by IH, so its head $b_i \cdot \delta(x_{i+1}, b_{i+1}, y_{i+1}, c_{i+1})$ is sn. Likewise, $c_i \cdot \delta(x_{i+1}, b_{i+1}, y_{i+1}, c_{i+1})$ is sn. Then r is sn by IH.

Theorem 4.3

 $SN \subseteq \{t \mid t \text{ is sn}\}.$

Proof. (i)

By induction on the generation of **SN**: if $t \in SN$ is the conclusion of a rule, it has to be shown that t is sn, assuming the premises of the rule are sn.

• (V_1) , (V_2) , (λ) , (p), (i_1) , (i_2) , and (ϕ_a) are easy instances of the naive lemmata combined with the IH.

→ Proof. (ii)

• (β) Since $(a[x/b])\overrightarrow{D} \in \mathbf{SN}$ and $b \in \mathbf{SN}$, then $(a[x/b])\overrightarrow{D}$ and b are sn by IH, thus a, a[x/b] and each eliminator in \overrightarrow{D} are sn. Then $(\lambda x : Ta)b\overrightarrow{D}$ is sn by side induction on $|\overrightarrow{D}|$.

If $|\overrightarrow{D}| = 0$, consider $(\lambda x : T \ a) \cdot b \rhd_1 r$. Then r is sn by inner induction on maxred (a) + maxred (b): if $r = (\lambda x : T \ a') \cdot b$ and $a \rhd_1 a'$, or $r = (\lambda x : T \ a) \cdot b'$ and $b \rhd_1 b'$, then r is sn by inner IH; if r = a[x/b] because of β -contraction or η -contraction then r is sn as above.

Hence, $(\lambda x: Ta)b$ is sn since it reduces in one step to sn terms only.

→ Proof. (iii)

If $\overrightarrow{D} = \overrightarrow{E}G$ then $(\lambda x : Ta)b\overrightarrow{E}$ is sn by side IH on \overrightarrow{E} .

Let $((\lambda x: Ta)b\overrightarrow{E}) \cdot G \triangleright_1 r$. Then r is sn by inner induction on

maxred $((\lambda x: Ta)b\overrightarrow{E})$ + maxred (G): if r is obtained reducing a component in the application , then r is sn by inner IH.

If G is a term, $G = \pi_1$, or $G = \pi_2$, no other reductions are possible. If $G = \phi_C$ then $(\lambda x : T \ a) \overrightarrow{bD}$ is sn, thus also r is sn.

So let G be a δ -eliminator. If $\overrightarrow{E} = \overrightarrow{F} \delta(y, F_1, z, F_2)$ and $r = (\lambda y : T a) b \overrightarrow{F} \delta(y, F_1 G, z, F_2 G)$ then

$$(a[x/b])\overrightarrow{D} \rhd_1 (a[x/b])\overrightarrow{F} \delta(y.F_1G,z.F_2G)$$
,

in which the lhs is sn, thus it is so also the rhs, hence $\delta(y.F_1G,z.F_2G)$ is sn. Then r is sn by side IH.

If the last eliminator in \overrightarrow{E} , if any, is not a δ -eliminator, then $(\lambda x: Ta)b\overrightarrow{D}$ is sn by the naive lemma on δ . Thus r is sn.

→ Proof. (iv)

- (π_1) and (π_2) are analogous to the (β) case.
- (δ_1) is very similar to (β) . However, one more case has to be considered: when $\overrightarrow{D} = G$, G is a δ -eliminator, and $r = (\operatorname{inl}_B a)\delta(x.b \cdot G, y.c \cdot G)$, then $b\overrightarrow{D} = b \cdot G$ and $c\overrightarrow{D} = c \cdot G$. Thus $b \cdot G$ and $c \cdot G$ are sn by main IH, so $\delta(x.b \cdot G, y.c \cdot G)$ is sn. Then r is sn by side IH.
- (δ_2) Symmetrical to the case (δ_1) .
- (δ_{\times}) , (δ_{\rightarrow}) , (ϕ_{\times}) , (ϕ_{\varnothing}) , and (ϕ_{+}) are, in turn, analogous to (δ_{1}) .

\hookrightarrow Proof. (v)

• (δ_+) It is convenient to write the conclusion as $\Delta_n(a,b_1,c_1,\ldots,b_n,c_n)\overrightarrow{D}\in \mathbf{SN}$ where a is not a δ -term and \overrightarrow{D} is empty or its first element is not a δ -eliminator. Then the premise of the rule becomes, for some $1\leq i < n$,

$$P = \Delta_{n-1}(a, b_1, c_1, \dots, b_{i-1}, c_{i-1}, \\ b_i \cdot \delta(x_{i+1}, b_{i+1}, y_{i+1}, c_{i+1}), \\ c_i \cdot \delta(x_{i+1}, b_{i+1}, y_{i+1}, c_{i+1}), \\ b_{i+2}, c_{i+2}, \dots, b_n, c_n) \overrightarrow{D} \in \mathbf{SN}$$

Thus P is sn by IH. Since $P \triangleright \nabla_n(a,b_1,c_1,...,b_n,c_n)\overrightarrow{D}$, $\nabla_n(a,b_1,c_1,...,b_n,c_n)\overrightarrow{D}$ is sn. Thus $\Delta_n(a,b_1,c_1,...,b_n,c_n)$ is sn by the previous lemma. Hence $\Delta_n(a,b_1,c_1,...,b_n,c_n)\overrightarrow{D}$ is sn by induction on $|\overrightarrow{D}|$ as in the previous cases.

Theorem 5.1

The following facts hold, assuming all the terms are typable:

- 1. if x is variable then $x \in SN$;
- 2. if $a \in SN$ then $\lambda x : T a \in SN$;
- 3. if $a \in SN$ and $b \in SN$ then $(a, b) \in SN$;
- 4. if $a \in SN$ then $inl_T a \in SN$ and $inr_T a \in SN$;
- 5. if $T = A \rightarrow B$ and $e: T \in SN$ then $e \cdot a \in SN$ for all $a \in SN$;
- 6. if $T = A \times B$ and $e: T \in SN$ then $e \cdot \pi_1 \in SN$ and $e \cdot \pi_2 \in SN$;
- 7. if T = A + B and $e: T \in SN$ then $e \cdot \delta(x: A.a, y: B.b) \in SN$ for all $a: C \in SN$ and $b: C \in SN$;
- 8. if $a \in SN$ then $a \cdot \phi_T \in SN$;
- 9. if x:T is a variable and $e:A \in SN$ then $e[x/a] \in SN$ for all $a:T \in SN$.

Proof. (i)

Properties (1)–(4), are instances of (V_1) , (λ) , (p), (i_1) , and (i_2) .

Property (8) is proved by induction on T:

- T atomic. Then $a \cdot \phi_T \in \mathbf{SN}$ by (ϕ_a) .
- $T = A \times B$. Then $a \cdot \phi_A \in \mathbf{SN}$ and $a \cdot \phi_B \in \mathbf{SN}$ by IH on A and B. Thus $(a \cdot \phi_A, a \cdot \phi_B) \in \mathbf{SN}$ by (p), hence $a \cdot \phi_T \in \mathbf{SN}$ by (ϕ_{\times}) .
- $T = A \rightarrow B$. Then $a \cdot \phi_B \in \mathbf{SN}$ by IH on B. Let $x : A \notin \mathsf{FV}(a)$. Thus $\lambda x : A a \cdot \phi_B \in \mathbf{SN}$ by (λ) , hence $a \cdot \phi_T \in \mathbf{SN}$ by (ϕ_{\rightarrow}) .
- T = A + B. Then $a \cdot \phi_A \in \mathbf{SN}$ by IH on A. Thus $\operatorname{inl}_B(a \cdot \phi_A) \in \mathbf{SN}$ by (i_1) , hence $a \cdot \phi_T \in \mathbf{SN}$ by (ϕ_+) .

→ Proof. (ii)

Property (6) has to show that $e \cdot \pi_1 \in \mathbf{SN}$ and $e \cdot \pi_2 \in \mathbf{SN}$ from $e \colon T = A \times B \in \mathbf{SN}$. The proof is by induction on the generation of $e \in \mathbf{SN}$:

- $e = x \overrightarrow{R}$ by (V_1) , so $\overrightarrow{R} \in \mathbf{SN}$. Hence $e \cdot \pi_1 \in \mathbf{SN}$ and $e \cdot \pi_2 \in \mathbf{SN}$ by (V_1) .
- e = (a, b) by (p), so $a \in SN$ and $b \in SN$. Thus $e \cdot \pi_1 \in SN$ by (π_1) and $e \cdot \pi_2 \in SN$ by (π_2) .
- $e = (\lambda x : Cb)c\overrightarrow{D}$ by (β) , so $b[x/c]\overrightarrow{D} \in \mathbf{SN}$ and $c \in \mathbf{SN}$. Hence $b[x/c]\overrightarrow{D} \cdot \pi_1 \in \mathbf{SN}$ and $b[x/c]\overrightarrow{D} \cdot \pi_2 \in \mathbf{SN}$ by IH, thus $e \cdot \pi_1 \in \mathbf{SN}$ and $e \cdot \pi_2 \in \mathbf{SN}$ by (β) .

The cases for the rules (π_1) , (π_2) , (δ_1) , (δ_2) , (δ_\times) , (δ_{-}) , (δ_+) , (ϕ_\times) , (ϕ_{-}) , and (ϕ_+) are analogous.

Two technical properties are needed to continue the proof:

- (T1) if $a \in SN$ and $x \notin FV(a)$ then $a[y/x] \in SN$. This property holds by an immediate induction on the generation of $a \in SN$.
- (T2) if $e: A \to B \in SN$ and $w \notin FV(e)$ then $e \cdot w \in SN$.

Property (T2) is proved by induction on the generation of $e \in SN$, observing that $w \in SN$ by (V_1) on no premises:

- $e = z \overrightarrow{R}$ by (V_1) , so $\overrightarrow{R} \in SN$, thus $e \cdot w \in SN$ by (V_1) .
- $e = \lambda y : Ab$ by (λ) , so $b \in SN$. Since $b[y/w] \in SN$ by Property (T1), $e \cdot w \in SN$ by (β) .
- $e = (\lambda x : Cb)c\overrightarrow{D}$ by (β) , so $b[x/c]\overrightarrow{D} \in \mathbf{SN}$ and $c \in \mathbf{SN}$. Then $b[x/c]\overrightarrow{D} \cdot w \in \mathbf{SN}$ by IH, thus $e \cdot w \in \mathbf{SN}$ by (β) .

The cases for the rules (π_1) , (π_2) , (δ_1) , (δ_2) , (δ_\times) , (δ_\to) , (δ_+) , (ϕ_\times) , (ϕ_\to) , and (ϕ_+) are similar.

→ Proof. (iv)

Properties (5), (7) and (9) are proved together by induction on (T, e), where T is ordered by the subtype relation, e is ordered by the generation of SN; as usual, pairs are lexicographically ordered.

To show (5), consider the possible ways in which $e: T \rightarrow A \in SN$:

- $e = x \overrightarrow{R}$ by (V_1) , so $\overrightarrow{R} \in \mathbf{SN}$. Since $a \in \mathbf{SN}$ by hypothesis, $e \cdot a \in \mathbf{SN}$ by (V_1) .
- $e = \lambda x : Ab$ by (λ) , so $b \in SN$. Since $a \in SN$ by hypothesis and A is a proper subtype of T, $b[x/a] \in SN$ by IH, so $e \cdot a \in SN$ by (β) .
- $e = (\lambda x : Cb)c\overrightarrow{D}$ by (β) , so $b[x/c]\overrightarrow{D} \in \mathbf{SN}$ and $c \in \mathbf{SN}$. Since $a : A \in \mathbf{SN}$ and A is a proper subtype of $T = A \rightarrow B$, $b[x/c]\overrightarrow{D} \cdot a \in \mathbf{SN}$ by IH, thus $e \cdot a \in \mathbf{SN}$ by (β) .

The cases for the rules (π_1) , (π_2) , (δ_1) , (δ_2) , (δ_\times) , (δ_{\times}) , (δ_+) , (ϕ_\times) , (ϕ_{\to}) , and (ϕ_+) are similar.

\hookrightarrow Proof. (v)

Property (7) is proved using the same technique. It has to be shown that $e \cdot \delta(x.a, y.b)$: $C \in \mathbf{SN}$ from e : T = A + B for all $a, b \in \mathbf{SN}$:

- $e = z \overrightarrow{R}$ by (V_1) . By side induction on the type C:
 - □ if C is either atomic or a sum, then $e \cdot \delta(x.a,y.b) \in SN$ by (V_2) .
 - □ if $C = D \times E$ then $a \cdot \pi_1, a \cdot \pi_2, b \cdot \pi_1, b \cdot \pi_2 \in \mathbf{SN}$ by Property (6), thus $e \cdot \delta(x.a \cdot \pi_1, y.b \cdot \pi_1) \in \mathbf{SN}$ and $e \cdot \delta(x.a \cdot \pi_2, y.b \cdot \pi_2) \in \mathbf{SN}$ by side IH on D and E, respectively.
 - Hence $(e \cdot \delta(x.a \cdot \pi_1, y.b \cdot \pi_1), e \cdot \delta(x.a \cdot \pi_2, y.b \cdot \pi_2)) \in SN$ by (p), then $e \cdot \delta(x.a, y.b) \in SN$ by (δ_{\times}) .
 - □ if $C = D \rightarrow E$, let w : D be a variable such that $w \not\in \{x,y\} \cup \mathsf{FV}(a) \cup \mathsf{FV}(b) \cup \mathsf{FV}(e)$. Then $a \cdot w \in \mathsf{SN}$ and $b \cdot w \in \mathsf{SN}$ by Property (T2), thus $e \cdot \delta(x.a \cdot w, y.b \cdot w) \in \mathsf{SN}$ by side IH on D. Hence $\lambda w : Ce \cdot \delta(x.a \cdot w, y.b \cdot w) \in \mathsf{SN}$ by (λ) , then $e \cdot \delta(x.a, y.b) \in \mathsf{SN}$ by (δ_{\rightarrow}) , concluding the side induction.

\hookrightarrow Proof. (vi)

- $e = z \overrightarrow{R} \delta(u.f, v.g)$ by (V_2) , so $z \overrightarrow{R} \in \mathbf{SN}$, $f : T \in \mathbf{SN}$, and $g : T \in \mathbf{SN}$. Thus $f \cdot \delta(x.a, y.b) \in \mathbf{SN}$ and $g \cdot \delta(x.a, y.b) \in \mathbf{SN}$ by IH on f and g. Then $z \overrightarrow{R} \delta(u.f \cdot \delta(x.a, y.b), v.g \cdot \delta(x.a, y.b)) \in \mathbf{SN}$ by (V_1) , hence $e \cdot \delta(x.a, y.b) \in \mathbf{SN}$ by (δ_+) .
- $e = \operatorname{inl}_A c$ by (i_1) , so $c \in \mathbf{SN}$. Since e : T = A + B and c : A, $a[x/e] \in \mathbf{SN}$ by IH on A. Hence $e \cdot \delta(x.a, y.b) \in \mathbf{SN}$ by (δ_1) . The case $e = \operatorname{inr}_B c$ by (i_2) is symmetrical.
- $e = (\lambda w : Cd) \overrightarrow{cD}$ by (β) , so $d[w/c]\overrightarrow{D} \in \mathbf{SN}$ and $c \in \mathbf{SN}$. Since e : T, also $d[w/c]\overrightarrow{D} : T$, thus $d[w/c]\overrightarrow{D}\delta(x.a,y.b) \in \mathbf{SN}$ by IH. Hence $e \cdot \delta(x.a,y.b) \in \mathbf{SN}$ by (β) .

The cases for the rules (π_1) , (π_2) , (δ_1) , (δ_2) , (δ_\times) , (δ_\to) , (δ_+) , (ϕ_\times) , (ϕ_\to) , and (ϕ_+) are analogous.

→ Proof. (vii)

Property (9) is similar, but additional care has to be taken when the variable to substitute is x in $x\overrightarrow{R}$. It has to be shown that $e[x/a] \in \mathbf{SN}$ from $e, a \in \mathbf{SN}$.

• $e = w \overrightarrow{R}$ by (V_1) , so $r[x/a] \in SN$ by IH on each term $r \in \overrightarrow{R}$. If $x \neq w$ then $e[x/a] = w(\overrightarrow{R}[x/a]) \in \mathbf{SN}$ by (V_1) . Thus assume x = w. Then $(x \overrightarrow{R})[x/a] \in \mathbf{SN}$ by side induction on $|\overrightarrow{R}|$: if \overrightarrow{R} is empty then $(x\overrightarrow{R})[x/a] = a \in \mathbf{SN}$ by hypothesis. Otherwise $\overrightarrow{R} = \overrightarrow{S}G$ and $(x\overrightarrow{S})[x/a] \in \mathbf{SN}$ by side IH. If $G = \pi_1$ or $G = \pi_2$ then $(x \overrightarrow{R})[x/a] = (x \overrightarrow{S})[x/a] \cdot G \in SN$ by Property (6). Otherwise G:B is a term. Let z:B be a variable such that $z \notin FV(a) \cup FV(x \stackrel{\frown}{R})$. Then $(x \stackrel{\frown}{R})[x/a] = ((x \stackrel{\frown}{S})[x/a] \cdot z)[z/G[x/a]]$. Since $(x\overrightarrow{S})[x/a] \cdot z \in SN$ by Property (T2), $G[x/a] \in SN$ as already seen, and B is a proper subtype of T, then $(x\vec{R})[x/a] \in \mathbf{SN}$ by IH.

→ Proof. (viii)

■ $e = w \overrightarrow{R} \delta(y.b,z.c)$ by (V_2) , so $(w \overrightarrow{R})[x/a] \in \mathbf{SN}$, $b[x/a] \in \mathbf{SN}$, and $c[x/a] \in \mathbf{SN}$ by IH. It is safe to assume $y,z \not\in \{x\} \cup \mathsf{FV}(a)$. If $x \neq w$ then $e[x/a] = (w \overrightarrow{R})[x/a] \cdot \delta(y.b[x/a],z.c[x/a]) \in \mathbf{SN}$ by (V_2) . Thus assume x = w and let $x \overrightarrow{R} : B + C$. If \overrightarrow{R} is inhabited then B + C is a proper subtype of T, the type of a and x. Hence

$$e[x/a] = ((x\overrightarrow{R})[x/a]) \cdot \delta(y.b[x/a], z.c[x/a]) \in SN$$

by IH on B + C.

\hookrightarrow Proof. (ix)

Therefore, let R be empty, so $e[x/a] = a \cdot \delta(y.b[x/a], z.c[x/a])$ whose type is atomic or a sum. Then $e[x/a] \in \mathbf{SN}$ is proved by showing that $a \in \mathbf{SN}$ implies $a \cdot \delta(y.b[x/a], z.c[x/a])$ by side induction on the generation of $a \in \mathbf{SN}$:

- $a = u\overrightarrow{S} \in SN$ by (V_1) . Then $e[x/a] = u\overrightarrow{S} \cdot \delta(y.b[x/a], z.c[x/a]) \in SN$ by (V_2) since its type is atomic or a sum.
- $a = u \overrightarrow{S} \delta(v_1.f, v_2.g)$ by (V_2) , so $u \overrightarrow{S}, f, g \in \mathbf{SN}$. Thus

$$f \cdot \delta(y.b[x/a], z.c[x/a]) \in SN$$

 $g \cdot \delta(y.b[x/a], z.c[x/a]) \in SN$

by side IH on f and g. Then

$$u\overrightarrow{S}\delta(v_1.f \cdot \delta(y.b[x/a], z.c[x/a]),$$

 $v_2.g \cdot \delta(y.b[x/a], z.c[x/a])) \in SN$

by (V_2) , hence $e[x/a] \in SN$ by (δ_+) .

\hookrightarrow Proof. (x)

- $a = \operatorname{inl}_C a'$ by (i_1) , so $a' : B \in \mathbf{SN}$. Since T = B + C, $(b[x/a])[y/a'] \in \mathbf{SN}$ by main IH on B. Hence $e[x/a] \in \mathbf{SN}$ by (δ_1) . The case $a = \operatorname{inr}_B a'$ by (i_2) is symmetrical.
- $a = (\lambda u : Ef) g\overrightarrow{D}$ by (β) , so $f[u/g]\overrightarrow{D} \in \mathbf{SN}$ and $g \in \mathbf{SN}$. Thus

$$f[u/g]\overrightarrow{D} \cdot \delta(y.b[x/a], z.c[x/a]) \in SN$$

by side IH on $f[u/g]\overrightarrow{D}$. Hence $e[x/a] \in SN$ by (β) .

The cases for all the other suitable rules, (π_1) , (π_2) , (δ_1) , (δ_2) , (δ_\times) , (δ_\to) , (δ_+) , and (ϕ_+) , are analogous. This concludes the (V_2) case.

→ Proof. (xi)

- $e = \lambda y : Bb$ by (λ) , so $b \in \mathbf{SN}$. It is safe to assume $y \notin \{x\} \cup \mathsf{FV}(a)$. Thus $b[x/a] \in \mathbf{SN}$ by IH on b. Hence $e[x/a] = \lambda y : Bb[x/a] \in \mathbf{SN}$ by (λ) . The cases for the rules (p), (i_1) , (i_2) , and (ϕ_a) are analogous.
- $e = (\lambda y : Bc) \overrightarrow{bD}$ by (β) , so $c[y/b]\overrightarrow{D} \in \mathbf{SN}$ and $b \in \mathbf{SN}$. It is safe to assume $y \notin \{x\} \cup \mathsf{FV}(a)$. Then $(c[y/b]\overrightarrow{D})[x/a] \in \mathbf{SN}$ and $b[x/a] \in \mathbf{SN}$ by IH. Since

$$\begin{split} &(c[y/b]\overrightarrow{D})[x/a]\\ &=(c[y/b][x/a])(\overrightarrow{D}[x/a])\\ &=((c[x/a])[y/b[x/a]])(\overrightarrow{D}[x/a]) \ , \end{split}$$

$$e[x/a] = (\lambda y : Bc[x/a])(b[x/a])(\overrightarrow{D}[x/a]) \in SN \text{ by } (\beta).$$

The cases for the rules (δ_1) and (δ_2) are analogous.

→ Proof. (xii)

• $e = (b,c)\pi_1\overrightarrow{D}$ by (π_1) , so $b\overrightarrow{D} \in \mathbf{SN}$ and $c \in \mathbf{SN}$. Then $(b\overrightarrow{D})[x/a] = (b[x/a])(\overrightarrow{D}[x/a]) \in \mathbf{SN}$ and $c[x/a] \in \mathbf{SN}$ by IH. Hence $(b[x/a],c[x/a])\pi_1(\overrightarrow{D}[x/a])) = e[x/a] \in \mathbf{SN}$ by (π_1) . The cases for the rules (π_2) , (ϕ_\times) , (ϕ_\to) , and (ϕ_+) are similar.

• $e = b \cdot \delta(y.c,z.d) \overrightarrow{D}$ by (δ_{\times}) , so

$$(b \cdot \delta(y.c \cdot \pi_1, z.d \cdot \pi_1), b \cdot \delta(y.c \cdot \pi_2, z.d \cdot \pi_2))\overrightarrow{D} \in SN$$
.

It is safe to assume $y,z \notin \{x\} \cup FV(a)$. Thus, by IH,

$$\begin{split} &\Big(\big(b \cdot \delta(y.c \cdot \pi_1, z.d \cdot \pi_1), b \cdot \delta(y.c \cdot \pi_2, z.d \cdot \pi_2) \big) \overrightarrow{D} \Big) [x/a] \\ &= \big(b[x/a] \cdot \delta(y.c[x/a] \cdot \pi_1, z.d[x/a] \cdot \pi_1), \\ &\quad b[x/a] \cdot \delta(y.c[x/a] \cdot \pi_2, z.d[x/a] \cdot \pi_2) \big) \big(\overrightarrow{D}[x/a] \big) \in \mathbf{SN} \ . \end{split}$$

Hence
$$b[x/a] \cdot \delta(y.c[x/a], z.d[x/a])(\overrightarrow{D}[x/a]) = e[x/a] \in SN$$
 by (δ_{\times}) .

The cases for the rules (δ_{\rightarrow}) and (δ_{+}) are analogous.

References

This proof follows the general guidelines of F. Joachimksi and R. Matthes, *Short Proofs of Normalization*, Archive for Mathematical Logic 42, 59–87 (2003).

The main differences are

- slightly more general permutation rules
- \bot (0 type) and \land (× type constructor) have also been considered
- all the uniqueness rules have been included in the proof
- a mistake in the published proof, which has been later corrected by the authors, is avoided by an alternative proof pattern
- the proof has the same general structure, but many local aspects use different approaches, e.g., the combinatorics of permutations via Δ and ∇
- more details (!!!)

The end

