

MATHEMATICAL LOGIC — ASSIGNMENT THREE

(1) Show that the collection \mathbb{N}^* of finite sequences over the naturals is in bijective correspondence with \mathbb{N} .

See Example 13.4 in the slides.

(2) State, without proving, the Zorn Lemma.

This is Theorem 16.2 in the slides.

(3) In the pure λ -calculus, let $V \equiv \lambda y. x(y y)$ and let $R \equiv \lambda x. V V$. Show that, for all z , $R z =_{\beta} z(R z)$.

Calculating:

$$\begin{aligned} R z & \\ &\equiv (\lambda x. V V) z \\ &=_{\beta} (V V)[z/x] \\ &\equiv V[z/x] V[z/x] \\ &\equiv (\lambda y. z(y y)) V[z/x] \\ &=_{\beta} z(V[z/x] V[z/x]) \\ &\equiv z((V V)[z/x]) \\ &=_{\beta} z((\lambda x. V V) z) \\ &\equiv z(R z) . \end{aligned}$$