MATHEMATICAL LOGIC — ASSIGNMENT TWO
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(2) Show that, for any set of formulee I' and any formula A,
o I'U { —\A} is not consistent if and only if I' - A;
e TU{ A} is not consistent if and only if ' - —A.
This is Proposition 10.3 in the slides.

(3) Show that every first-order theory T on the signature

(S;0;{<: Sx S})

having as models all the finite total orders, has necessarily an infinite model.

Let C' = {cl-: 1€ N} be a set of constants extending the given signature.

Observe how = can defined by the formula Vz.Vy.x <y Ay < z.

Let = = {ﬁci =cjii,] GN/\i#j} be a set of axioms.

Consider a finite /' C T'U Z. Hence, there is finite number of axioms in
F from Z, thus, in particular, there is finite number m of constants in C'
appearing in F'.

Then F' has <{O, e ,m} ; <), the usual order on naturals restricted to
the first m numbers, as a model.

Thus, by the Compactness Theorem, T'U = has a model M, and all the
¢;'s are interpreted in distinct elements, thus M is infinite.

Hence, M is a model for T" and it is infinite.
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