

MATHEMATICAL LOGIC — ASSIGNMENT FOUR

(1) Define the Gödel-Gentzen translation.

This is Definition 22.2 in the slides.

(2) Prove that there is a non-standard model for Peano arithmetic.

This is Theorem 26.2 in the slides.

(3) Let $P = \{\ulcorner \phi \urcorner : \vdash_{\text{PA}} \phi \text{ and } \text{FV}(\phi) = \emptyset\}$. Show that P is not recursive.

Suppose P is recursive. Then it is representable in Peano arithmetic: there is a formula Q with $\text{FV}(Q) = \{y\}$ such that

- if $\ulcorner \phi \urcorner \in P$ then $\vdash_{\text{PA}} Q[\ulcorner \phi \urcorner / y]$;
- if $\ulcorner \phi \urcorner \notin P$ then $\vdash_{\text{PA}} \neg Q[\ulcorner \phi \urcorner / y]$.

Then there is a sentence G such that $\vdash_{\text{PA}} G = \neg Q[\ulcorner G \urcorner / y]$ by the Fixed Point Lemma.

If $\ulcorner G \urcorner \in P$ then $\vdash_{\text{PA}} G$ by definition of P , thus $\vdash_{\text{PA}} \neg Q[\ulcorner G \urcorner / y]$ by definition of G , hence $\ulcorner G \urcorner \notin P$ by definition of Q : contradiction.

If $\ulcorner G \urcorner \notin P$ then $\vdash_{\text{PA}} \neg Q[\ulcorner G \urcorner / y]$ by definition of Q , thus $\vdash_{\text{PA}} G$ by definition of G , hence $\ulcorner G \urcorner \in P$ by definition of P : contradiction.

Therefore, P cannot be recursive.