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[Vz.A D> B - [A]*
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(47) F ANJx. B=3x. AN B with ¢ ¢ FV(A)
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A [B]
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E

Iz

3E2

1

B’

[A) AVB

VI 2 -3

AV B [(Fz.B]” Jx. AVB |

Bl JE
[A\/Hx.B]l Jdx. AV B Jz. AV B
Jx. AV B

I

AV (32.B) > 3. AVB

I>

I

VE?2

1

(49) + (V&. PV —~P) A —Vz.-P > 3z. P

[(Vz. PV =P) A =Y. ~P]? P
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(50) FVz. AAB = (Vz. A) A (V. B)
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(51) F (3z. AAB) O (3z. A) A (3. B)

[AAB)? [AA B]?
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JE? JE?

(3z. A) Vv (3z. B) (Fz. A) Vv (3z. B)
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(53) F 3. AV B = (3z.A)V (3z. B)
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IE? JE*
[(3z. A) v (3z. B)]" Jz. AV B Jz.AV B
VE?
Jdx. AV B
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. ————VI
[Fr.Vy. Al Vy.dz. A
JE?
Vy. 3z, A
Il
(Fz.Vy. A) DVy.3z. A >
(56) = (HSL‘ A) = ﬁVx. ﬁA
A
31
[-3x. A]l dz. A
-E
I
V. ~A]? B
VE VI
A7 -A Vi.—A  [=(Vz. -A)P
Ek " 1
3E? lem 1E
1 (Fz. A)v -3z A [Fz. A" 3. A
—“13 1
—Vz.—A Jdx. A e

(Fz. A) D ~Vz.-A 2! —(Va.—A) D 3x. A !
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(57) F (Va. A) = =3z. - A

4]
V. A [~(3z.-A)]* Jz.-A

R 1

1 L Tk ———lem 1 — 1E
[Fz. - A] I AV A [A] A

3E? 1

1 E A VE

— I VI
—dx. A Va. A

3 2

(Va. A) > —3z.-A G -A) oV A

Ell

-BE

(58) k- (V2. A D B) O ((Va. A) D (Vz. B))

Vz.A D> B]' V. A
VE VE
ADB A
DE
B
VI
V. B

2

(Vo.A) S Va. B 1
(Vz.A > B) > ((Va. A) D Va. B) ~

1

(59) H (BVVz.A) D (Vx. AV B) with z € FV(B)

V. A)?
9 ——VE
[B] A

11 12

AVB AVB
VI V1

[BvVz.Al' Vz.AVB V2. AVB

E2

Vz. AV B v

ort

(BVvVx.A) D (Vx. AV B)

(60) F (3z. A > B) O ((Va. A) O B) with z € FV(B)

[Va. A]?
g ————VE
[AD B] A
DE
B
N 3
Fe.A>B]' (V& A)>B
JE

(V. A) D B
(3z. A D B) D ((Vz. A) D B)

o1t

19
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(61) F32.B D> A= B D> Jz. A with « € FV(B)

(B> AP (B
a4 "
[Fz. B D A] Jz. A
3E?
Jz. A
Bo>dx. A
Il
(3z.B>A) > (B> 3. A)
CBP 1B
[4]° L
I — 1E
(B> 3z A" B BoA " A
OE Ell oIt
Jx. A Jx.BD A . BD>A
——lem JE 3I
Bv-B Jz.BD A Jz.BD A
E2
92.BD A !
Il
(B> 3z.A) D (3z.B D A) >
(62) F Aft/z] = 3x.x =t A A with « € FV(¢)
—refl
Ve.x =z
———VE
= [Alt/a])’
Al
t=tANA[t/z]
———— 31
Jz.x=tANA
Il
Aft/z] D 3z.z=tANA >
[z =tA A [z =t A A
AEq AE2
r=t A
subst
[Az.z=tAA Alt/a]
E2
Alt/x]

1

(Gz.z = tAA) > Aft/a]
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(63) H Aft/z] =Ve.x =t D A with z € FV(¢)

sym
Ve.Vy.o=yDy==xa
vE
Yy.r=yDy==x
VE 1
r=tDt=ux [z =t]
DE
t==x [Alt/=))*
subst
A 1
——— I
r=tDA

]
Ve.x=tDA

Alt/z) DVz.x =t D A

2

DI

refl

Voo =t> A" Ve.ox =z
VE VE
t=t> Alt/a] t=t
E
Alt/a] .

(Voo =15 A) > A/

(64) F Vz.Vy. P = Vy.Vz. P We observe that the property is auto-dual
Vz.Vy. P!
Vy. P
P
v
Vz. P
—v
Yy.Vx. P :
(Vz.¥y. P) S Vy.Vz. P

VE

VE

I

!

1

(65) + Jx.Jy. P = Jy. Jz. P We observe that the property is auto-dual
3
Pe
Jx. P
——I
By. PP 3y.3z.P
EiD
[3z.3y. P! Jy.3z. P
JE?
Jy. dx. P
(3z.3y.P) D Jy. 3x. P >

I

Il
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(66) FVa. AV B = (Vx. A) V B with = ¢ FV(B)

[Va. AV B)? 1
AV B [A]? A

1B]! Vo A
Bv-B " (Va.A)vB "
(Vz.A)Vv B
(V2. AV B) > (V2. A)V B
V. AJ
A VE [3]2
(Ve. A)vB]' AvB
AV B
Vx.AV B Y
(Vz.A)VBSVz.AVB

T

(67) F (Vx2.AD B) D ((3z. A) D 3x. B)

Vz. A D B)?
ADB (A

[Fz. A 3z. B
dx. B

(3z.A) > 3. B

(V2. A5 B) > ((3z.4) > 32.B) .

2

(68) F (Fx.x = f(x) A P[f(x)/x]) D Jx. P

Y1

Vx.Vy.m:yDyzxs
Vyx=yDy==zx y [z = f(z) A Plf(x)/a])”
t=f@) > f@) == =

Be.z = f(z) A P[f(x)/2]]" P

dz. P .
(3z.z = f(z) AP[f(2)/z]) D 3. P

1




