

MATHEMATICAL LOGIC — ASSIGNMENT TWO

(1) Prove $\vdash (A \vee \exists x. B) = (\exists x. (A \vee B))$ with $x \notin \text{FV}(A)$.
 Show a counterexample when $x \in \text{FV}(A)$.

$$\begin{array}{c}
 \frac{[B]^3}{\exists x. B} \exists I \\
 \frac{[A]^3}{A \vee B} \vee I_1 \quad \frac{[B]^3}{\exists x. B} \exists I \\
 \frac{[A \vee B]^2 \quad A \vee \exists x. B}{A \vee \exists x. B} \vee I_2 \\
 \frac{[\exists x. A \vee B]^1 \quad A \vee \exists x. B}{A \vee \exists x. B} \exists E^2 \\
 \frac{A \vee \exists x. B}{(\exists x. A \vee B) \supset A \vee \exists x. B} \supset I^1
 \end{array}$$

$$\begin{array}{c}
 \frac{[A]^2}{A \vee B} \vee I_1 \quad \frac{[B]^3}{A \vee B} \vee I_2 \\
 \frac{[A \vee \exists x. B]^1 \quad \exists x. A \vee B}{\exists x. A \vee B} \exists I \quad \frac{[\exists x. B]^2 \quad \exists x. A \vee B}{\exists x. A \vee B} \exists E^3 \\
 \frac{\exists x. A \vee B}{A \vee (\exists x. B) \supset \exists x. A \vee B} \vee E^2
 \end{array}$$

In arithmetic, let A be the formula “ x is even”, and let $B \equiv \perp$. Then $\exists x. A \vee B$ is true since $\exists x. A \vee B$ becomes $\exists x. A$ and there is an even number. Instead, if x is interpreted in 9, A is false, thus $A \vee \exists x. B$ becomes false.

(2) Show that a set Γ is maximal consistent if and only if it is consistent and for every formula A either $A \in \Gamma$ or $\neg A \in \Gamma$.

This is Proposition 10.4 in the slides.

(3) Show that every first-order theory T on the signature

$$\langle S; \{\circ: S \times S \rightarrow S\}; \{=: S \times S\} \rangle$$

having as models all the finite groups, has necessarily an infinite model.

Let $C = \{c_i: i \in \mathbb{N}\}$ be a set of constants.

Let $\Xi = \{c_i \neq c_j: i, j \in \mathbb{N} \wedge i \neq j\}$ be a set of axioms.

Consider a finite $F \subseteq T \cup \Xi$. Hence, there is finite number of axioms in F from Ξ , thus, in particular, there is finite number m of constants in C appearing in F .

Observe that there is necessarily a finite group \mathcal{G} whose order (the number of its elements) is greater than m : for example, the permutation group on m , which has $m!$ elements. Hence, \mathcal{G} is a model for F .

Thus, by the Compactness Theorem, $T \cup \Xi$ has a model \mathcal{M} , and all the c_i 's are interpreted in distinct elements, thus \mathcal{M} is infinite.

Hence, \mathcal{M} is a model for T and it is infinite.