

MATHEMATICAL LOGIC — ASSIGNMENT FOUR

- (1) Consider the term in the Simple Theory of Types

$$\lambda x: ((A \rightarrow 0) \rightarrow 0) \rightarrow 0. \lambda y: A. x (\lambda z: A \rightarrow 0. z y) .$$

Calculate its type and write the corresponding proof in natural deduction according to the propositions-as-types interpretation.

The type X of $\lambda x: ((A \rightarrow 0) \rightarrow 0) \rightarrow 0. \lambda y: A. x (\lambda z: A \rightarrow 0. z y)$ is $((A \rightarrow 0) \rightarrow 0) \rightarrow Y$ where Y is the type of $\lambda y: A. x (\lambda z: A \rightarrow 0. z y)$, so $Y \equiv A \rightarrow W$ where W is the type of $x (\lambda z: A \rightarrow 0. z y)$. Thus, $W \equiv 0$ because the type of $\lambda z: A \rightarrow 0. z y$ is $(A \rightarrow 0) \rightarrow 0$. Therefore, the required type is $((A \rightarrow 0) \rightarrow 0) \rightarrow (A \rightarrow 0)$.

Applying the propositions-as-types interpretation:

$$\frac{\frac{\frac{[\neg A]^2 \quad [A]^3}{\perp} \supset E}{\frac{\neg \neg \neg A}{\perp} \supset I^2}{\supset E}}{\frac{\frac{\perp}{\neg A} \supset I^3}{\neg \neg \neg A \supset \neg A} \supset I^1}$$

in which negation $\neg P$ is treated as an abbreviation for $P \supset \perp$.

- (2) State, without proving, Gödel's second incompleteness theorem.

This is Theorem 29.5 in the slides.

- (3) In the language of Peano arithmetic, let T be the theory containing all the true closed formulae in a standard model. Show that the set $g(T)$, where g is Gödel's coding of formulae, is not recursive, i.e., there is no computable way to decide whether any closed formula is true on naturals.

[Hint: The Weak Incompleteness Theorem may be useful.]

Clearly, T is consistent, because it has a model. If ϕ is true in every model and $\text{FV}(\phi) = \{x_1, \dots, x_n\}$ then the sentence $\psi \equiv \forall x_1, \dots, x_n. \phi$ is true in every model, in particular the standard one, so it occurs in T .

Hence, $T \vdash \phi$ because $T \vdash \psi$ by the axiom rule, followed by an n -length sequence of instances of the \forall -elimination rule.

Therefore, T is sound and complete, thus it is not effective by the Weak Incompleteness Theorem (31.1 in the slides), that is, the set T is not enumerable by a recursive function.

Suppose $g(T)$ is recursive: then there is a recursive function h such that $h(x) = 1$ if and only if $x = g(\phi)$ and $\phi \in T$. Then

$$\begin{aligned} f(0) &= \mu x. h(x) = 1 \\ f(n+1) &= \mu x. h(x) = 1 \wedge f(n) < x \end{aligned}$$

is a recursive function enumerating $g(T)$, thus $f \circ g$ is a recursive function enumerating T , which is impossible.