

MATHEMATICAL LOGIC — ASSIGNMENT TWO

(1) Prove $\vdash A[t/x] = \exists x. x = t \wedge A$ in natural deduction assuming $x \notin \text{FV}(t)$.

$$\begin{array}{c}
 \frac{\overline{\forall x. x = x} \text{ refl}}{t = t} \text{ vE} \quad \frac{[A[t/x]]^1}{t = t \wedge A[t/x]} \wedge I \\
 \frac{t = t \wedge A[t/x]}{\exists x. x = t \wedge A} \exists I \\
 \hline
 A[t/x] \supset \exists x. x = t \wedge A \quad \supset I^1
 \end{array}$$

$$\begin{array}{c}
 \frac{[x = t \wedge A]^2}{x = t} \wedge E_1 \quad \frac{[x = t \wedge A]^2}{A} \wedge E_2 \\
 \frac{\exists x. x = t \wedge A}{A[t/x]} \text{ subst} \\
 \hline
 \frac{A[t/x]}{(\exists x. x = t \wedge A) \supset A[t/x]} \supset I^1
 \end{array}$$

(2) Show that, for any set of formulæ Γ and any formula A ,

- $\Gamma \cup \{\neg A\}$ is not consistent if and only if $\Gamma \vdash A$;
- $\Gamma \cup \{A\}$ is not consistent if and only if $\Gamma \vdash \neg A$.

This is Proposition 10.3 in the slides.

(3) Show that every first-order theory T on the signature

$$\langle S; \emptyset; \{\leq: S \times S\} \rangle$$

having as models all the finite total orders, has necessarily an infinite model.

Let $C = \{c_i: i \in \mathbb{N}\}$ be a set of constants extending the given signature.

Observe how $=$ can be defined by the formula $\forall x. \forall y. x \leq y \wedge y \leq x$.

Let $\Xi = \{\neg c_i = c_j: i, j \in \mathbb{N} \wedge i \neq j\}$ be a set of axioms.

Consider a finite $F \subseteq T \cup \Xi$. Hence, there is finite number of axioms in F from Ξ , thus, in particular, there is finite number m of constants in C appearing in F .

Then F has $\langle \{0, \dots, m\}; \leq \rangle$, the usual order on naturals restricted to the first m numbers, as a model.

Thus, by the Compactness Theorem, $T \cup \Xi$ has a model \mathcal{M} , and all the c_i 's are interpreted in distinct elements, thus \mathcal{M} is infinite.

Hence, \mathcal{M} is a model for T and it is infinite.