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Introduction

Mathematical logic is the field of Mathematics which studies the deduction
process and the foundations of the whole discipline.
This course will introduce mathematical logic from the very beginning,
requiring as a prerequisite a minimal knowledge of elementary mathematics at
the university level.
The material of the course is more or less standard, and most introductory
textbooks will cover it. For the purposes of this course the slides are made
available to students.
The course is in English.
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Program

The course takes 78 hours, and its content will be an introduction to classical
logic with a glimpse to other logical systems.
The detailed program is
■ Propositional logic: language, deduction system, semantics, soundness,

completeness;
■ First-order logic : syntax, semantics, soundness, completeness,

compactness, extensions of models;
■ Set theory : fundamental axioms, ordinals, cardinals, transfinite induction,

axiom of choice, continuum hypothesis;
■ Computability : computable functions, λ-calculi, simple theory of types;
■ Constructive mathematics: intuitionistic logic, expressive power, semantics,

propositions as types;
■ Limiting results: Peano arithmetic, Gödel’s incompleteness theorems,

natural incompleteness results.

( 4 )



Texts

All the slides are available at the course website:

http://marcobenini.me/lectures/mathematical-logic

Also, at the end of each lesson, references to articles, texts, and other
resources which may be of interest to those interested in learning more, will
be provided. While the content of the slides is mandatory, looking at the
references is optional. Some non-official online video lessons are available on
the website.
Although there is no standard textbook, I will mainly use the classical Bell,
Machover A Course in Mathematical Logic.
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Examination

The examination will be oral. It will require to perform simple exercises, like
proving a theorem using a formal deductive system, and to state, discuss, and
prove the results explained during the course.
The examination will be, at the student’s choice, either in Italian or in English.
Informally, a student may take the examination by fixing an appointment: this
can be done at every time after the end of the course.
Formally, examinations can be registered only during the scheduled dates:
students must subscribe the date to be able to register their marks. Students
are strongly encouraged to plan when to take examinations, and to fix an
appointment in advance. Then, they can register the result whenever they
prefer, within 18 months from the end of the course.
As usual, independently from the results, repeating an examination cancels
the (unregistered) previous marks.
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Examination

Although it is not mandatory, there will be four intermediate assignments
during the course. Each assignment is preceded by a lesson which examines
selected exercises from past assignments.
Assignments will take place during lesson time, and they will cover
1. propositional logic
2. first-order logic
3. set theory and computability
4. constructive mathematics and limiting results

Students willing to take them can avoid the examination: each assignment
will get a mark, and the average will be the final mark. Rules for registration
are the same as for regular examinations.
The assignments of previous years are available at the course website.
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Timing

The schedule of lessons is fixed, and it cannot be easily changed. In general, a
lesson will start 10 minutes after the official time, and it will finish 10 minutes
before the official time, with no breaks.
The intermediate assignments will take place during lesson time. You students
decide when they will take place, choosing a date after the end of the
corresponding section of the course.
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Questions

Questions are welcome. Please, do not hesitate to ask questions when you do
not understand something during a lesson.
Questions could be asked also before the start of a lesson, or after the end.
Another possibility is to ask questions by email: in case write at the address

marco.benini@uninsubria.it

specifying your name, the course, and the question. Please, use your official
email from uninsubria.
There are no office hours in this course: students have to fix an appointment.
Please, do so only if you really think there is no other way to solve your
problem: although I am usually available to receive students during the course
time, when I am not teaching, it is often the case that I am not around in
University, so use this opportunity as your last resource.
Online appointments are always possible and encouraged.
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Your teacher

I am a researcher in Mathematical Logic. This means that my main job is to
think, and hopefully to find novel results in this field of Mathematics.
Teaching is part of my academic duties, but is not my first occupation.
As a logician, my interests lie in the interplay between truth and
computability. Indeed, I investigate mainly constructive logical systems, which
have nice computational properties, and my current playground, the ‘universe’
I work within, is Homotopy Type Theory.
For more, please visit my web page:

http://marcobenini.me
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Mathematical logic

Mathematical logic studies the mathematical deduction process and the
notion of truth, at large.
Logic is an ancient part of Mathematics: its origins go back to Aristotle, while
its mathematical foundations can be traced in the work of Boole, Frege,
Cantor, Russell, Hilbert, Gödel, . . .
Since Gödel’s Incompleteness results, the discipline underwent a huge
development, and today it is a very active part of contemporary Mathematics,
with application in Computer Science and Philosophy.
Since this is a first course in mathematical logic, we will stop after proving
the incompleteness results. Here and there, hints about future developments
will be given, but the course sticks on the classical track.
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Greek mathematics

©Marco Benini, Pytaghoras in Samos

Proof
Theorem
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Greek mathematics

Logos

Johannes Moreelse,
Heraclite,

Centraal Museum, Utrecht,
1630

Proof by contradiction
Paradoxes on infinity

Marcus Meibomius,
engraving of Zeno of Elea in Diogenis Laertii De Vitis,

1698
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Greek mathematics

Formal reasoning
Excluded middle
Formal system

Organon,
Aristotle
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Greek mathematics

Chrysippos of Soli,
Marble, Roman copy of the late 3rd century BC

Modality
Conditionals, implication
Relation between meaning and
truth, semantics
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Islam

Avicenna
Portrait on Silver Vase

Museum at BuAli Sina (Avicenna) Mausoleum
Hamadan, Western Iran

©Adam Jones photographer, 2012

Modal and temporal connectives
Precursors of ideal objects
Algebra
Algorithm
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Medieval Europe

Museum of Galileo, Florence,
©Marco Benini, 2015
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Descartes

Portrait of René Descartes by Frans Hals

Analytic geometry
Bridge between geometry and algebra
Space
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Newton

Mathematical analysis
Foundations in Euclidean geometry

De analysi per aequationes numero terminorum infinitas,
Isaac Newton, 1711
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Liebniz

Bildnis des Philosophen Gottfried Wilhelm Freiherr von Leibniz,
Christoph Bernhard Francke, 1695

Mathematical analysis
Characteristica Universalis
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The crisis in analysis

Carl Friedrich Gauß,
Christian Albrecht Jensen, 1840

Augustin Louis Cauchy,
photo by Charles Reutlinger
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The crisis in analysis

Georg Friedrich Bernhard Riemann, 1863

Julius Wilhelm Richard Dedekind,
photo by Johannes Ganz, 1866

Karl Weierstraß,
Conrad Fehr, 1895
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Revolution
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Algebra

Last page of the letter from Évariste Galois to Auguste Chevalier,
29th March 1832

Niels Henrik Abel
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Non-Euclidean geometry

János Bolyai,
painting by Márkos Ferenc, 2012

Nikolai Ivanovich Lobachevsky,
portrait by Lev Kryukov, 1843
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Foundations of Mathematics
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Cantor

Georg Ferdinand Ludwig Philipp Cantor,
1910

Set theory
Infinities
Cardinality
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Boole

The Laws of Thought
Mathematical logic

The Laws of Thought,
1854
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Frege

Friedrich Ludwig Gottlob Frege,
1879

Variables
Quantifiers
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Russell’s paradox

Let R = {x : x ̸∈ x }.
Then R ∈R if and only if R ̸∈R.
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Peano

Giuseppe Peano

Formal arithmetic
Induction
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Hilbert

David Hilbert,
1912

Formal geometry
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Hilbert

© Sharjeel Khan
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Hilbert

Formalisation: all mathematical statements have to be written, at least in
principle, in a precise formal language and manipulated according to a fixed,
precise and formal set of rules.
Consistency: the whole corpus of mathematics has to be proved to be
contradiction free by means of a formal proof inside the mathematics itself.
Finitistic: the language, the rules of inference, and the proofs have to be
finite and effective. In particular, the consistency proofs have to be finitistic.
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Zermelo and Frænkel

Ernst Zermelo,
1900 Abraham Halevi Frænkel,

1939–49
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Russell

Bertrand Russell

Principia Mathematica
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Löwenheim and Skolem

Leopold Löwenheim Thoralf Skolem,
1930
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Gödel

Kurt Gödel

Completeness of first
order logic
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Gödel

Incompleteness theorems
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Gentzen

Gerhard Gentzen,
photo by Eckart Menzler-Trott, Prague, 1945

Consistency of arithmetic
Cut elimination
Proof theory
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Computability theory

Stephen Cole Kleene,
photo by Konrad Jacobs, Erlangen, 1978

Alan Mathison Turing
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Computability theory

Halting problem
Church-Turing thesis

Alonzo Church
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Intuitionism

Luitzen Egbertus Jan Brouwer

Constructive mathematics
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Afterwards

Mathematical logic (Jon Barwise, 1977):
■ Set theory
■ Proof theory
■ Model theory
■ Recursion theory

Nowadays also: Category theory, Topos theory, Type Theory, . . .
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Afterwards

Saunders Mac Lane,
photo by Konrad Jacobs, 1972

Category theory
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Afterwards

Type theory

Per Martin-Löf
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Afterwards
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References

Two classical books on the history of Mathematics are: Carl B. Boyer, A
History of Mathematics, John Wiley & Sons (1968), and Morris Kline,
Mathematical Thought from Ancient to Modern Times, Oxford University
Press (1972). Also, very good references to authors and ideas can be found in
the Stanford Encyclopedia of Philosophy: https://plato.stanford.edu/

For those interested in the recent history of logic, a nice and short book is
Piergiorgio Odifreddi, La matematica del Novecento—Dagli insiemi alla
complessità, Piccola Biblioteca Einaudi, Einaudi, (2000).
There are many introductory textbooks of mathematical logic and a few
important reference texts. I would like to mention the comprehensive guide
Jon Barwise, Handbook of Mathematical Logic, Studies in Logic and the
Foundations of Mathematics 90, North-Holland, (1977).
Although not required, most of the course is based on John Bell and Moshe
Machover A Course in Mathematical Logic, North Holland (1977).
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Proving by induction

Intuitively, to show that a property P(x) holds for every possible value of x in
a domain D, one could substitute x with each v ∈D and prove P(v).
This is, generally, impractical, and impossible when D is infinite.
However, if D can be generated by a process which has a finite description, or
in jargon, if D is finitely generated, then one may use the generation process
to prove P(x).
This idea is called induction.
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Proving by induction

Let N be the set of natural numbers {0,1,2, . . .}.
Observe how N can be finitely generated:
1. 0 ∈N;
2. if m ∈N then S(m) ∈N, with S the successor function, S(x) = x +1.

Hence, if P is a property, we have an induction principle:
1. if we have a proof of P(0),
2. if we are able to prove P(S(m)) from the hypothesis P(m),
then P(x) holds for every x ∈N.
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Proving by induction

The induction principle is intuitively justified:
■ we have a proof π0 of P(0) by step 1;
■ composing π0 with the proof of step 2, we obtain a proof π1 of P(1);
■ composing π1 with the proof of step 2, we obtain a proof π2 of P(2);
■ and so on . . .

So, whatever value v ∈N, we will find a proof for P(v) in the list above.
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Example

Proposition 2.1
kX

n=0
n = k(k +1)

2 .

Proof.
By induction on k ∈N:

1. when k = 0,
0X

n=0
n = 0= 0(0+1)

2 ;

2. assume
kX

n=0
n = k(k +1)

2 . Then,

k+1X
n=0

n = k +1+
kX

n=0
n = k +1+ k(k +1)

2 = k2 +3k +2
2 = (k +1)((k +1)+1)

2 .
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Definition by induction

Induction can be used to define new concepts and new objects.
Let τ be a map from N. Then, the image of τ is a new concept, and its
elements are new objects.
For example, posing τ(x)= 2x , we define a new concept: even numbers.
Considering the collection of all the maps ρ : N→ {0, . . . ,9} to the set of digits,
we obtain new objects, one for each ρ, denoting the real number
0.ρ(0)ρ(1) · · · whose digit at the decimal position n is ρ(n), and a new
concept, the unit interval [0,1].
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In general

The idea of induction is far more general: whenever we can finitely generate a
domain, we have an induction principle which can be used to reason and to
define properties and concepts.
In Mathematical Logic, induction is one of the fundamental and most
powerful tools.
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Propositional logic

In this lesson, we want to introduce classical propositional logic.
We will start from its syntax, and its intended meaning.
The idea is that a proposition stands for a truth value, either true or false.
Composite propositions will derive their truth value from their components,
while basic propositions will have a truth value which depends on the world
they are interpreted in.
For example, the sentence ‘Socrates is a man’ may be true or false, as
Socrates may be the ancient Greek philosopher, or a cat. On the other side,
‘If Socrates is a man then Socrates is mortal’ is true when Socrates is both a
man and mortal, but also when Socrates is not a man, and it is false when
Socrates is an immortal man.
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Language

Definition 2.2 (Formula)
Let V be an infinite set of symbols, called variables, not containing ‘(’, ‘)’,
‘⊤’, ‘⊥’, ‘∧’, ‘∨’, ‘⊃’, ‘¬’.
Then, a formula is inductively defined as
1. a variable x ∈V is a formula;
2. ⊤, spelt true, and ⊥, false, are formulæ;
3. if A is a formula, so is (¬A), not, negation;
4. if A and B are formulæ, so are (A∧B), and, conjunction; (A∨B), or,

disjunction; and (A⊃B), implication.

Note how A and B above are not part of the language, but are variables in
the metalanguage—we will be mostly informal about the metalanguage, i.e.,
the language we use to describe the logical language.
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Language

To simplify the notation, we use a number of abbreviations:
■ outermost parentheses are not written: x ∧y instead of (x ∧y);
■ conjunction and disjunction have a higher precedence over implication:

x ∧y ⊃ z ∨w instead of ((x ∧y)⊃ (z ∨w));
■ negation has a higher precedence over conjunction, disjunction, and

implication: ¬x ∧¬y instead of ((¬x)∧ (¬y));
■ lowercase letters, unless specified otherwise, stand for variables.
■ uppercase letters, unless stated otherwise, stand for objects in the

metalanguage.

An important point to remark is that the definition of formula is by induction.
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Language

As an example of inductive definition, let’s introduce the notion of subformula:

Definition 2.3 (Subformula)
Given a formula A on the set V of variables, B is a subformula of A if and
only if B belongs to the set S(A) inductively defined as
1. if A ∈V , A≡⊤, or A≡⊥ then S(A)= {A};
2. if A≡B∧C , A≡B∨C , or A≡B ⊃C then S(A)= {A}∪S(B)∪S(C);
3. if A≡¬B then S(A)= {A}∪S(B).
We may equivalently say that B occurs in A, meaning that B is a subformula
of A.
In general, the symbol ≡ in the meta-language means ‘literally equal’, i.e.,
written in exactly the same way.
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Intended interpretation

Informally, a truth value is either true or false.

■ A variable x stands for some truth value.
■ ⊤ denotes true.
■ ⊥ denotes false.
■ A∧B is true when both A and B are true; and it is false otherwise.
■ A∨B is true when A is true, or B is true, or both are true; and it is false

when both A and B are false.
■ A⊃B is true if, when A is true, so is B, and it is true also when A is false.

It is false when A is true but B is false.
■ ¬A is true exactly when A is false.

In general, the truth value of a formula depends on the values of its variables.
Sometimes, it happens that a formula is true independently from the value of
its variables, e.g., x ⊃ x is true whatever truth value x may assume.
Logic is mainly concerned in the study of tautologies, those formulæ which
are true independently from the values of their variables.
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Natural deduction

An obvious way to discover whether a formula is true, is to try all the possible
values for the variables occurring in it.
But there are three main drawbacks in this strategy:
■ the strategy is exponential: if there are n distinct variables in a formula,

we have to try 2n possible assignments.
■ the strategy does not scale to other logical systems. For example, take

arithmetic: it is unfeasible to show the truth of a formula trying all the
possible values for its variables, as each of them stands for a natural!

■ the strategy does not provide any insight: we have no idea why the
formula holds, except that it exhaustively satisfies all the possible
assignments. In particular, we do not know which axioms in our theory are
required so to make the property true.

What we want is a notion of proof: a way to reason that, starting from some
basic accepted facts, and adopting a series of accepted rules, allows us to
conclude that the formula is true.
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Natural deduction

Definition 2.4 (Theory)
Fixed a language, a theory T is a set of formulæ, each one usually referred to
as an axiom.
When T =;, we will speak of the theory as pure logic.

Definition 2.5 (Proof)
Fixed a language and a theory T in it, a proof or deduction of the formula A,
the conclusion, from a set Γ of formulæ, the hypotheses or assumptions, is
inductively defined by a set of inference rules summarised in the next slides.
A formula A which is the conclusion of a proof with no assumptions, is called
a theorem in the theory T .
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Natural deduction

The inference rules governing conjunctions are:

A∧B
∧E1A

A∧B
∧E2B

A B
∧I

A∧B

we have two elimination rules, and an introduction rule.
Those governing disjunctions are:

A
∨I1A∨B

B
∨I2A∨B

A∨B

[A]
·····
C

[B]
·····
C

∨E
C
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Natural deduction

Implication and negation are subject to the following rules:

[A]
·····
B

⊃I
A⊃B

A⊃B A
⊃E

B

[A]
·····
⊥

¬I¬A
¬A A

¬E⊥

They are very similar, since, as we will see in the next lesson, negation can be
defined from implication.
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Natural deduction

True and false are governed by the following rules:

⊤I⊤
⊥

⊥E
A

If A is an axiom of the theory T , i.e., if A ∈T , we are allowed to deduce it:

ax
A

If A is an assumption, i.e., if A ∈ Γ, we can deduce it

A
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Natural deduction

Finally, for every formula A either A is true or it is false. This is expressed by
the Law of Excluded Middle:

lem
A∨¬A

As we will say later in the course, the Law of Excluded Middle is delicate, and
it has a special status.
In general, whenever possible, we will try to avoid its use in a proof.
As matter of fact, the same deduction system without the Law of Excluded
Middle, identifies another logic, intuitionistic logic, we will introduce later in
the course.
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Natural deduction

A couple of comments:
■ except for the Law of Excluded Middle, the rules come in pairs: any

connective is associated to one or more introduction rule, and one or more
elimination rule.

■ assumptions may be free or discharged. Free assumptions are real, in the
sense that the proof depends on them; discharged assumptions are used to
get rid of a local assumption, which does not affect the whole proof. This
is best understood looking at the ‘implication introduction’ rule: to prove
A⊃B, we locally assume A, and we try to prove B, but the final result
does not depend on A anymore.

When we want to name but not to detail the proof, we write π : Γ⊢T A,
meaning that π is a proof of A from the assumptions Γ in the theory T . When
the proof is not relevant, we omit the π; when the theory is understood or
empty, we omit the T ; when the set of assumptions is empty, we omit the Γ.
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Summary

A B
∧I

A∧B
A∧B

∧E1A
A∧B

∧E2B
⊥

⊥E
A

A
∨I1A∨B

B
∨I2A∨B

A∨B

[A]
·····
C

[B]
·····
C

∨E
C

⊤I⊤

[A]
·····
B

⊃I
A⊃B

A⊃B A
⊃E

B
lem

A∨¬A

[A]
·····
⊥

¬I¬A
¬A A

¬E⊥
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Summary

This lesson is fundamental. You have to memorise the inference rules of the
previous slide and use them at will.
Although the intended meaning seems obvious, be sure to really understand
the way we interpret implication.
Take some time to note the symmetries among the inference rules:
■ except for the Law of Excluded Middle, there are introduction and

elimination rules for every connective;
■ you cannot introduce falsity;
■ you cannot eliminate truth;
■ implication and negation are similar;
■ conjunction and disjunction are similar.
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Recently, this text has been reprinted by Dover.
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Syllabus

Propositional logic:
■ Examples
■ Proving techniques
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Examples

To prove a formula we need to think backwards: so introduction rules
eliminate the main connective from a formula.
The first basic technique is to reduce the formula to prove by applying the
only introduction rule which could generate it.

Example 3.1
Prove ⊢A⊃ (B ⊃A)

[A]1
⊃I

B ⊃A
⊃I1

A⊃ (B ⊃A)
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Examples
A useful way to help proving a formula is to keep track of the assumptions we
generate in the deduction process.
In the last example we started from

A⊃ (B ⊃A)

We tried to simplify the goal to prove by the implication introduction rule
B ⊃A

⊃I
A⊃ (B ⊃A)

and in the meanwhile our set of assumptions, which was initially empty, has
become {A}.
We tried to simplify the current goal B ⊃A, obtaining

A
⊃I

B ⊃A
⊃I

A⊃ (B ⊃A)

and in the meanwhile our set of assumptions has become {A,B}.
( 75 )

Examples

Now we see that the current goal is in the set of available assumptions, so we
can close the proof by discharging.

[A]1
⊃I

B ⊃A
⊃I1

A⊃ (B ⊃A)

It is worth noting that
■ we should remember which rule introduced which assumption, so that

discharging could be correctly performed;
■ we may have unused assumptions like B in the example.
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Examples

When an assumption is a complex formula, it is worth dismounting it by
means of an elimination rule.

Example 3.2
Prove ⊢ (A⊃C)⊃ ((B ⊃C)⊃ (A∨B ⊃C))

[A∨B]1
[A]2 [A⊃C ]3

⊃E
C

[B]2 [B ⊃C ]4
⊃E

C
∨E2

C
⊃I1

A∨B ⊃C
⊃I4

(B ⊃C)⊃ (A∨B ⊃C)
⊃I3

(A⊃C)⊃ ((B ⊃C)⊃ (A∨B ⊃C))

Note how assumptions are local to a subproof. Try to redo this exercise and
to understand how assumptions are managed.
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Examples

Example 3.3
Prove ⊢A∨B =B∨A (∨ is commutative).
We introduced something new: A=B abbreviates (A⊃B)∧(B ⊃A). To prove
such a formula it suffices to prove A⊃B and B ⊃A.
We note that the property is auto-dual, so it is enough to show

[A∨B]1
[A]2

∨I2B∨A
[B]2

∨I1B∨A
∨E2

B∨A
⊃I1

A∨B ⊃B∨A
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Examples

Example 3.4
Prove ⊢A∧B =B∧A (∧ is commutative).

[A∧B]1
∧E2B

[A∧B]1
∧E1A

∧I
B∧A

⊃I1
A∧B ⊃B∧A
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Examples

There could be more than one way to prove a result.
Example 3.5
Prove ⊢A∨A=A (∨ is idempotent).

[A∨A]1 [A]2 [A]2
∨E2

A
⊃I1

A∨A⊃A

[A]1
∨I1A∨A
⊃I1

A⊃A∨A

[A]1
∨I2A∨A
⊃I1

A⊃A∨A
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Examples

Example 3.6
Prove ⊢A∧A=A (∧ is idempotent).

[A∧A]1
∧E1A
⊃I1

A∧A⊃A

[A∧A]1
∧E2A
⊃I1

A∧A⊃A

[A]1 [A]1
∧I

A∧A
⊃I1

A⊃A∧A
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Examples

Example 3.7
Prove ⊢A∨ (A∧B)=A (absorption law).

[A∨ (A∧B)]1 [A]2
[A∧B]2

∧E1A
∨E2

A
⊃I1

A∨ (A∧B)⊃A

[A]1
∨I1A∨ (A∧B)
⊃I1

A⊃A∨ (A∧B)
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Examples

Example 3.8
Prove ⊢A∧ (A∨B)=A (absorption law).

[A∧ (A∨B)]1
∧E1A
⊃I1

A∧ (A∨B)⊃A

[A]1
[A]1

∨I1A∨B
∧I

A∧ (A∨B)
⊃I1

A⊃A∧ (A∨B)
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Examples

Example 3.9
Prove ⊢ (A∧B)∧C =A∧ (B∧C) (∧ is associative).

[(A∧B)∧C ]1
∧E1A∧B

∧E1A

[(A∧B)∧C ]1
∧E1A∧B

∧E2B
[(A∧B)∧C ]1

∧E2C
∧IB∧C

∧IA∧ (B∧C)
⊃I1(A∧B)∧C ⊃A∧ (B∧C)

[A∧ (B∧C)]1
∧E1A

[A∧ (B∧C)]1
∧E2B∧C

∧E1B
∧I

A∧B

[A∧ (B∧C)]1
∧E2B∧C

∧E2C
∧I

(A∧B)∧C
⊃I1

A∧ (B∧C)⊃ (A∧B)∧C

( 84 )



Examples

Falsity elimination allows to deduce any formula one needs. But falsity always
comes from a contradiction.

Example 3.10
Prove ⊢¬A⊃ (A⊃B).

[¬A]1 [A]2
¬E⊥

⊥E
B

⊃I2
A⊃B

⊃I1¬A⊃ (A⊃B)
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Examples

Thinking backwards, not introduction allows to assume the conclusion
deprived of the negation. It is a form of reasoning by contradiction.
Example 3.11
Prove ⊢A∧B ⊃¬(A⊃¬B).

[A⊃¬B]1
[A∧B]2

∧E1A
⊃E¬B

[A∧B]2
∧E2B

¬E⊥
¬I1¬(A⊃¬B)

⊃I2
A∧B ⊃¬(A⊃¬B)
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Examples

Example 3.12
Prove ⊢¬(A∨B)=¬A∧¬B (De Morgan’s law).

[¬(A∨B)]1
[A]2

∨I1A∨B
¬E⊥

¬I2¬A

[¬(A∨B)]1
[B]3

∨I2A∨B
¬E⊥

¬I3¬B
∧I¬A∧¬B

⊃I1¬(A∨B)⊃¬A∧¬B

[A∨B]1
[A]2

[¬A∧¬B]3
∧E1¬A

¬E⊥
[B]2

[¬A∧¬B]3
∧E2¬B

¬E⊥
∨E2

⊥
¬I1¬(A∨B)

⊃I3¬A∧¬B ⊃¬(A∨B)
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Examples

Example 3.13
Prove ⊢¬¬(A∧B)⊃¬¬A∧¬¬B.

[¬¬(A∧B)]1

[¬A]2
[A∧B]3

∧E1A
¬E⊥

¬I3¬(A∧B)
¬E⊥

¬I2¬¬A

[¬¬(A∧B)]1

[¬B]4
[A∧B]5

∧E2B
¬E⊥

¬I5¬(A∧B)
¬E⊥

¬I4¬¬B
∧I¬¬A∧¬¬B

⊃I1¬¬(A∧B)⊃¬¬A∧¬¬B
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Examples

Example 3.14
Prove ⊢¬¬A∧¬¬B ⊃¬¬(A∧B).

[A]1 [B]2
∧I

A∧B [¬(A∧B)]3
¬E⊥

¬I1¬A
[¬¬A∧¬¬B]4

∧E1¬¬A
¬E⊥

¬I2¬B
[¬¬A∧¬¬B]4

∧E2¬¬B
¬E⊥

¬I3¬¬(A∧B)
⊃I4¬¬A∧¬¬B ⊃¬¬(A∧B)
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Examples

Example 3.15
Prove ⊢¬¬(A⊃B)⊃ (¬¬A⊃¬¬B).

[A]1 [A⊃B]2
⊃E

B [¬B]3
¬E⊥

¬I2¬(A⊃B) [¬¬(A⊃B)]4
¬E⊥

¬I1¬A [¬¬A]5
¬E⊥

¬I3¬¬B
⊃I5¬¬A⊃¬¬B

⊃I4¬¬(A⊃B)⊃ (¬¬A⊃¬¬B)
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Examples

Example 3.16
Prove ⊢ (¬¬A⊃¬¬B)⊃¬¬(A⊃B).

[¬(A⊃B)]1

[¬¬A⊃¬¬B]2

[A]3 [¬A]4
¬E⊥

¬I4¬¬A
⊃E¬¬B

[¬(A⊃B)]1
[B]5

⊃I
A⊃B

¬E⊥
¬I5¬B
¬E⊥

⊥E
B

⊃I3
A⊃B

¬E⊥
¬I1¬¬(A⊃B)

⊃I2
(¬¬A⊃¬¬B)⊃¬¬(A⊃B)
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Examples

Proofs involving the Law of Excluded Middle are more difficult. The
fundamental strategy is that an application of the principle is required when
no other strategy could be applied.
Example 3.17
Prove ⊢A=¬¬A (double negation law).

lem
A∨¬A [A]1

[¬A]1 [¬¬A]2
¬E⊥

⊥E
A

∨E1
A

⊃I2¬¬A⊃A

[¬A]1 [A]2
¬E⊥

¬I1¬¬A
⊃I2

A⊃¬¬A
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Examples

Do not rely on the shape of the theorem! Small variations could be provable
without the Law of Excluded Middle!
Example 3.18
Prove ⊢¬A=¬¬¬A.

[¬¬¬A]1

[¬A]2 [A]3
¬E⊥

¬I2¬¬A
¬E⊥

¬I3¬A
⊃I1¬¬¬A⊃¬A

[¬¬A]1 [¬A]2
¬E⊥

¬I1¬¬¬A
⊃I2¬A⊃¬¬¬A
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Examples

You may think the Law of Excluded Middle is about negation. This is false:
there are elementary facts in which negation does not appear that require the
Law of Excluded Middle to be proved.
Example 3.19
Prove ⊢ (A⊃B)∨ (B ⊃A).

lem
A∨¬A

[A]1
⊃I

B ⊃A
∨I2(A⊃B)∨ (B ⊃A)

[A]2 [¬A]1
¬E⊥

⊥E
B

⊃I2
A⊃B

∨I1(A⊃B)∨ (B ⊃A)
∨E1

(A⊃B)∨ (B ⊃A)
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Examples

Example 3.20
Prove ⊢ ((A⊃B)⊃A)⊃A (Pierce’s law).

lem
A∨¬A [A]1

[(A⊃B)⊃A]2

[¬A]1 [A]3
¬E⊥

⊥E
B

⊃I3
A⊃B

⊃E
A

∨E1
A

⊃I2
((A⊃B)⊃A)⊃A
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Examples

Example 3.21
Prove ⊢A⊃B =¬B ⊃¬A (contraposition).

[A⊃B]1 [A]2
⊃E

B [¬B]3
¬E⊥

¬I2¬A
⊃I3¬B ⊃¬A

⊃I1
(A⊃B)⊃ (¬B ⊃¬A)

lem
B∨¬B [B]1

[¬B ⊃¬A]2 [¬B]1
⊃E¬A [A]3

¬E⊥
⊥E

B
∨E1

B
⊃I3

A⊃B
⊃I2

(¬B ⊃¬A)⊃ (A⊃B)
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Examples

Example 3.22
Prove ⊢A⊃B =¬(A∧¬B).

[A⊃B]1
[A∧¬B]2

∧E1A
⊃EB

[A∧¬B]2
∧E2¬B

¬E⊥
¬I2¬(A∧¬B)

⊃I1(A⊃B)⊃¬(A∧¬B)

lemB∨¬B [B]1

[A]2 [¬B]1
∧IA∧¬B [¬(A∧¬B)]3

¬E⊥
⊥EB
∨E1

B
⊃I2A⊃B

⊃I3¬(A∧¬B)⊃ (A⊃B)
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Examples

Example 3.23
Prove ⊢A∨B =¬A⊃B.

[A∨B]1

[A]2 [¬A]3
¬E⊥

⊥E
B [B]2

∨E2
B

⊃I3¬A⊃B
⊃I1

A∨B ⊃ (¬A⊃B)

lem
A∨¬A

[A]1
∨I1A∨B

[¬A]1 [¬A⊃B]2
⊃E

B
∨I2A∨B
∨E1

A∨B
⊃I2

(¬A⊃B)⊃A∨B
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Exercises could be found in any standard textbook, see, e.g., Chapter 1 of
John Bell and Moshé Machover, A Course in Mathematical Logic,
North-Holland, (1977), ISBN 0-7204-28440.
Some further exercises are available on the course web site.
Proving techniques come from the completeness and the normalisation proofs.
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Semantics

The intended meaning of propositional logic can be formalised. In this way we
will get a first, very simple semantics for the syntax introduced in the previous
lessons.

Definition 4.1 (Truth-tables semantics)
Fixed a map ν : V → {0,1} from the set of variables V to the truth values,
denoted by 0 and 1, the meaning �A� of a formula A is inductively defined as
follows:
■ if A ∈V is a variable then �A�= ν(A);
■ �⊤�= 1;
■ �⊥�= 0; ,→

( 102 )

Semantics

,→ (Truth-tables semantics)
■ if A≡B∧C then �A� is calculated according to

�B� �C� �B∧C�
0 0 0
0 1 0
1 0 0
1 1 1

■ if A≡B∨C then �A� is calculated according to

�B� �C� �B∨C�
0 0 0
0 1 1
1 0 1
1 1 1

,→

( 103 )

Semantics

,→ (Truth-tables semantics)
■ if A≡¬B then �A� is calculated according to

�B� �¬B�
0 1
1 0

■ if A≡B ⊃C then �A� is calculated according to

�B� �C� �B ⊃C�
0 0 1
0 1 1
1 0 0
1 1 1
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Semantics

Example 4.2
We can show that the formula x ∧y ⊃ x ∨y is true whatever values we may
assign to x and y ;

�x� �y� �x ∧y� �x ∨y� �x ∧y ⊃ x ∨y�
0 0 0 0 1
0 1 0 1 1
1 0 0 1 1
1 1 1 1 1

The corresponding proofs in natural deduction are:

[x ∧y ]∗
∧E1x

∨I1x ∨y
⊃I∗

x ∧y ⊃ x ∨y

[x ∧y ]∗
∧E2y

∨I2x ∨y
⊃I∗

x ∧y ⊃ x ∨y
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Example

Example 4.3
Truth-tables allow to derive semantic properties, too.

�x� �y� �x ∧y� �x ∨y� �x ∧y� ≤ �x ∨y�
0 0 0 0 1
0 1 0 1 1
1 0 0 1 1
1 1 1 1 1

( 106 )

Applications

Truth tables are widely used in the synthesis of (logical) circuits, and many
techniques to minimise the number of electronic gates, each one
implementing a logical connective, have been implemented.
In logic truth tables are not an effective way to check whether a formula is
true for any assignment of its variables: the number of assignment to try is
2n, with n the number of variables, so it grows exponentially with respect to
the number of variables.
Anyway in pure logic truth tables are a very effective way to construct a
minimal set of connectives. Indeed, the collection of connectives is redundant
as they can be mutually defined.

( 107 )

Interdependence of connectives

Proposition 4.4
Negation can be defined using implication and falsity.
Proof.
Checking the truth tables, one immediately realises that ¬A is equivalent to
A⊃⊥.

Proposition 4.5
The set of connectives ∧, ∨, and ¬ suffices to define all the others.
Proof.
Just checking the truth tables, one can see that
■ ⊤ can be defined as ¬X ∨X , for any choice of X ;
■ ⊥ can be defined as ¬⊤;
■ A⊃B can be defined as ¬A∨B.
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Interdependence of connectives

Proposition 4.6
Conjunction can be defined from disjunction and negation. Moreover,
disjunction can be defined from conjunction and negation.
Proof.
Writing down the proof tables it is immediate to see that
■ A∧B is the same as ¬(¬A∨¬B);
■ A∨B is the same as ¬(¬A∧¬B).

Usually ¬(A∧B)=¬A∨¬B and ¬(A∨B)=¬A∧¬B are referred to as
De Morgan’s Laws.
Here A=B between two formulæ A and B means that both A⊃B and B ⊃A
hold, i.e., A and B are equivalent.
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Interdependence of connectives

So, the following set of connectives are sufficient to define all the others:
■ {⊥,⊃};
■ {¬,∧};
■ {¬,∨};
■ {¬,⊃}.

But, in principle, one can reduce to a single connective although this is
impractical. Define A |B =¬(A∧B), which is known as Sheffer’s stroke. Then
using the truth tables it is easy to prove
■ ¬A=A |A;
■ A⊃B =A | (B |B).
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Soundness

We want to show that every conclusion we may derive in the proof system is
true whenever all the assumptions it depends upon are true.
Before stating the theorem and proving it we should make one important
remark. The collection of proofs is inductively generated by the inference rules.
So we can reason about a provable statement by saying: if A is provable, let
π be a proof of A. If a property holds for every proof then it holds for π, too.
To prove that a property holds for every proof, we can prove that each
inference rule preserves the property, which means that assuming the property
to hold for the proofs in the premises of the rule, we have to show that the
proof whose last rule is the inference rule under examination, has the property
too. In the case of the Soundness Theorem the property of interest is ‘the
conclusion is true’.
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Soundness

Theorem 4.7 (Soundness)
If Γ is a set of formulæ, and we have a proof π : Γ⊢A in the natural
deduction system then whenever each formula in Γ is true, so is A.
Proof. (i)
The main hypothesis is that, for every G ∈ Γ, �G�= 1. We proceed by
induction on the definition of the proof π, showing that if all the antecedents
of an inference rules satisfy the property in the statement, so does the
conclusion:
■ if π is an instance of the assumption rule then A ∈ Γ, so �A�= 1 by

hypothesis.
■ if π is an instance of the ⊤I rule then A≡⊤, so �A�= 1. ,→
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Soundness

,→ Proof. (ii)
■ if π is an instance of the ⊥E rule then �⊥�= 1 by induction hypothesis, but

we know by definition that �⊥�= 0, thus 0= 1. Then it follows that
�A�= 1 since �A� ∈ {0,1}, which is indeed a singleton.

■ if π is an instance of the Law of Excluded Middle, A≡B∨¬B. But
�B∨¬B�= 1 as it is immediate to check by the truth tables.

■ if π is an instance of ¬I then by the induction hypothesis applied to
π′ : Γ∪ {A}⊢⊥, we have that �A�= 1 implies �⊥�= 1. Then, the
contrapositive form of the implication says that �⊥� ̸= 1 implies �A� ̸= 1,
which means �⊥�= 0 implies �A�= 0. But we know that �⊥�= 0, so
�A�= 0, that is �¬A�= 1.

■ if π is an instance of ¬E then by the induction hypothesis applied to both
antecedents, we get that �¬A�= 1 and �A�= 1. Thus, 0= �A�= 1. Then
�⊥�= 0= 1. ,→
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Soundness

,→ Proof. (iii)
■ if π is an instance of ∧I then A≡B∧C and by the induction hypothesis

applied to both antecedents, �B�= 1 and �C�= 1. So by the truth table of
conjunction, �B∧C�= 1.

■ if π is an instance of ∧E1 then the antecedent is a proof of A∧B from Γ.
Applying the induction hypothesis, we get that �A∧B�= 1, so by the truth
table of conjunction we derive that �A�= 1.

■ if π is an instance of ∧E2 then the antecedent is a proof of B∧A from Γ.
Applying the induction hypothesis, we get that �B∧A�= 1, so by the truth
table of conjunction we derive that �A�= 1. ,→
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Soundness

,→ Proof. (iv)
■ if π is an instance of ∨I1 then A≡B∨C , and the antecedent is a proof of

B from Γ. By the induction hypothesis �B�= 1, so by the truth table of
disjunction �B∨C�= 1.

■ if π is an instance of ∨I2 then A≡B∨C , and the antecedent is a proof of
C from Γ. By the induction hypothesis �C�= 1, so by the truth table of
disjunction �B∨C�= 1.

■ if π is an instance of ∨E then applying the induction hypothesis to the
first antecedent, we get that �B∨C�= 1 for appropriate B and C . Thus by
the truth table of disjunction �B�= 1, or �C�= 1. In the former case,
applying the induction hypothesis to the second antecedent, we get that
�A�= 1. In the latter case, applying the induction hypothesis to the third
antecedent, we get that �A�= 1. ,→
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Soundness

,→ Proof. (v)
■ if π is an instance of ⊃ I then A≡B ⊃C . If �B�= 0 then by the truth table

of implication, �B ⊃C�= 1. Otherwise �B�= 1, and we can apply the
induction hypothesis to the antecedent of the inference rule obtaining
�C�= 1. Thus by the truth table of implication �B ⊃C�= 1.

■ if π is an instance of ⊃E then applying the induction hypothesis to both
antecedents, we get �B ⊃A�= 1 and �B�= 1. Thus by the truth table of
implication it follows that �A�= 1 too.
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The soundness theorem is folklore. Indeed, we will see soon a more interesting
and powerful version of it, which uses a more refined semantics.
The interest of the soundness theorem lies in the structure of its proof: most
soundness theorems are proved by induction on the structure of proofs,
checking that each inference rule preserves the truth of antecedents into the
consequence. It is important to become acquainted with this technique.
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Orders

A rather more interesting semantics for propositional logic comes from the
algebra of orders. In the following, we will develop what is needed to
introduce it.

Definition 5.1 (Order)
An order O = 〈S;≤〉 is a set S equipped with a binary relation ≤ which is
■ reflexive, i.e., for all x ∈ S, x ≤ x ;
■ anti-symmetric, i.e., for all x ,y ∈ S, when x ≤ y and y ≤ x then x = y ;
■ transitive, i.e., for all x ,y ,z ∈ S, if x ≤ y and y ≤ z then x ≤ z .

Noting that if O = 〈S;≤〉 is an order, so is Oop = 〈S;≥〉 we have a duality
principle: when a property holds for all orders, its instance on the opposite
order generates a dual property, which holds for all orders, too.
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Orders

Definition 5.2 (Least upper bound)
Fixed an order O = 〈S;≤〉 and a U ⊆ S, we call the element m ∈ S, if it exists,
the least upper bound (lub), or supremum, or join of U whenever
■ for every x ∈U, x ≤m;
■ for each w ∈ S such that x ≤w for every x ∈U, m≤w .

Definition 5.3 (Greatest lower bound)
Fixed an order O = 〈S;≤〉 and a U ⊆ S, we call the element m ∈ S, if it exists,
the greatest lower bound (glb), or infimum, or meet of U whenever
■ for every x ∈U, m≤ x ;
■ for each w ∈ S such that w ≤ x for every x ∈U, w ≤m.

Observe how the two notions are dual.

( 121 )

Lattices

Definition 5.4 (Lattice)
An order O = 〈S;≤〉 is called a lattice when, for every pair x ,y ∈ S there exists
the join of

©
x ,y

ª
, denoted by x ∨y , and there exists the meet of

©
x ,y

ª
,

denoted by x ∧y .
Moreover, a lattice is said to be bounded when, for every finite U ⊆ S, there isWU, the join of U, and VU, the meet of U. Conventionally, W; is denoted
by ⊥, bottom, and V; is denoted by ⊤, top.
Observe how lattices preserve duality.
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Lattices

Proposition 5.5
In a bounded lattice 〈S;≤〉 every element is greater that ⊥ and less than ⊤.
Proof.
By duality, it suffices to prove just one part of the statement.
Since ⊤=V;, by definition of meet for all x ∈;, ⊤≤ x , and for any y ∈ S
such that for all x ∈;, y ≤ x , it holds that y ≤⊤. But there are no elements
in ;, so y ≤⊤ for any y ∈ S.

Observe how these properties uniquely characterise ⊤ and ⊥.

Proposition 5.6
In a bounded lattice 〈S;≤〉 WS =⊤ and VS =⊥.
Proof.
By definition of join for every x ∈ S, x ≤WS, and by Proposition 5.5 ⊤ is such
that for all x ∈ S, x ≤⊤. So, ⊤≤WS and WS ≤⊤. By anti-symmetry WS =⊤.
The other part follows by duality.
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Lattices

Definition 5.7 (Complemented lattice)
A bounded lattice O = 〈S;≤〉 is said to be complemented when for each
element x ∈ S, there is an element y ∈ S such that
■ x ∧y =⊥;
■ x ∨y =⊤.

The element y is not necessarily unique. For example

⊥

⊤

α−1

α

α−1

@
@I

�
�
�
��

6


�

A
A
A
AK
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Lattices

Definition 5.8 (Distributive lattice)
A lattice O = 〈S;≤〉 is said to be distributive when for every x ,y ,z ∈ S,
x ∧ (y ∨z)= (x ∧y)∨ (x ∧z).

Proposition 5.9
In every lattice, x ∧y = y ∧x and x ∨y = y ∨x.
Proof.
Immediate by definition of meet and join.
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Lattices

Proposition 5.10
For each x in a bounded lattice x = x ∧⊤ and x = x ∨⊥.
Proof.
Immediate by definition of meet and join, and Proposition 5.5.

Proposition 5.11 (Absorption)
For each x and y in a lattice x ∨ (x ∧y)= x and x ∧ (x ∨y)= x.
Proof.
By definition of join x ≤ x ∨ (x ∧y), so it suffices to show x ∨ (x ∧y)≤ x .
But x ≤ x by reflexivity, and x ∧y ≤ x by definition of meet, so x ∨ (x ∧y)≤ x
by definition of join. The other part follows by duality.
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Lattices

Proposition 5.12
In any distributive lattice for all x , y , and z, x ∨ (y ∧z)= (x ∨y)∧ (x ∨z).
Proof.

(x ∨y)∧ (x ∨z)
= ((x ∨y)∧x)∨ ((x ∨y)∧z) distributivity
= (x ∧x)∨ (x ∧y)∨ (x ∧z)∨ (y ∧z) distributivity twice
= x ∨ (x ∧y)∨ (x ∧z)∨ (y ∧z) idempotence
= x ∨ (x ∧z)∨ (y ∧z) absorption
= x ∨ (y ∧z) absorption
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Lattices

Proposition 5.13
In any bounded distributive complemented lattice each element x has a
unique complement, denoted by ¬x.
Proof.
Suppose the element x has two complements y and z . Then by definition of
complement: x ∧y =⊥= x ∧z and x ∨y =⊤= x ∨z . Thus

y
= y ∧⊤
= y ∧ (x ∨z)
= (y ∧x)∨ (y ∧z)
= (z ∧x)∨ (z ∧y)
= z ∧ (x ∨y)
= z ∧⊤
= z .
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Boolean algebras

Definition 5.14 (Boolean algebra)
A Boolean algebra is a bounded distributive complemented lattice.

Example 5.15
The set {0,1} with the ordering 0≤ 1 is a Boolean algebra with ⊤= 1 and
⊥= 0. This is the structure supporting the truth-table semantics.

Example 5.16
Fixed a set U, the powerset ℘(U)= {S : S ⊆U} ordered by inclusion is a
Boolean algebra. The complement of S is the difference U \ S, while ∧ is the
intersection, and ∨ is the union.

Example 5.17
Let n ∈N be such that it cannot be divided by the square of any other
number, e.g., 105= 3 ·5 ·7. Then the divisors of n form a Boolean algebra
with the operations of greatest common divisor, least common multiple, and
the complement of x being n/x .
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Semantics

We introduced Boolean algebra for a precise purpose: interpreting
propositional logic.

Definition 5.18 (Semantics)
Fixed a Boolean algebra O = 〈O;≤〉 and ν : V →O mapping each variable into
an element of the algebra, the interpretation �A� of a formula A is inductively
defined as:
■ if A is a variable, �A�= ν(A);
■ if A≡⊤, �A�=⊤, the maximum element of O ;
■ if A≡⊥, �A�=⊥, the minimum element of O ;
■ if A≡B∧C , �A�= �B�∧�C�, the meet of the interpretations of conjuncts;
■ if A≡B∨C , �A�= �B�∨�C�, the join of the interpretations of disjuncts;
■ if A≡B ⊃C , �A�=¬�B�∨�C�, that is �A�= �¬B∨C� interpreting

implication as a relative complement;
■ if A≡¬B, �A�=¬�B�, the complement of the interpretation of B.
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Examples

Example 5.19
Let us fix the Boolean algebra given by the powerset of N ordered by inclusion.
For simplicity, the variables have the form xn, with n ∈N, and ν(xn)= {n}. It
is immediate to check that meets are unions and joins are intersections. Also
⊥=; and ⊤=N.
Then, �x3∨¬x3�= �x3�∪ (N\ �x3�)= {3}∪ (N\ {3})=N.
Also, �x5∧¬x5�= �x5�∩ (N\ �x5�)= {5}∩ (N\ {5})=;.
Finally, �x3∨¬x5�= �x3�∪ (N\ �x5�)= {3}∪ (N\ {5})=N\ {5}.
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Soundness

Definition 5.20 (Validity)
A formula A is valid or true in a Boolean algebra O = 〈O;≤〉 together with an
interpretation ν : V →O of variables when �A�=⊤.
A set of formulæ is valid or true when each formula in the set is valid. The
pair (O ,ν) is called a model for a theory T when it makes true all the
formulæ in T .

Theorem 5.21 (Soundness)
In any model (O = 〈O;≤〉,ν : V →O) for the theory T and the assumptions in
the finite set ∆, if π : ∆⊢T A then A is valid.
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Soundness

Proof. (i)
The proof is by induction on the structure of π: we show that the
interpretation of the conclusion A is greater than V

G∈Γ�G�, with Γ the finite
set of assumptions occurring in the proof of A:
■ if π is a proof by assumption then A ∈ Γ and by definition of ∧,V

G∈Γ�G� ≤ �A�.
■ if π is a proof by axiom, then A ∈T and by hypothesis, �A�=⊤, soV

G∈Γ�G� ≤ �A� by definition of ⊤.
■ if π is an instance of the Law of Excluded Middle then A≡B∨¬B, and
�A�= �B∨¬B�= �B�∨¬�B�=⊤ by definition of complement in a Boolean
algebra. Thus V

G∈Γ�G� ≤ �A�=⊤ by definition of ⊤.
■ if π is an instance of ⊤-introduction then A≡⊤, so �A�= �⊤�=⊤. ThusV

G∈Γ�G� ≤ �A�=⊤ by definition of ⊤. ,→
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Soundness

,→ Proof. (ii)
■ if π is an instance of ⊥-elimination then by induction hypothesis
⊥≤V

G∈Γ�G� ≤ �⊥�=⊥. Thus by anti-symmetry, V
G∈Γ�G�=⊥. So, by

definition of ⊥ ⊥=V
G∈Γ�G� ≤ �A�.

■ if π is an instance of ∧-introduction then A≡B∧C , and by induction
hypothesis twice, V

G∈Γ�G� ≤ �B� and V
G∈Γ�G� ≤ �C�. Thus by definition

of ∧, V
G∈Γ�G� ≤ �B�∧�C�= �B∧C�= �A�.

■ if π is an instance of ∧1-elimination then by induction hypothesis for some
formula B, V

G∈Γ�G� ≤ �A∧B�= �A�∧�B�. Thus by definition of ∧,V
G∈Γ�G� ≤ �A�.

■ if π is an instance of ∧2-elimination then by induction hypothesis for some
formula B, V

G∈Γ�G� ≤ �B∧A�= �B�∧�A�. Thus by definition of ∧,V
G∈Γ�G� ≤ �A�. ,→
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Soundness

,→ Proof. (iii)
■ if π is an instance of ∨1-introduction then A≡B∨C and by induction

hypothesis V
G∈Γ�G� ≤ �B�. So by definition of ∨,V

G∈Γ�G� ≤ �B� ≤ �B�∨�C�= �B∨C�= �A�.
■ if π is an instance of ∨2-introduction then A≡B∨C and by induction

hypothesis V
G∈Γ�G� ≤ �C�. So by definition of ∨,V

G∈Γ�G� ≤ �C� ≤ �B�∨�C�= �B∨C�= �A�.
■ if π is an instance of ∨-elimination then by induction hypothesis for some

formulæ B and C , V
G∈Γ�G� ≤ �B∨C�= �B�∨�C�, �B�∧V

G∈Γ�G� ≤ �A�,
and �C�∧V

G∈Γ�G� ≤ �A�. It follows that by definition of ∨ and
distributing,
(�B�∧V

G∈Γ�G�)∨ (�C�∧V
G∈Γ�G�)= (�B�∨�C�)∧V

G∈Γ�G� ≤ �A�.
But since V

G∈Γ�G� ≤ �B�∨�C�, (�B�∨�C�)∧V
G∈Γ�G�=

V
G∈Γ�G� by

definition of ∧, so V
G∈Γ�G� ≤ �A�. ,→

( 135 )

Soundness

,→ Proof. (iv)
■ if π is an instance of ⊃-introduction then A≡B ⊃C for some formulæ B

and C . By induction hypothesis, �B�∧V
G∈Γ�G� ≤ �C�.

So by definition of ∨, �B�∧V
G∈Γ�G� ≤¬�B�∨�C�. Evidently

¬�B� ≤¬�B�∨�C�. Thus by definition of ∨,
�A�= �B ⊃C�=¬�B�∨�C� ≥¬�B�∨ (�B�∧V

G∈Γ�G�). Distributing and by
definition of complement, �A� ≥ (¬�B�∨�B�)∧ (¬�B�∨V

G∈Γ�G�)=
⊤∧ (¬�B�∨V

G∈Γ�G�)=¬�B�∨V
G∈Γ�G�. By definition of ∨,V

G∈Γ�G� ≤¬�B�∨V
G∈Γ�G� ≤ �A�.

■ if π is an instance of ⊃-elimination then for some formula B, by induction
hypothesis twice, V

G∈Γ�G� ≤ �B ⊃A� and V
G∈Γ�G� ≤ �B�.

By definition of ∧, V
G∈Γ�G� ≤ �B ⊃A�∧�B�. But �B ⊃A�=¬�B�∨�A�.

So V
G∈Γ�G� ≤ (¬�B�∨�A�)∧�B�. Distributing and by definition of ¬,V

G∈Γ�G� ≤ (¬�B�∧�B�)∨ (�A�∧�B�)=⊥∨ (�A�∧�B�)= �A�∧�B� ≤ �A�.
,→
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Soundness

,→ Proof. (v)
■ if π is an instance of ¬-introduction then A≡¬B for some formula B. So

by induction hypothesis �B�∧V
G∈Γ�G� ≤ �⊥�=⊥. Thus by definition of ⊥

and anti-symmetry, �B�∧V
G∈Γ�G�=⊥. Then

�A�= �¬B�=¬�B�=¬�B�∨⊥=¬�B�∨ (�B�∧V
G∈Γ�G�), and distributing,

�A�= (¬�B�∨�B�)∧ (¬�B�∨V
G∈Γ�G�)=⊤∧ (�¬B�∨V

G∈Γ�G�)=
�A�∨V

G∈Γ�G�. Thus by definition of ∨, V
G∈Γ�G� ≤ �A�∨

V
G∈Γ�G�= �A�.

■ if π is an instance of ¬-elimination then A≡⊥ and by induction hypothesis
twice, V

G∈Γ�G� ≤ �¬B� and V
G∈Γ�G� ≤ �B�. But �¬B�=¬�B�. So by

definition of ∧, V
G∈Γ�G� ≤¬�B�∧�B�. By definition of complement,V

G∈Γ�G� ≤¬�B�∧�B�=⊥= �A�.
Hence, for every formula A being the conclusion of a proof from ∆ in the
theory T , V

G∈∆�G� ≤ �A�. But by hypothesis for every G ∈∆, �G�=⊤, soV
G∈∆�G�=⊤, thus by definition of ⊤, ⊤≤ �A� ≤⊤, that is, by anti-symmetry,

�A�=⊤.
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Completeness

We will show that, fixed a theory T , any formula A which is valid in any
Boolean algebra making T true, is provable, i.e., there is a natural deduction
derivation with no assumptions that has A as its conclusion.
Indeed, we will prove a stronger result: in a theory T for any finite set Γ of
formulæ and for any formula A, if V

G∈Γ�G� ≤ �A� in any Boolean algebra
which makes the theory T true, there is a natural deduction proof π : Γ⊢T A.
As a corollary, noting that when Γ=;, V

G∈Γ�G�=⊤, the previous result
follows by anti-symmetry.
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Preliminaries

The proof is complex and subtle.
In the first place, it is worth noting that if π : Γ⊢T A then there is a finite
∆⊆ Γ such that π : ∆⊢T A. Indeed, since any proof is a finite object and any
inference rule has a finite number of antecedents, only a finite number of
assumptions may be used in a proof.
In this sense the limit of having a finite Γ in the statement of the
Completeness Theorem is not committing.
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Strategy

Of course, the difficult aspect of the theorem lies in considering the totality of
Boolean algebras.
The strategy behind the proof is
■ construct a canonical Boolean algebra B which makes the axioms of T

true and which is ‘easy’ to manage;
■ prove that, for any finite set Γ of formulæ and for any formula A, ifV

G∈Γ�G� ≤ �A� in B then there exists π : Γ⊢T A;
■ since the antecedent holds in every Boolean algebra, we deduce

completeness.

This strategy is general: many completeness results for most logical systems
follow this pattern. But there are exceptions. . .
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Canonical model

The idea is to define a canonical Boolean algebra in which truth and
provability are the same notion.

Definition 6.1 (Canonical Boolean algebra)
Let T be a theory. Then the canonical Boolean algebra B(T ) on T is the set©
A : A is a formula in the language of T

ª
/∼, where

■ A∼B if and only if A⊢T B and B ⊢T A,
■ [A]∼ ≤B(T ) [B]∼ exactly when A⊢T B.

For the sake of simplicity, when it is clear from the context, we omit the
subscripts. Also, observe how [A]∼ ≤B(T ) [B]∼ and [B]∼ ≤B(T ) [A]∼ implies
[A]∼ = [B]∼.

Note how posing A to be true exactly when [⊤]∼ ≤ [A]∼, we get that ;⊢A
because ⊤=V;.
But we have to show first that B(T ) is a Boolean algebra.
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An auxiliary result

Lemma 6.2
If π : Γ∪ {A}⊢T B and θ : Γ⊢T A then there is a proof ν : Γ⊢T B.
Proof. (i)
By induction on the structure of the proof π.
■ if π is an instance of the assumption rule either B ∈ Γ, so ν coincides with
π which does not depend on A, or B ≡A thus ν= θ.

■ if π is an instance of the axiom rule, B ∈T , so ν=π which does not
depend on A.

■ if π is an instance of ⊤-introduction, B ≡⊤, so ν=π which does not
depend on A.

■ if π is an instance of ⊥-elimination, by induction hypothesis there is
ξ : Γ⊢T ⊥, so applying the ⊥-elimination rule to ξ gives the required ν.,→
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An auxiliary result

,→ Proof. (ii)
■ if π is an instance of the Law of Excluded Middle, B ≡C ∨¬C , so ν=π

which does not depend on A.
■ if π is an instance of ∧-introduction, B ≡C ∧D, and by induction

hypothesis there are ξ : Γ⊢T C and µ : Γ⊢T D, so the required ν is
obtained by applying ∧-introduction to ξ and µ.

■ if π is an instance of ∧1-elimination, by induction hypothesis there is
ξ : Γ⊢T B∧C , so ν is obtained by applying ∧1-elimination to ξ.

■ if π is an instance of ∧2-elimination, by induction hypothesis there is
ξ : Γ⊢T C ∧B, so ν is obtained by applying ∧2-elimination to ξ. ,→
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An auxiliary result

,→ Proof. (iii)
■ if π is an instance of ∨1-introduction then B ≡C ∨D, and by induction

hypothesis there is ξ : Γ⊢T C , so ν is obtained by applying
∨1-introduction to ξ.

■ if π is an instance of ∨2-introduction, then B ≡C ∨D, and by induction
hypothesis there is ξ : Γ⊢T D, so ν is obtained by applying
∨2-introduction to ξ.

■ if π is an instance of ∨-elimination, by induction hypothesis there are
ξ : Γ⊢T C ∨D, µC : Γ∪ {C }⊢T B and µD : Γ∪ {D}⊢T B, so applying
∨-elimination to ξ, µC , and µD the required ν is constructed. ,→
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An auxiliary result

,→ Proof. (iv)
■ if π is an instance of ⊃-introduction then B ≡C ⊃D, and by induction

hypothesis there is ξ : Γ∪ {C }⊢T D, so ν is obtained by applying
⊃-introduction to ξ.

■ if π is an instance of ⊃-elimination, by induction hypothesis there are
ξ : Γ⊢T C ⊃B and µ : Γ⊢T C , so ν is constructed applying ⊃-elimination
to ξ and µ.

■ if π is an instance of ¬-introduction, B ≡¬C , and by induction hypothesis
there is ξ : Γ∪ {C }⊢T ⊥, thus ν is obtained applying ¬-introduction to ξ.

■ if π is an instance of ¬-elimination, by induction hypothesis there are
ξ : Γ⊢T ¬C and µ : Γ⊢T C , so ν is constructed applying ¬-elimination to
ξ and µ.
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Properties of the canonical model

Proposition 6.3
The relation ∼ is an equivalence relation.
Proof.
■ By the assumption inference rule A⊢T A, so A∼A for any formula A, i.e.,
∼ is reflexive.

■ If A∼B then A⊢T B and B ⊢T A, so B ∼A too. That is, ∼ is symmetric.
■ If A∼B and B ∼C then there are πB : A⊢T B and πA : B ⊢T A, and
θC : B ⊢T C and θB : C ⊢T B. By Lemma 6.2 there are π : A⊢T C and
θ : C ⊢T A, that is, A∼C , which means ∼ is transitive.
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Properties of the canonical model

Proposition 6.4
The relation ≤B(T ) is an ordering.

Proof.
■ The relation [A]∼ ≤ [B]∼ does not depend on the choices of the

representatives in the equivalence classes on ∼, indeed if [A]= [A′] and
[B]= [B′] then A∼A′ and B ∼B′. So by definition of ∼, A′ ⊢T A and
B ⊢T B′. But by definition of ≤, A⊢T B, thus by Lemma 6.2 twice,
A′ ⊢T B′, that is [A′]≤ [B′].

■ By the assumption rule A⊢T A, so [A]≤ [A], i.e., ≤ is reflexive.
■ If [A]≤ [B] and [B]≤ [C ] then A⊢T B and B ⊢T C , so by Lemma 6.2,

A⊢T C , that is [A]≤ [C ], i.e., ≤ is transitive.
■ If [A]≤ [B] and [B]≤ [A] then A⊢T B and B ⊢T A, so by definition of ∼,

A∼B, that is, [A]= [B], i.e., ≤ is anti-symmetric.
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Properties of the canonical model

Proposition 6.5
B(T ) is a lattice.
Proof.
■ Consider [A∧B]: [A∧B]≤ [A] since A∧B ⊢T A by ∧1-elimination; also,

[A∧B]≤ [B] since A∧B ⊢T B by ∧2-elimination.
If [C ]≤ [A] and [C ]≤ [B] then C ⊢T A and C ⊢T B, so C ⊢T A∧B by
∧-introduction, thus [C ]≤ [A∧B]. So by definition of ∧ in an order,
[A]∧ [B]= [A∧B].

■ Consider [A∨B]: [A]≤ [A∨B] since A⊢T A∨B by ∨1-introduction; also,
[B]≤ [A∨B] since B ⊢T A∨B by ∨2-introduction.
If [A]≤ [C ] and [B]≤ [C ] then A⊢T C and B ⊢T C , so A∨B ⊢T C by
∨-elimination, thus [A∨B]≤ [C ]. So by definition of ∨ in an order,
[A]∨ [B]= [A∨B].
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Properties of the canonical model

Proposition 6.6
B(T ) is a bounded lattice.
Proof.
■ For each formula A, A⊢T ⊤ by ⊤-introduction, so [A]≤ [⊤]. Thus by

definition of ⊤ in a lattice, ⊤= [⊤].
■ For each formula A, ⊥⊢T A by ⊥-elimination, so [⊥]≤ [A]. Thus by

definition of ⊥ in a lattice, ⊥= [⊥].
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Properties of the canonical model

Proposition 6.7
B(T ) is a distributive lattice.
Proof. (i)
For any A, B, and C , [A]∨ ([B]∧ [C ])= [A]∨ [B∧C ]= [A∨ (B∧C)] and
([A]∨ [B])∧ ([A]∨ [C ])= [A∨B]∧ [A∨C ]= [(A∨B)∧ (A∨C)].
But A∨ (B∧C)⊢T (A∨B)∧ (A∨C) since

A∨ (B∧C)

[A]∗
∨I1A∨B

[A]∗
∨I1A∨C
∧I

(A∨B)∧ (A∨C)

[B∧C ]∗
∧E1B

∨I2A∨B

[B∧C ]∗
∧E2C

∨I2A∨C
∧I

(A∨B)∧ (A∨C)
∨E∗

(A∨B)∧ (A∨C)

,→
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Properties of the canonical model

,→ Proof. (ii)
Also (A∨B)∧ (A∨C)⊢T A∨ (B∧C) since

(A∨B)∧ (A∨C)
∧E1A∨B

[A]∗
∨I1A∨ (B∧C)

[B]∗
·····

A∨ (B∧C)
∨E∗

A∨ (B∧C)

where the third antecedent is

(A∨B)∧ (A∨C)
∧E2A∨C

[A]†

∨I1A∨ (B∧C)

B [C ]†

∧I
B∧C

∨I2A∨ (B∧C)
∨E†

A∨ (B∧C)

Thus (A∨B)∧ (A∨C)∼A∨ (B∧C) and the conclusion follows.
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Properties of the canonical model

Proposition 6.8
B(T ) is a complemented lattice.
Proof.
Consider for any formula A, [¬A]: [A]∧ [¬A]= [A∧¬A]= [⊥]=⊥ since
⊥⊢T A∧¬A by ⊥-elimination, and

A∧¬A
∧E1A

A∧¬A
∧E2¬A

¬E⊥

Also, [A]∨ [¬A]= [A∨¬A]= [⊤]=⊤ since A∨¬A⊢T ⊤ by ⊤-introduction
and ⊤⊢T A∨¬A by the Law of Excluded Middle.

Corollary 6.9
B(T ) is a Boolean algebra.
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Classifying models

Proposition 6.10
Fixed a theory T let (O,ν) be a model of T . If [B]∼ ≤B(T ) [C ]∼ then
�B�O ≤O �C�O.
Proof.
If [B]∼ ≤B(T ) [C ]∼ then there is π : B ⊢T C by definition of ≤B(T ).
Thus by the proof of the Soundness Theorem 5.21 applied in the O Boolean
algebra with the ν assignment, �B�O ≤O �C�O.

( 156 )



Classifying models

Definition 6.11 (Canonical map)
Fixed a theory T let (O,ν) be a model of T . Then the map ξO : B→O

defined by [B]∼ 7→�B�O is the canonical map to O.

This definition does not depend on the choice of the representatives in B.
Indeed if [A]= [A′] then, [A]≤ [A′] and [A′]≤ [A], so by Proposition 6.10,
�A� ≤ �A′� and �A′� ≤ �A� in O, thus by anti-symmetry, �A�= �A′�.
Moreover the canonical map preserves the ordering of B.
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Completeness

Theorem 6.12 (Completeness)
Fixed a theory T , for any finite set Γ of formulæ and for any formula A ifV

G∈Γ�G� ≤ �A� in any model of T then there is a natural deduction proof
π : Γ⊢T A.
Proof.
If V

G∈Γ�G� ≤ �A�, then �VG∈ΓG� ≤ �A� being Γ finite.
Since this fact holds in any Boolean algebra, it holds also in B(T ), the
canonical Boolean algebra on T . And because of the way interpretation is
defined in B(T ), [VG∈ΓG ]≤ [A].
So by definition of ≤ in B(T ) there is π : V

G∈ΓG ⊢T A. Noting that
Γ⊢T

V
G∈ΓG by iterating the ∧-introduction rule, by Proposition 6.2 it

follows Γ⊢T A.
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Completeness

Corollary 6.13
If �A�=⊤ in every model of T then there is a proof π : ⊢T A.
Proof.
If �A�=⊤ then ⊤= �⊤� ≤ �A�, being ≤ reflexive. By the Completeness
Theorem the result follows immediately.
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Classifying models

In fact we have another result for free: any model for a theory T , i.e., any
Boolean algebra O together with an assignment of variables is described by its
canonical map ξO.
In a sense, all the models of a theory T can be synthesised from the canonical
model applying a canonical map. It is tempting to identify the models with
the class of canonical maps. . .
. . . but this is another story which leads very far. And we will not pursue it
during this course. We just observe that, when there is a classifying model,
then we can limit to study the classifying model to analyse properties, like
completeness, that hold in every model.
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The proof has been adapted from the one in topos theory, which is illustrated
in Section D of Peter Johnstone, Sketches of an Elephant: A Topos Theory
Compendium, Oxford Logic Guides 43, Oxford University Press, (2003), ISBN
978-0198524960.
The notion of classifying model is central in the topos-theoretic approach and
in some way it goes back to Grothendieck’s work. Again, Johnstone’s book is
a good starting point.
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First-order logic

Propositional logic is a toy system. A very useful one indeed, but still it has
not enough expressive power to allow us to describe any useful mathematical
theory, e.g., arithmetic or set theory.
Although propositional theories are very well-behaved, as we have seen, we
want to use logic as a tool to do real mathematics. And to achieve this
objective we need to speak about objects.
The main novelty in first-order logic is that the language is able to identify
objects and to write formulæ on them. As already said, we allow
quantification to freely range over objects, but not over sets of objects or
other collections/structures of objects.
Although outside the scope of the present course higher-order logics, which
allow extended quantification, cannot be complete. And first-order logic is in
a way at the borderline for completeness, as we will illustrate in due time.
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Language

Definition 7.1 (Signature)
A signature Σ= 〈S;F ;R〉 is composed by
■ a set S of symbols for sorts.
■ a set F of symbols for functions. Each symbol f ∈ F is uniquely associated

with a type s1 ×·· ·× sn → s0, with si ∈ S for each 0≤ i ≤ n. When n = 0 we
say that f is a constant of type s0.

■ a set R of symbols for relations. Each symbol r ∈R is uniquely associated
with a type s1 ×·· ·× sn, with si ∈ S for each 1≤ i ≤ n. When n = 0 we say
that r is a propositional constant.

The notation f : s1 ×·· ·× sn → s0 ∈ F and r : s1 ×·· ·× sn ∈R means that f is a
function symbol whose type is s1 ×·· ·× sn → s0, and r is a relation symbol
whose type is s1 ×·· ·× sn, respectively. Also, we require that S, F , and R do
not contain the logical connectives and quantifiers.

A signature describes a first-order language: sorts stand for collections of
elements, functions are used to denote elements, while relations are used to
form basic formulæ.
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Language

Example 7.2
The signature

N = 〈{N} ; {0: N,S : N→N;+ : N×N→N, · : N×N→N} ; {= : N×N}〉

specifies the basic language for arithmetic. There is one sort, which stands for
the collection of natural numbers in the intended interpretation. There is a
constant, 0, denoting the zero natural number, there is a function S, which
stands for ‘successor’, denoting the next natural number, so that S(5) = 6 in
the intended interpretation, while the functions + and · denote addition and
multiplication.
There is only one relation symbol denoting equality.
Of course, the theory of arithmetic should be devised in such a way that as far
as possible the formal behaviour, that is, what we can prove, conforms to the
intended interpretation.
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Language

Example 7.3
The signature G = 〈{G} ;

©
1: G , · : G ×G →G ,_−1 : G →G

ª
; {= : G ×G}〉

describes the language of the theory of groups.

Example 7.4
The signature O = 〈{O} ;;; {≤ : O×O}〉 describes the language of the theory of
orders.

Example 7.5
The signature L = 〈{E ,L} ; {nil : L,cons: E ×L→ L} ; {=E : E ×E ,=L : L×L}〉
defines the language of the theory of lists. A computer scientist would say it
defines the data type of lists.

( 167 )

Terms

The first-order language has two-purposes: to provide a syntax to denote
elements in the universe, i.e., in the collections denoted by the sorts, and to
provide a syntax to denote properties of those elements.
The first issue is addressed by terms.

Definition 7.6 (Term)
Let Σ= 〈S;F ;R〉 be a signature and let V be an infinite set of symbols, called
variables, such that V ∩(S∪F ∪R)=;. Also assume that each variable x ∈V
has a uniquely associated type s ∈ S denoted by x : s. We require that there is
an infinite amount of variables for each type s ∈ S.
A term along with the set of its free variables is inductively defined as:
■ if x : s ∈V then x is a term of type s, and FV(x) = {x };
■ if f : s1 ×·· ·× sn → s0 ∈F and t1, . . . ,tn are terms of type s1, . . . ,sn

respectively, then f (t1, . . . ,tn) is a term of type s0, and
FV(f (t1, . . . ,tn))=Sn

i=1 FV(ti ).
We use the notation t : s to say that the term t has type s.
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Terms

Example 7.7
Using the signature N of arithmetic, 0, S(0), S(S(0)), . . . are terms of type
N. Also +(x ,0) and ·(x ,+(S(0),S(S(0)))) are terms of type N. Note how
x +0 and x(1+2) are not terms.

To cope with the problem of expressing the standard notation of mathematics
within the rigid syntax of logical terms we will formally introduce definitions
later.
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Formulæ

As terms are used to denote elements, formulæ are used to denote properties
of elements. The syntax is similar to propositional logic with two important
differences: we have atomic formulæ instead of propositional variables and we
have quantifiers.

Definition 7.8 (Formula)
Fixed a signature Σ= 〈S;F ;R〉 and a set of variables as for terms, a formula
along with the set of its free variables is inductively defined as
■ ⊤ and ⊥ are formulæ, and FV(⊤)= FV(⊥)=;.
■ if r : s1 ×·· ·× sn ∈R is a relation symbol and t1 : s1, . . . ,tn : sn are terms

then r(t1, . . . ,tn) is an atomic formula, and FV(r(t1, . . . ,tn))=Sn
i=1 FV(ti ).

■ if A and B are formulæ, so are ¬A, A∧B, A∨B, and A⊃B, and
FV(¬A)= FV(A), FV(A∧B)= FV(A∨B)= FV(A⊃B)= FV(A)∪FV(B).

■ if x : s is a variable and A is a formula, so are ∀x : s .A and ∃x : s .A, and
FV(∀x : s .A)= FV(∃x : s .A)= FV(A) \ {x }.
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Formulæ

There are two main differences between first-order formulæ and propositional
ones:
■ instead of propositional variables we have atomic formulæ, which link the

formulæ with terms by means of a relation;
■ there are quantified formulæ where the variable is not free. We say that

quantified variables are bounded.
The notion of bounded variable is not new: for example, the expressionRb

a f (x)dx does not really depend on the variable x . Indeed, the x is a
placeholder to give some name to the argument of the f function. A bounded
variable does not denote a value, but rather it acts as a placeholder which
allows to write a formula or a term. Its meaning is controlled by the quantifier
and not by the way variables are interpreted, as in the integral the x does not
denote a real or complex number but rather what is allowed to vary in the
function.
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Substitution

Variables are subject to a fundamental operation: substitution. In fact, from a
formula A where the variable x appears free, we may obtain another formula,
A[t/x ], where the term t is substituted for x . For example, in the language of
arithmetic x can be substituted in x +0= x to obtain 2+0= 2.
Substitution is fundamental in describing the inference rules governing
quantifiers. And bounded variables make substitution not immediately
intuitive.
There are many equivalent ways to describe the substitution operation: we
will use a method which is not the most immediate but it will become very
handy later in the course.
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Substitution

Definition 7.9 (Substitution on terms)
Fixed a signature and a term t on it the substitution of the variable x : s with
the term r : s, yielding t[r/x ], is defined by induction on the structure of the
term t:
■ if t ≡ x then t[r/x ]= r ;
■ if t is a variable, but t ̸≡ x , t[r/x ]= t;
■ if t ≡ f (t1, . . . ,tn) then t[r/x ]= f (t1[r/x ], . . . ,tn[r/x ]).

Note that the substitution operation is defined only when t and x share the
same type.
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Substitution

Definition 7.10 (Substitution on formulæ)
Fixed a signature and a formula A on it the substitution of the variable x : s
with the term t : s, yielding A[t/x ], is defined by induction on the structure of
the formula A:
■ if A≡⊤ or A≡⊥ then A[t/x ]=A;
■ if A≡ r(t1, . . . ,tn) then A[t/x ]= r(t1[t/x ], . . . ,tn[t/x ]);
■ if A≡¬B then A[t/x ]=¬B[t/x ];
■ if A≡B∧C , A≡B∨C , or A≡B ⊃C then A[t/x ]=B[t/x ]∧C [t/x ],

A[t/x ]=B[t/x ]∨C [t/x ], or A[t/x ]=B[t/x ]⊃C [t/x ], respectively;
■ if A≡∀y : r .B, or A≡∃y : r .B and y : r ≡ x : s then A[t/x ]=A;
■ if A≡∀y : r .B, or A≡∃y : r .B, and y : r ̸≡ x : s then

A[t/x ]=∀z : r .(B[z/y ])[t/x ], or A[t/x ] = ∃z : r .(B[z/y ])[t/x ] respectively,
where z : r ̸∈FV(B)∪FV(t).
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Substitution

The first clauses in the definition are obvious: we substitute the variable x
with the term t where it appears.
The last but one clause means that a bounded variable cannot be substituted:
this is simple to understand as it does not make sense to substitute x with 5
in the formula ∃x : N.x2 = x3. Indeed, the formula is true because 12 = 1= 13,
but evidently it happens just for some values of x that the existential
quantifier is meant to single out.
The last clause is a bit cryptic. It says that before performing the substitution
of x with t on the quantified formula B, we should rename the quantified
variable y with a new variable, which does not appear in B and t.
An example may clarify why this must be done: let A≡∃x : N.x +y = 2y and
let t ≡ 2x . If we do not rename variables A[t/y ] would give
∃x : N.x +2x = 2(2x), that is, ∃x : N.3x = 4x . We note the A holds whenever
x = y but A[t/y ] does not. The problem is that the x in t and the one in A
should be kept distinct—and we do this by renaming before performing the
substitution.
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Definitions

The language of first-order logic is cumbersome. Despite the fact that we
already use a simplified notation, avoiding unneeded parentheses and hiding
what can be immediately inferred from the context, the formal nature of the
language is far distant from the reality of the mathematical practice.
On the contrary, the formal nature of the language is what allows it to be
analysed: we constantly use induction on the structure of the language
(terms, formulæ, proofs) as our main proving instrument.
There is a way in between: we can construct a reasonable formal language by
taking a basic formal language and enriching it with syntactical sugar. This
does not change the formal nature of the language, but allows to make the
language much closer to the standard practice.
This practise takes place by allowing syntactical construction which are not
part of the formal language, but still can be directly translated into the formal
language. This construction is called definition and it has to follow a few
precise rules.
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Definitions

Definition 7.11 (Function definition)
Fixed a first-order language with equality, let f be a new symbol. Whenever it
holds that

∀x1 : s1. . . .∀xn : sn.∃y : s0.F ∧∀z : s0.F [z/y ]⊃ z = y ,

with FV(F )⊆ ©
x1, . . . ,xn,y

ª
then f : s1 ×·· ·× sn → s0 can be used as an

additional function symbol since it can be removed from the language by

A[f (t1, . . . ,tn)/z ]= ∃z : s0.A∧ (F [z/y ])[t1/x1, . . . ,tn/xn]∧
∧∀w : s0.(F [w/y ])[t1/x1, . . . ,tn/xn]⊃ z =w

for any formula A. As far as a different syntax is non-ambiguous we allow it
in place of the standard functional notation.
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Definitions

Definition 7.12 (Relation definition)
Fixed a first-order language, let r be a new symbol. Then r : s1 ×·· ·× sn can
be used as an additional relation symbol standing for the formula R whenever
FV(R)= {x1, . . . ,xn} since it can be removed by substituting R[t1/x1, . . . ,tn/xn]
whenever r(t1, . . . ,tn) occurs in any formula A. Again, as far as the syntax is
non-ambiguous we allow fancy syntactical constructions.
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Definitions

Consider any first-order language with equality. Then we add a new form of
quantification, which is read as ‘uniquely exists’: ∃!x : s .A with x : s a variable
and A a formula, which stands for ∃x : s .A∧∀z : s .A[z/x ]⊃ z = x with
z : s ̸∈FV(A).
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Natural deduction

Fixed any first-order language, the definition of theory follows the one already
given in the propositional case.
The same holds for the definition of proof and the other related terms except
that the collection of inference rules contains four new rules to deal with
quantifiers. They are illustrated in the next slides.
When the language contains equality we require the presence of other
inference rules detailed in the next slides.
The modular composition of inference rules in natural deduction explains why
we chose this deduction system instead of one of the many others in literature:
all the deduction systems in this course are obtained by adding or deleting a
few rules from the propositional or the first-order case.
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Natural deduction

Following the previous notation, the rules for universal quantification are

A
∀I∀x : s .A

∀x : s .A
∀E

A[t/x ]

provided that
■ in ∀E , t is a term of type s;
■ in ∀I, the variable x : s does not occur free in the proof of the antecedent,

which means that for every assumption G , x : s ̸∈FV(G). This condition is
sometimes referred to by saying that x : s is an eigenvariable.

Note the similarity between the rules for ∀ and for ∧.
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Natural deduction

Similarly, the rules for existential quantification are

A[t/x ]
∃I∃x : s .A

∃x : s .B

[B]
·····
A

∃E
A

provided that
■ in ∃I, t is a term of type s;
■ in ∃E , the variable x : s does not occur free in the proof of the second

antecedent, that is, for every assumption G in the second subproof except
for B, x : s ̸∈FV(G) and x ̸∈FV(A). Again, x : s is said to be an
eigenvariable. Note how this inference rule discharges the assumption B.

Note the similarity between the rules for ∃ and for ∨.
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Natural deduction

Equality is a special relation and this is captured in a series of ad-hoc
inference rules. When the language has an equality relation for some sort s it
is subject to the following rules:

refl∀x : s .x = x
sym∀x : s .∀y : s .x = y ⊃ y = x

trans∀x : s .∀y : s .∀z : s .x = y ∧y = z ⊃ x = z
A[t/x ] t = r

subst
A[r/x ]

fun∀x1 : s1. . . .∀xn : sn.∃!z : s0.z = f (x1, . . . ,xn)
where t and r are terms of type s and f : s1×·· ·×sn → s0 is a function symbol
of the language.
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References

Usually, first-order logic is presented in a simplified way, by avoiding the
multi-sorted language and by using a reduced number of connectives.
Although this approach simplifies the initial presentation it makes difficult to
pass to other logical system, e.g., intuitionistic logic and to deal with real
mathematical theories where multiple sorts are often present.
A good text which introduces the first-order language in a formal way is John
Bell and Moshé Machover, A Course in Mathematical Logic, North-Holland,
(1977), ISBN 0-7204-28440, which covers our treatment of definitions, too.
Natural deduction is described in many textbooks. This lesson follows A.S.
Troelstra and H. Schwichtenberg, Basic Proof Theory, Cambridge Tracts in
Theoretical Computer Science 43, Cambridge: Cambridge University Press,
(1996). The counterexamples have been taken from that text.
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Examples

Example 8.1
[P]1

∃I∃x : s .P [¬∃x : s .P]2
¬E⊥

¬I1¬P
∀I∀x : s .¬P

⊃I2
(¬∃x : s .P)⊃∀x : s .¬P

By applying the double-negation law (A =¬¬A) and taking P ≡¬A we get
that (¬∃x : s .¬A)⊃∀x : s .A.
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Examples

Example 8.2

[∃x : s .P]1
[P]2

[∀x : s .¬P]3
∀E¬P

¬E⊥
∃E2

⊥
¬I1¬∃x : s .P

⊃I3
(∀x : s .¬P)⊃¬∃x : s .P

Putting P ≡¬A and applying the double negation law one gets that
∀x : s .A=¬∃x : s .¬A.
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Examples

Example 8.3

[∃x : s .¬P]1

[∀x : s .P]2
∀E

P [¬P]3
¬E⊥

∃E3
⊥

¬I2¬∀x : s .P
⊃I1

(∃x : s .¬P)⊃¬∀x : s .P
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Examples

Example 8.4
To show that the restrictions on variables in the introduction rule of the
universal quantifier is essential consider the following counterexample. Let
x : s ∈FV(P).

[P]1
∀I∀x : s .P
⊃I1

P ⊃∀x : s .P
∀I∀x : s .(P ⊃∀x : s .P)

The instance of the ∀I rule on the top is invalid since x : s appear in the
assumptions which are undischarged in that moment of the proof.
In arithmetic if P stands for ‘x is even’ the conclusion allows to prove that,
since P[0/x ] is true, every natural number is even!
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Examples

Example 8.5
Another counterexample, showing why the restriction on variables is essential
in the elimination rule for the existential quantifier is the following. Again, let
x : s ∈FV(P).

[∃x : s .P]1
[P ⊃Q]2 [P]3

⊃E
Q

∃E3
Q

⊃I1
(∃x : s .P)⊃Q

⊃I2
(P ⊃Q)⊃ ((∃x : s .P)⊃Q)

∀I∀x : s .((P ⊃Q)⊃ ((∃x : s .P)⊃Q))
Inside arithmetic, let Q ≡⊥ so the conclusion reduces to
∀x : s .(¬P ⊃¬∃x : s .P). If P stands for ‘x is even’, since P[1/x ] is false the
conclusion allows to deduce that there is no even natural number!
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Examples

Example 8.6
The last counterexample shows why the restriction that the quantified
variable must not occur in the conclusion of the exist elimination rule.
Let x ∈FV(A):

[∃x : s .A]1 [A]2
∃E2

A
∀I∀x : s .A

⊃I1
(∃x : s .A)⊃ (∀x : s .A)

Inside arithmetic, let A be the formula stating that its argument is even.
Since there is at least an even number, 2 for example, it follows that every
number is even.

( 192 )



Examples

Example 8.7
⊢∀x .B ⊃A=B ⊃∀x .A with x ̸∈FV(B)

[B]1
[∀x .B ⊃A]2

∀E
B ⊃A

⊃E
A

∀I∀x .A
⊃I1

B ⊃∀x .A
⊃I2

(∀x .B ⊃A)⊃ (B ⊃∀x .A)

[B ⊃∀x .A]1 [B]2
⊃E∀x .A

∀E
A

⊃I2
B ⊃A

∀I∀x .B ⊃A
⊃I1

(B ⊃∀x .A)⊃ (∀x .B ⊃A)
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Examples

Example 8.8
⊢∀x .A⊃B = (∃x .A)⊃B with x ̸∈FV(B)

[∃x .A]1
[A]2

[∀x .A⊃B]3
∀E

A⊃B
⊃E

B
∃E2

B
⊃I1

(∃x .A)⊃B
⊃I3

(∀x .A⊃B)⊃ ((∃x .A)⊃B)

[A]1
∃I∃x .A [(∃x .A)⊃B]2

⊃E
B

⊃I1
A⊃B

∀I∀x .A⊃B
⊃I2

((∃x .A)⊃B)⊃ (∀x .A⊃B)
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Examples

Example 8.9
⊢¬¬∀x .A⊃∀x .¬¬A

[∀x .A]1
∀E

A [¬A]2
¬E⊥

¬I1¬∀x .A [¬¬∀x .A]3
¬E⊥

¬I2¬¬A
∀I∀x .¬¬A

⊃I3¬¬(∀x .A)⊃∀x .¬¬A
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Examples

Example 8.10
⊢A∧ (∃x .B)⊃∃x .A∧B with x ̸∈FV(A)

[A∧∃x .B]1
∧E2∃x .B

[A∧∃x .B]1
∧E1A [B]2

∧I
A∧B

∃I∃x .A∧B
∃E2

∃x .A∧B
⊃I1

A∧ (∃x .B)⊃∃x .A∧B
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Examples

Example 8.11
⊢∃x .A∧B ⊃A∧∃x .B with x ̸∈FV(A)

[∃x .A∧B]1

[A∧B]2
∧E1A

[A∧B]2
∧E2B

∃I∃x .B
∧I

A∧∃x .B
∃E2

A∧∃x .B
⊃I1

(∃x .A∧B)⊃A∧∃x .B
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Examples

Example 8.12
⊢A∧∀x .B =∀x .A∧B with x ̸∈FV(A)

[A∧∀x .B]1
∧E1A

[A∧∀x .B]1
∧E2∀x .B

∀E
B

∧I
A∧B

∀I∀x .A∧B
⊃I1

A∧ (∀x .B)⊃∀x .A∧B

[∀x .A∧B]1
∀E

A∧B
∧E1A

[∀x .A∧B]1
∀E

A∧B
∧E2B
∀I∀x .B
∧I

A∧∀x .B
⊃I1

(∀x .A∧B)⊃A∧∀x .B

( 198 )

Examples

Example 8.13
⊢ (∀x .A∧B)⊃ (∀x .A)∧ (∀x .B)

[∀x .A∧B]1
∀E

A∧B
∧E1A
∀I∀x .A

[∀x .A∧B]1
∀E

A∧B
∧E2B
∀I∀x .B
∧I

(∀x .A)∧ (∀x .B)
⊃I1

(∀x .A∧B)⊃ (∀x .A)∧ (∀x .B)
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Examples

Example 8.14
⊢ (∀x .A)∧ (∀x .B)⊃∀x .A∧B

[(∀x .A)∧ (∀x .B)]1
∧E1∀x .A

∀E
A

[(∀x .A)∧ (∀x .B)]1
∧E2∀x .B

∀E
B

∧I
A∧B

∀I∀x .A∧B
⊃I1

(∀x .A)∧ (∀x .B)⊃∀x .A∧B
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Examples

Example 8.15
⊢ (∃x .A∧B)⊃ (∃x .A)∧ (∃x .B)

[∃x .A∧B]1

[A∧B]2
∧E1A

∃I∃x .A

[A∧B]2
∧E2B

∃I∃x .B
∧I

(∃x .A)∧ (∃x .B)
∃E2

(∃x .A)∧ (∃x .B)
⊃I1

(∃x .A∧B)⊃ (∃x .A)∧ (∃x .B)
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Examples

Example 8.16
⊢ (∃x .∀y .A)⊃∀y .∃x .A

[∃x .∀y .A]1

[∀y .A]2
∀E

A
∃I∃x .A
∀I∀y .∃x .A
∃E2

∀y .∃x .A
⊃I1

(∃x .∀y .A)⊃∀y .∃x .A
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Examples

Example 8.17
Substitute the “forall introduction” rule of natural deduction with the
following rule with infinite premises:





Γ
·····

A[t/x ]





t term ∀I∞∀x .A

Show that every formula which can be deduced in this calculus, can be
deduced in natural deduction too.
In every proof π in which the ∀I∞ rule occurs, only a finite number of
assumptions in Γ is used. So, in particular only a finite number of variables
occur in these assumptions. Pick a new z not among these variables. Then
there is a proof θ : Γ⊢A[z/x ] among the premises of ∀I∞. Hence, in the
usual natural deduction θ can be used to deduce ∀z .A[z/x ] by ∀I, which is
equal to ∀x .A by renaming the bound variable.
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Examples

Example 8.18
Show that every formula which can be deduced in natural deduction, can be
deduced in the calculus with the ∀I∞ rule.
Consider

Γ
·····
A

∀I∀x .A
with x not occurring free in the assumptions. By an easy induction on the
structure of the proofs it can be shown that if π : ∆⊢B then
π[t/z ] : ∆[t/z ]⊢B[t/z] is a proof. By substituting t for x in the premise of
∀I for all the terms t of the same sort of x , we see that all the premises of
∀I∞ are valid as well as its conclusion.
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Informal meaning

Fixed a signature 〈S;F ;R〉 the intended interpretation of a sort s ∈ S is a
specific set; the intended interpretation of a function symbol is a function;
and the intended interpretation of a relation symbol is a relation.
The intended meaning of equality, = : s × s, when present in the language, is
the identity of its arguments.
Thus the intended meaning of a term is an element, which is identified via the
interpretation of functions and the evaluation of variables, in the universe, the
collection of all the sets denoted by sorts.
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Informal meaning

In turn formulæ stand for a truth value, either true or false, as in the
propositional case. And connectives have the intended propositional meaning
we already illustrated.
Atomic formulæ, r(t1, . . . ,tn), are true when the argument (t1, . . . ,tn) is in the
relation denoted by r .
A formula is universally valid, that is ∀x : s .A holds, when A is true in
whatever way we interpret x as an element of the set denoted by s.
Symmetrically, a formula is existentially valid, that is ∃x : s .A holds, when
there is an element e in the set denoted by s such that interpreting x as e
makes A true.
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Semantics

The standard semantics for first-order logic, due to Alfred Tarski, directly
formalises the intended interpretation.

Definition 9.1 (Σ-structure)
Let Σ= 〈S;F ,R〉 be a first-order signature.
Then a Σ-structure M = 〈U;F ;R〉 is composed by
■ a collection U = {us }s∈S of non-empty sets, called the universe,
■ a collection of functions over the universe

F = ©
gf : us1 ×·· ·×usn → us0 | f : s1 ×·· ·× sn → s0 ∈F

ª
,

■ a collection of relations over the universe
R = ©

ρr : us1 ×·· ·×usn | r : s1 ×·· ·× sn ∈R
ª
.
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Semantics

To make clear the relation between a signature and a Σ-structure, we use the
following notation:
■ for each s ∈ S, �s�= us ;
■ for each f : s1 ×·· ·× sn → s0 ∈F , �f �= gf ;
■ for each r : s1 ×·· ·× sn ∈R, �r�= ρr .

This is called the interpretation of the signature in the Σ-structure.
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Semantics

Definition 9.2 (Interpretation of terms)
Let Σ= 〈S;F ,R〉 be a signature and let M be a Σ-structure with the notation
as before. Also let ν= {νs }s∈S be a collection of functions
νs : {v : v : s ∈V }→�s� mapping the variables of type s into the
corresponding set �s�.
Then a term t is interpreted according to the following inductive definition on
its structure:
■ if t ∈V is a variable of type s then �t�= νs(t);
■ if t ≡ f (t1, . . . ,tn) then �t�= �f �(�t1�, . . . ,�tn�).
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Semantics

Definition 9.3 (Interpretation of formulæ)
Let Σ= 〈S;F ,R〉 be a signature, let M be a Σ-structure, and let ν be an
evaluation of variables with the notation as before.
Then a formula A is interpreted according to the following inductive definition
on its structure:
■ if A≡⊤, �A�= 1;
■ if A≡⊥, �A�= 0;
■ if A≡ r(t1, . . . ,tn), �A�= 1 if (�t1�, . . . ,�tn�) ∈ �r� and �A�= 0 otherwise;
■ if A≡¬B, A≡B∧C , A≡B∨C , A≡B ⊃C then �A� is defined as in the

truth-table semantics;
■ if A≡∀x : s .B or A≡∃x : s .B, let ξ= {ξs }s∈S be an evaluation of variables

such that ξα = να for each α ̸= s, and ξs(v)= νs(v) for each v ̸= x . Then
�∀x : s .B�ν = 1 if, for all the possible ξ, �B�ξ = 1, and �∀x : s .B�ν = 0
otherwise. Also �∃x : s .B�ν = 1 if there is a ξ such that �B�ξ = 1, and
�∃x : s .B�ν = 0 otherwise.
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Semantics

We stipulate that when equality is in the language, �t1 = t2�= 1 exactly when
�t1�= �t2�.
If one prefers �=s�, the equality on the sort s, represents the diagonal relation©
(x ,x): x ∈ �s�ª.

It is worth remarking that equality is always typed: t1 = t2 is a valid formula if
and only if t1 and t2 are terms of the same sort s, and the relation = should
be read as a shorthand for =s , which stands for the diagonal relation on the
set denoted by the sort s.
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Examples

Example 9.4
Fix the signature of arithmetic and consider the standard model of natural
numbers. Then the formula S0+S0= SS0 is interpreted in
�S0+S0= SS0�= 1 since
1. �S0+S0�= �+�(�S0�,�S0�)=+(�S�(�0�) ,�S�(�0�))=+(1+0,1+0)=

1+1= 2;
2. �SS0�= �S�(�S0�)= �S�(�S�(�0�))= 1+ (1+0)= 1+1= 2;
3. �S0+S0= SS0�= 1 if and only if �S0+S0�= �SS0�, that is if and only if

2= 2.
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Examples

Example 9.5
Fix the signature of arithmetic and consider the standard model of natural
numbers. Let consider �x = (SS0)y�. Applying the definition of semantics,
�x = (SS0)y�= 1 if and only if �x�= 2�y�, that is if and only if x is interpreted
in a number which is two times the value y is interpreted in.
So, if x is interpreted in 6 and y in 3, the formula is true, while if x is
interpreted in 6 but y in 5, the formula is false.
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Examples

Example 9.6
Fix the signature of arithmetic and consider the standard model of natural
numbers. Consider �∃x .x = (SS0)x�. Applying the definition of semantics,
�∃x .x = (SS0)x�= 1 if and only if there is an assignment ξ of variables,
identical to the one fixed in the model except for the value it assigns to x ,
such that �x = (SS0)x�= 1. But whenever ξ(x)= 0, �x = (SS0)x�= 1 since
both sides evaluate to 0 so the initial formula is true.
Consider �∀x .x = (SS0)x�. Applying the definition of semantics,
�∀x .x = (SS0)x�= 1 if and only if for each assignment ξ of variables, identical
to the one fixed in the model except for the value it assigns to x , it holds that
�x = (SS0)x�= 1. But when ξ(x)= 1, �x = (SS0)x�= 0 since the left side
evaluates to 1 and the right side to 2.
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Examples

Example 9.7
Fix the signature of arithmetic and consider the standard model of natural
numbers. Consider �∀x .∃y .x = (SS0)y�. Applying the definition of semantics,
the formula holds if for each assignment ξ of variables, identical to the one
fixed in the model except for the value of x , it holds that �∃y .x = (SS0)y�= 1.
In turn this happens when there is an assignment ξ′, identical to ξ except for
the value of y such that �x = (SS0)y�= 1.
For each ξ as above fix ξ′(y)= x/2, the integer division of x by 2. Whenever
x is even it is immediate to check that �x = (SS0)y�= 1 holds. On the
contrary, when x is odd �x = (SS0)y�= 0 as the left side differs from the right.
It is evident that there is no possibility to find an assignment ξ′ as above for
every possible choice of ξ, so the initial formula is false.
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Soundness

Definition 9.8 (Validity)
A formula A is valid or true in a Σ-structure M together with an
interpretation ν of variables when �A�= 1.
A set of formulæ is valid or true when each formula in the set is valid. The
pair (M ,ν) is a model for the theory T when it makes every formula in T
true.

Theorem 9.9 (Soundness)
In any model (M ,ν) of the theory T , which makes true the assumptions in
the finite set ∆, if π : ∆⊢T A then A is valid.
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Soundness

Proof. (i)
First, we observe that by Definition 9.3 the connectives act in the Boolean
algebra on {0,1} with 0< 1, so the ∧, ∨, ¬ operations are defined as in the
truth-table semantics.
The proof is by induction on the structure of the proof π: we prove that the
interpretation of the conclusion A is 1 when the interpretation of each G in
the finite set of assumption Γ is 1:
■ if π is a proof by assumption then A ∈ Γ and by hypothesis �A�= 1.
■ if π is a proof by axiom then A ∈T and by hypothesis �A�= 1.
■ if π is an instance of the Law of Excluded Middle then A≡B∨¬B and
�A�= �B∨¬B�= �B�∨¬�B�= 1 by definition of complement.

■ if π is an instance of ⊤-introduction then A≡⊤ so �A�= 1.
■ if π is an instance of refl then A≡∀x : s .x = x , so �A�= 1 when �x = x�= 1

for each possible evaluation of the variable x in �s�. So if x gets mapped
to e ∈ �s�, (e,e) ∈ ©

(z ,z): z ∈ �s�ª, so �x = x�= 1 for any e. ,→
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Soundness

,→ Proof. (ii)
■ if π is an instance of sym then A≡∀x : s .∀y : s .x = y ⊃ y = x , so �A�= 1

when �x = y ⊃ y = x�= 1 for each possible evaluation of the variables x and
y in �s�. So if x gets mapped to ex ∈ �s� and y to ey ∈ �s�, if
(ex ,ey ) ∈ ©

(z ,z): z ∈ �s�ª then ex = ey , thus (ey ,ex ) ∈ ©
(z ,z): z ∈ �s�ª, that

is �x = y ⊃ y = x�= 1.
■ if π is an instance of trans then A≡∀x : s .∀y : s .∀z : s .x = y∧y = z ⊃ x = z ,

so �A�= 1 when �x = y ∧y = z ⊃ x = z�= 1 for each possible evaluation of
the variables x , y , and z in �s�. So if x gets mapped to ex ∈ �s�, y to
ey ∈ �s�, and z in ez ∈ �s�, if (ex ,ey ) ∈ ©

(z ,z): z ∈ �s�ª and
(ey ,ez) ∈ ©

(z ,z): z ∈ �s�ª then ex = ey = ez , and thus
(ex ,ez) ∈ ©

(z ,z): z ∈ �s�ª, that is �x = y ∧y = z ⊃ x = z�= 1. ,→
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Soundness

,→ Proof. (iii)
■ if π is an instance of fun then

A≡∀x1 : s1. . . .∀xn : sn.∃!z : s0.z = f (x1, . . . ,xn), so �A�= 1 exactly when z
can be uniquely mapped into a value ez in �s0� so that
(ez ,�f �(ex1 , . . . ,exn)) ∈ ©

(z ,z): z ∈ �s�ª, which is evidently true for
ez = �f �(ex1 , . . . ,exn).

■ if π is an instance of subst then by induction hypothesis
�
A[t/x ]

�= 1 and
�t = r�= 1, that is �t�= �r�. The conclusion follows by an easy induction
on the structure of the formula A.

■ if π is an instance of ⊥-elimination then by induction hypothesis
0= �⊥�= 1. Thus �A�= 1 since interpretation is a total function. ,→
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Soundness

,→ Proof. (iv)
■ if π is an instance of ∧-introduction then A≡B∧C , and by induction

hypothesis twice �B�= 1 and �C�= 1. Thus 1= �B�∧�C�= �A�.
■ if π is an instance of ∧1-elimination then by induction hypothesis for some

formula B, �A∧B�= �A�∧�B�= 1. Thus by definition of ∧, �A�= 1.
■ if π is an instance of ∧2-elimination then by induction hypothesis for some

formula B, �B∧A�= �B�∧�A�= 1. Thus by definition of ∧, �A�= 1.
■ if π is an instance of ∨1-introduction then A≡B∨C and by induction

hypothesis �B�= 1. So by definition of ∨, 1= �B�∨�C�= �A�.
■ if π is an instance of ∨2-introduction then A≡B∨C and by induction

hypothesis �C�= 1. So by definition of ∨, 1= �B�∨�C�= �A�.
■ if π is an instance of ∨-elimination then by induction hypothesis for some

formulæ B and C , �B∨C�= �B�∨�C�= 1, if �B�= 1 then �A�= 1, and if
�C�= 1 then �A�= 1. By definition of ∨ either �B�= 1, thus �A�= 1, or
�C�= 1, thus �A�= 1. ,→
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Soundness

,→ Proof. (v)
■ if π is an instance of ⊃-introduction then A≡B ⊃C for some formulæ B

and C . By induction hypothesis if �B�= 1 then �C�= 1. So by definition
of ⊃, �A�= 1.

■ if π is an instance of ⊃-elimination then for some formula B by induction
hypothesis twice �B ⊃A�= 1 and �B�= 1. By definition of ⊃, �A�= 1.

■ if π is an instance of ¬-introduction then A≡¬B for some formula B. So
by induction hypothesis if �B�= 1 then 0= �⊥�= 1. Thus, �¬B�= 1 as
either �B�= 0 or 0= 1.

■ if π is an instance of ¬-elimination then A≡⊥ and by induction hypothesis
twice �¬B�= 1 and �B�= 1. So by definition of complement 0= 1. Thus
0= �A�= 1. ,→

( 224 )



Soundness

,→ Proof. (vi)
■ if π is an instance of ∀-introduction then A≡∀x : s .B, and by induction

hypothesis �B�= 1 for every evaluation of variables which makes the
assumptions true. But since x : s does not appear free in any assumption
�B�= 1 for any way we may evaluate x in �s�, that is �A�= 1.

■ if π is an instance of ∀-elimination then A≡B[t/x ], and by induction
hypothesis �∀x : s .B�= 1. So in particular when x evaluates to �t�,
�A�= �B[t/x ]�= 1. ,→
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Soundness

,→ Proof. (vii)
■ if π is an instance of ∃-introduction then A≡∃x : s .B, and by induction

hypothesis
�
B[t/x ]

�= 1. So the evaluation of variables ξs which is the
same as νs except for ξs(x)= �t� makes A valid.

■ if π is an instance of ∃-elimination then by induction hypothesis
�∃x : s .B�= 1 and if �B�= 1 then A is valid. But �∃x : s .B�= 1 means that
there is way to evaluate x in �s� which makes B valid. Applying this
evaluation of variables to the second induction hypothesis, we get that A is
valid.
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Syllabus

First order logic:
■ Completeness
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Strategy

The completeness theorem is difficult, both technically and conceptually.
The strategy to prove it is indirect:
■ Suppose A is true in any model satisfying Γ. Then Γ∪ {¬A} has no model.
■ We will show that any set of formulæ ∆ which is consistent, i.e., non

allowing to derive a contradiction, has a model. This is proved by
constructing a sufficiently big set Θ containing ∆ which has enough
information to synthesise a model for itself.

■ So, Γ∪ {¬A} must be non consistent. Which means that Γ⊢A.
We need to prove each step. And we will start from the end.
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Consistency

Definition 10.1 (Consistent set)
Fixed a first-order signature, a set of formulæ Γ on it is consistent when it
does not happen that Γ⊢A and Γ⊢¬A for any formula A in the language.

Definition 10.2 (Maximal consistent set)
Fixed a first-order signature, a set of formulæ Γ on it is maximal consistent
when it is consistent and for any other set ∆ on the same language such that
Γ⊂∆, ∆ is not consistent.

It should be stressed that being maximal consistent is a property which is not
invariant with respect to the language.
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Consistency

Proposition 10.3
For any set of formulæ Γ and any formula A,
■ Γ∪ {¬A} is not consistent if and only if Γ⊢A;
■ Γ∪ {A} is not consistent if and only if Γ⊢¬A.

Proof.
If Γ∪ {¬A} is non consistent then Γ∪ {¬A}⊢B and Γ∪ {¬A}⊢¬B for some B.
So, by implication introduction Γ⊢¬A⊃B and Γ⊢¬A⊃¬B. Since
⊢ (¬A⊃B)∧ (¬A⊃¬B)⊃A can be easily proved using the double negation
law, see Example 3.17, it follows that Γ⊢A.
Conversely Γ∪ {¬A}⊢A by hypothesis, and Γ∪ {¬A}⊢¬A by the assumption
rule, so Γ∪ {¬A} is not consistent.
By the double negation law, Γ∪ {A} is non consistent if and only if Γ∪ {¬¬A}
is non consistent, thus the second part follows from the first one.
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Consistency

The completeness theorem says that: if a formula A is true in every model of
the theory Γ then there is a proof of A from Γ.
Now, by Proposition 10.3 it suffices to prove that: if a formula A is true in
every model of the theory Γ then Γ∪ {¬A} is not consistent.
We note that any super set of a set of non consistent formulæ is non
consistent, too. The idea we want to pursue is to construct a sufficiently rich
super set of any consistent set that allows to build a model.
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Consistency

Proposition 10.4
A set Γ is maximal consistent if and only if it is consistent and for every
formula A either A ∈ Γ or ¬A ∈ Γ.
Proof.
Suppose Γ is maximal consistent. Then it is consistent by definition. Also,
suppose there is A such that A ̸∈ Γ and ¬A ̸∈ Γ then Γ∪ {A} and Γ∪ {¬A} must
be both non consistent by definition. Thus, by Proposition 10.3 Γ⊢¬A and
Γ⊢A, making Γ non consistent, which is a contradiction.
Conversely, suppose Γ⊂∆. Then there is A ∈∆ such that A ̸∈ Γ. So by
hypothesis ¬A ∈ Γ⊂∆. Thus, ∆⊢A and ∆⊢¬A by assumption.

Corollary 10.5
If Γ is maximal consistent and Γ⊢A then A ∈ Γ.
Proof.
Otherwise ¬A ∈ Γ thus Γ⊢¬A making Γ non consistent.
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Closure of maximal consistent sets

Proposition 10.6
Let Γ be a maximal consistent set. Then the following facts hold:
1. ⊤∈ Γ; ⊥ ̸∈ Γ;
2. if A≡ r(t1, . . . ,tn) then either A ∈ Γ or ¬A ∈ Γ;
3. if ¬¬A ∈ Γ then A ∈ Γ;
4. if A∧B ∈ Γ then A ∈ Γ and B ∈ Γ; if ¬(A∧B) ∈ Γ then ¬A ∈ Γ or ¬B ∈ Γ;
5. if A∨B ∈ Γ then A ∈ Γ or B ∈ Γ; if ¬(A∨B) ∈ Γ then ¬A ∈ Γ and ¬B ∈ Γ;
6. if A⊃B ∈ Γ then ¬A ∈ Γ or B ∈ Γ; if ¬(A⊃B) ∈ Γ then A ∈ Γ and ¬B ∈ Γ;
7. if ∀x : s .A ∈ Γ then A[t/x ] ∈ Γ for each term t : s;
8. if ¬(∃x : s .A) ∈ Γ then ¬A[t/x ] ∈ Γ for each term t : s.

Proof. (i)
Since Γ⊢⊤ by truth introduction, ⊤∈ Γ. Hence ⊥ ̸∈ Γ since ¬⊤ is equivalent
to ⊥. The condition on atomic formulæ follows from Proposition 10.4. ,→
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Closure of maximal consistent sets

,→ Proof. (ii)
If A∧B ∈ Γ then Γ⊢A and Γ⊢B by conjunction elimination. So, by
Corollary 10.5 A ∈ Γ and B ∈ Γ. Moreover, by the De Morgan’s Laws ¬(A∨B)
is equivalent to ¬A∧¬B, so the required result follows. Also since ¬(A⊃B)
is equivalent to A∧¬B, the required result follows.
If A∨B ∈ Γ and A ̸∈ Γ it must be ¬A ∈ Γ. So it is immediate to see that Γ⊢B,
i.e., B ∈ Γ. Moreover by the De Morgan’s Laws ¬(A∧B) is equivalent to
¬A∨¬B, so the required result follows.
If A⊃B ∈ Γ and ¬A ̸∈ Γ it must be A ∈ Γ. So it is immediate to see that
Γ⊢B, i.e., B ∈ Γ. Also by the double negation law Γ⊢¬¬A⊃A, so if
¬¬A ∈ Γ, A ∈ Γ, too.
If ∀x : s .A ∈ Γ, by the forall elimination rule Γ⊢A[t/x ] for any term t : s.
Thus A[t/x ] ∈ Γ. Also, since ¬∃x : s .A is equivalent to ∀x : s .¬A, the required
result follows.
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Closure of maximal consistent sets

Proposition 10.7
Let Γ be a maximal consistent set in a language with equality. Then the
following facts hold:
1. t = t ∈ Γ for all terms t;
2. if t = r ∈ Γ then also r = t ∈ Γ;
3. if t = r ∈ Γ and r = u ∈ Γ then also t = u ∈ Γ;
4. if ti = ri ∈ Γ for each 1≤ i ≤ n then f (t1, . . . ,tn)= f (r1, . . . ,rn) ∈ Γ for every

f : s1 ×·· ·× sn → s0 in the language;
5. if ti = ri ∈ Γ for each 1≤ i ≤ n then p(t1, . . . ,tn)⊃ p(r1, . . . ,rn) ∈ Γ for every

p : s1 ×·· ·× sn in the language.

Proof.
Since all these equalities can be deduced from Γ applying the inference rules
in an elementary way, by Corollary 10.5 the results follow.
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Closure of maximal consistent sets

Two evident conditions are lacking from Proposition 10.6:
■ if ∃x : s .A ∈ Γ then A[t/x ] ∈ Γ for some term t : s;
■ if ¬(∀x : s .A) ∈ Γ then ¬A[t/x ] ∈ Γ for some term t : s.

Indeed, the second condition is equivalent to the first one since ¬(∀x : s .A) is
equivalent to ∃x : s .¬A.
The first condition is lacking simply because it does not hold for any maximal
consistent set. Take the language with just equality and let U = {u,v }.
Consider the variable evaluation σ which maps every variable x in u. Take Ψ
as the collection of true formulæ on the model U under the evaluation σ.
Evidently, Ψ is consistent since it has a model. Moreover, for any formula A
either it is true or false in that particular model, so either A ∈Ψ or ¬A ∈Ψ.
But ∃x .¬x = y , with x and y distinct variables, is true while (¬x = y)[t/x ] is
false for any term t because the only terms are variables and all of them are
interpreted into the same element u.
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Henkin sets

Definition 10.8 (Henkin set)
A set of formulæ Γ in a language is a Henkin set when Γ is maximal
consistent in that language and
■ if ∃x : s .A ∈ Γ then A[t/x ] ∈ Γ for some term t : s;
■ if ¬(∀x : s .A) ∈ Γ then ¬A[t/x ] ∈ Γ for some term t : s.

Thus, Henkin sets form a proper subclass of maximal consistent sets, and they
are the right objects to look at as they contain enough information to
construct a model for themselves.
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Canonical model

Lemma 10.9
If Γ is a Henkin set then it has a model (Σ,σ).
Proof. (i)
Let T be the set of terms in the language. Define t ∼ r when t : s ,r : s ∈T
and t = r ∈ Γ. By the properties of a Henkin set, see Proposition 10.7, ∼ is an
equivalence relation. So it induces a partition on T . Thus we define
U = ©©

[t]∼ : t : s ∈T
ªª

s∈S , grouping partitions by sort.
For each function symbol f : s1 ×·· ·× sn → s0 in Σ,

�f �([t1]∼, . . . , [tn]∼)= [f (t1, . . . ,tn)]∼ .

Note how this definition is legitimate, since the class [f (t1, . . . ,tn)]∼ does not
depend on the choice of the representatives [t1]∼, . . . , [tn]∼ by a direct
application of Proposition 10.7. ,→
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Canonical model

,→ Proof. (ii)
For each relation symbol p : s1 ×·· ·sn in Σ,

�p�= ©
([t1]∼, . . . , [tn]∼) : p(t1, . . . ,tn) ∈ Γª

.

Again, this definition is legitimate since it does not depend on the choice of
the representatives [t1]∼, . . . , [tn]∼ by Proposition 10.7.
So let M be the Σ-structure having U as its universe, and interpreting
function symbols and relation symbols as above.
Define σ, the evaluation of variables as σ(x : s)= [x ]∼.
By induction on the structure of terms we show that �t�= [t]∼:
■ if t ≡ x : s is a variable, �t�=σ(x : s)= [t]∼;
■ if t ≡ f (t1, . . . ,tn), �t�= �f �(�t1�, . . . ,�tn�), and by induction hypothesis
�t�= �f �([t1]∼, . . . , [tn]∼)= [f (t1, . . . ,tn)]∼ = [t]∼. ,→
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Canonical model

,→ Proof. (iii)
By induction on the structure of formulæ we show that, when A ∈ Γ, �A�= 1,
and when ¬A ∈ Γ, �A�= 0.
■ if A≡⊤ then A ∈ Γ and by definition �A�= 1.
■ if A≡⊥, then ¬A ∈ Γ and by definition �A�= 0.
■ if A≡ p(t1, . . . ,tn), �A�= 1 if and only if (�t1�, . . .�tn�) ∈ �p�, that is

([t1]∼, . . . , [tn]∼) ∈ �p�, and by definition of the model this happens exactly
when p(t1, . . . ,tn) ∈ Γ, i.e., when A ∈ Γ. When ¬A ∈ Γ, being Γ maximal
consistent A ̸∈ Γ, so �A�= 0.

■ if A≡ t = r , �A�= 1 exactly when �t�= �r�, which is equivalent to
[t]∼ = [r ]∼, and by definition of the model t = r ∈ Γ. Again, if ¬t = r ∈ Γ,
being Γ maximal consistent t = r ̸∈ Γ, and �A�= 0.

■ if A≡¬B, �A�= 1 exactly when �B�= 0, and by induction hypothesis this
happens exactly when B ̸∈ Γ. Conversely, if A ̸∈ Γ then B ∈ Γ being Γ
maximal consistent, so by induction hypothesis �B�= 1, i.e., �A�= 0. ,→
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Canonical model

,→ Proof. (iv)
■ if A≡B∧C , �A�= 1 if and only if �B�= 1 and �C�= 1, but by induction

hypothesis this happens exactly when B ∈ Γ and C ∈ Γ. So, when A ∈ Γ, by
Proposition 10.6, B ∈ Γ and C ∈ Γ, thus �A�= 1. On the contrary, when
¬A ∈ Γ, by Proposition 10.6 ¬B ∈ Γ or ¬C ∈ Γ, and being Γ maximal
consistent either B ̸∈ Γ or C ̸∈ Γ. In both cases, �A� ̸= 1, so �A�= 0.

■ if A≡B∨C , �A�= 1 if and only if �B�= 1 or �C�= 1, but by induction
hypothesis this happens exactly when B ∈ Γ or C ∈ Γ. So, when A ∈ Γ, by
Proposition 10.6 B ∈ Γ or C ∈ Γ, thus �A�= 1. On the contrary, when
¬A ∈ Γ, by Proposition 10.6 ¬B ∈ Γ and ¬C ∈ Γ, and being Γ maximal
consistent B ̸∈ Γ and C ̸∈ Γ. Hence �A� ̸= 1, so �A�= 0.

■ if A≡B ⊃C , �A�= 1 if and only if �B�= 0 or �C�= 1, but by induction
hypothesis this happens exactly when ¬B ∈ Γ or C ∈ Γ. So, when A ∈ Γ, by
Proposition 10.6 ¬B ∈ Γ or C ∈ Γ, thus �A�= 1. On the contrary, when
¬A ∈ Γ, by Proposition 10.6 B ∈ Γ and ¬C ∈ Γ, and being Γ maximal
consistent B ∈ Γ and C ̸∈ Γ. Hence �A� ̸= 1, so �A�= 0. ,→
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Canonical model

,→ Proof. (v)
■ if A≡∀x : s .B, �A�= 1 exactly when in whatever way x : s is interpreted in

U, �B�= 1. Since U is composed by equivalence classes of terms, x : s is
interpreted in [t]∼ for any term t : s. This means that �B[t/x ]�= 1 in the
σ evaluation of variables. By Proposition 10.6 when A ∈ Γ, B[t/x ] ∈ Γ for
every term t : s, so by induction hypothesis �B[t/x ]�= 1 for any term t : s,
thus �A�= 1. Furthermore, when ¬A ∈ Γ, being Γ a Henkin set there is a
term t : s such that ¬B[t/x ] ∈ Γ, so by induction hypothesis �B[t/x ]�= 0,
thus �A�= 0.

■ if A≡∃x : s .B, �A�= 1 exactly when, there is a way to interpret x : s in U
such that �B�= 1. By definition of U, x : s is interpreted in [t]∼ for some
term t : s. This means that �B[t/x ]�= 1 in the σ evaluation of variables.
Being Γ a Henkin set when A ∈ Γ, B[t/x ] ∈ Γ for some term t : s, so by
induction hypothesis �B[t/x ]�= 1, thus �A�= 1. Also, when ¬A ∈ Γ, by
Proposition 10.6 there is a term t : s such that ¬B[t/x ] ∈ Γ, so by
induction hypothesis �B[t/x ]�= 0, thus �A�= 0. ,→
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Canonical model

,→ Proof. (vi)
Summarising, we have constructed a Σ-structure M and an evaluation of
variables σ such that each formula A ∈ Γ is true in M under the σ
evaluation.

Corollary 10.10
The M model has a universe which does not exceed the size of the collection
of all terms.
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Existence of Henkin sets

Proposition 11.1
Let Γ be a consistent set of formulæ on the signature Σ. Then there is a set
of formulæ ∆ on a signature Σ′ extending Σ with constants such that ∆ is a
Henkin set and Γ⊆∆.
Proof. (i)
Warning: we anticipate some set theory here!
Let λ be the cardinality of the collection of terms on Σ. Let

C =
[
s∈S

©
cs

i : s | i <λª

be a collection of symbols for constants such that no c s
i : s appears in Σ. Let

Σ′ be Σ extended with the set of constants in C .
The collection of all formulæ over Σ′ is a set with cardinality λ as it is easy to
verify by cardinal arithmetic. So, it can be well-ordered in the sequence
S= {Si : i <λ} by means of an equivalent of the Axiom of Choice. ,→
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Existence of Henkin sets

Although the concepts will be made precise later in the course, some
intuitions are useful to understand what we are doing:
■ a cardinal is a measure of the size of a set;
■ every cardinal is an ordinal;
■ an ordinal is an extension and abstraction over the structure of natural

numbers;
■ one can add and multiply ordinals and cardinals;
■ every ordinal is well-ordered by its own definition, so also a cardinal is so;
■ the Axiom of Choice tells that every set has a cardinality, thus it can be

well-ordered, i.e., enumerated by the elements of the (unique) associated
cardinal.
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Existence of Henkin sets

An ordinal α can be thought as an initial segment of the order O defined as
■ 0 ∈O ;
■ if n ∈O then either n+1 ∈O , that is O is closed under the successor

operator;
■ if E is an initial segment of O , then E ∈O (this is not precise).

The result is that every natural number is an ordinal; but also ω, the
collection of all natural numbers is an ordinal; thus ω+1, ω+2, ω+3, . . . are
ordinals; then ω+ω is an ordinal; and so on.
Thinking to this structure as inductively generated by three steps (zero,
successor, limit), we get an induction principle, called transfinite induction.
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Existence of Henkin sets

,→ Proof. (ii)
By transfinite induction on λ we define for every i ≤λ a set Γi of formulæ
such that
1. Γj ⊆ Γi for every j < i ;
2. Γi is consistent;
3. no more than max(i ,ω) constants in C occur in Γi .
We pose Γ0 = Γ.
Condition (1) holds vacuously;
(2) holds by hypothesis;
(3) holds since no constant in C appears in Γ by definition. ,→
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Existence of Henkin sets

,→ Proof. (iii)
If i ≤λ is a limit infinite ordinal, we put Γi =

S
j<i Γj .

By definition condition (1) holds.
If Γi ⊢A and Γi ⊢¬A then each proof uses only a finite subset of assumptions
ΓA

i and Γ¬A
i . But every finite subset of Γi is contained in some Γj , with j < i ,

so there is m < i such that ΓA
i ⊆ Γm and Γ¬A

i ⊆ Γm, thus Γm ⊢A and Γm ⊢¬A,
contradicting the inductive assumption that Γm is consistent. So Γi must be
consistent, proving (2).
Finally, since (3) holds for any j < i , because of (1) it must hold also for i by
simple cardinal arithmetic, proving (3). ,→
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Existence of Henkin sets

,→ Proof. (iv)
If i <λ is a successor ordinal say i = k +1, we distinguish three cases:
■ If Γk ∪ {Sk } is non consistent then Γi = Γk , and the three conditions clearly

hold by inductive hypothesis.
■ If Γk ∪ {Sk } is consistent and Sk is not of the form ∃x : s .A or ¬∀x : s .A

then Γi = Γk ∪ {Sk }. Evidently, the three conditions hold by inductive
hypothesis and by construction of Γi since we are not adding more than a
finite number of new constants, those appearing in Sk . ,→
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Existence of Henkin sets

,→ Proof. (v)
■ If Γk ∪ {Sk } is consistent and Sk has the form ∃x : s .A or ¬∀x : s .A then by

(3) there is c : s in C not occurring in Γk and Sk .
So, Γi = Γk ∪

©
Sk ,B[c/x ]

ª
with B ≡A when Sk ≡∃x : s .A, and B ≡¬A

when Sk ≡¬∀x : s .A.
Clearly, (1) and (3) hold for Γi because we are adding no more than a
finite number of new constants.
Suppose Γi non consistent. Then Γk ∪ {Sk }⊢¬B[c/x ]. Since c is new, it
could be regarded as a variable free in the assumptions, so
Γk ∪ {Sk }⊢∀x : s .¬B. If Sk ≡∃x : s .A, B ≡A, thus Γk ∪ {Sk }⊢⊥ by
∃-elimination. If Sk ≡¬∀x : s .A, B ≡¬A, thus Γk ∪ {Sk }⊢⊥ since ¬B is
equivalent to A. In both cases, Γk ∪ {Sk } is non consistent, contradicting
the assumption. Thus, Γi must be consistent. ,→
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Existence of Henkin sets

,→ Proof. (vi)
Let ∆= Γλ. By (1) Γ= Γ0 ⊂∆, and by (2) ∆ is consistent.
Let A be a formula on Σ′ such that A ̸∈∆. Since A≡ Sk for some k <λ, Γk+1
must not contain A, which means by construction of the sequence of Γi ’s that
Γk ∪ {A} is non consistent, thus also ∆∪ {A} is non consistent. Therefore, ∆ is
maximal consistent.
If ∃x : s .A ∈∆ then ∃x : s .A≡ Sk for some k <λ, so Γk+1 contains A[c/x ] for
some new constant c : s.
Similarly, if ¬∀x : s .A ∈∆ then ¬∀x : s .A≡ Sk for some k <λ, so Γk+1
contains ¬A[c/x ] for some new constant c : s. Thus, ∆ is a Henkin set.
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Completeness

Theorem 11.2
If Γ is a consistent set of formulæ on a signature Σ then Γ is true on a model
whose universe has a cardinality less or equal than the cardinality of the
formulæ in the language on Σ.
Proof.
By Proposition 11.1 Γ can be extended to a Henkin set ∆. By Lemma 10.9 ∆,
and thus Γ, has a model satisfying the cardinality constraints.

Theorem 11.3 (Completeness)
If every model of Γ makes A true then Γ⊢A.
Proof.
Clearly, if every model of Γ makes A true then Γ∪ {¬A} has no model. Thus,
by Theorem 11.2 Γ∪ {¬A} is non consistent.
Then, by Proposition 10.3 Γ⊢A.
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Compactness

Theorem 12.1 (Compactness)
For any set of formulæ Γ, if every finite subset of Γ has a model then Γ has a
model too.
Proof.
By hypothesis, applying the Soundness Theorem 9.9 every finite subset of Γ is
consistent.
Suppose Γ non consistent: then Γ⊢A and Γ⊢¬A. Since a finite number of
assumptions occur in each proof, there are two finite subsets such that Γ1 ⊢A
and Γ2 ⊢¬A. Consider Γω = Γ1∪Γ2. It is evidently finite and non consistent
leading to a contradiction. Thus Γ must be consistent.
So by Theorem 11.2 Γ has a model.
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Compactness

Proposition 12.2
Fix a language with a single sort. If a set of sentences S has arbitrarily large
finite models then it has an infinite model.
Proof.
Define τn = ∃x1, . . . ,xn.

V
1≤i<j≤n xi ̸= xj . Clearly, τn holds in any model whose

universe has at least n distinct elements.
Consider any finite subset F ⊆ S ∪ {τn : n ∈N}. Let K = F ∩ {τn : n ∈N}. Since
F is finite, K is finite too, so m =max {n : τn ∈K } is defined (pose m = 0 if K
contains no τn). Thus, since S has arbitrarily large finite models by
hypothesis, F must have a finite model larger than m.
Thus, by Theorem 12.1, S ∪ {τn : n ∈N} has a model M . Since τn must hold
for every n ∈N, M must have more than n distinct elements in its universe for
every n ∈N, thus it must be infinite.
Observe how M is a model of S to conclude.
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Examples

The signature of real numbers is set to have a single sort, the 0 constant, the
plus and times operations, and equality and < as relations. The theory R of
real numbers is the collection of true formulæ on the model whose sort is the
reals, and whose symbols are interpreted as one expects.
Example 12.3
There is a model of R in which there are infinite numbers.
Let us extend the signature with the new constant ∞. Let T = {n <∞ : n ∈N}
and consider the theory R ∪T .
If F ⊆R ∪T is finite then the maximum m such that either (m <∞) ∈F or
m = 0 is defined. Thus interpreting ∞ in m+1 in the standard model of reals
validates F .
Hence, by the Compactenss Theorem 12.1 R ∪T has a model, and ∞ must
be interpreted in an element which is bigger than any natural number. The
same model makes true R so it is an alternative model of reals with an
infinite element.
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Examples

Example 12.4
There is a model of reals with infinitesimals.
Let us extend the signature with the new constant k.
Let T = ©

0< k < 1
n+1 : n ∈Nª

.
If F ⊆R ∪T is finite, there is the maximum m for which either¡
0< k < 1

m+1
¢ ∈F or m = 0. Then interpreting k in 1

m+2 , F is valid in the
standard model of reals.
Hence, by the Compactenss Theorem 12.1 R ∪T has a model, and k has to
be an infinitesimal. The same model validates R, so it is an alternative model
of reals with an infinitesimal element.
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Löwenheim-Skolem

Let ℵ0 = |N|. A classical result in Model Theory is

Theorem 12.5 (Downward Löwenheim-Skolem)
Let T be a theory on the signature Σ with just one sort. If T has an infinite
model of cardinality α≥ |Σ| then T has a model of cardinality max (|Σ|,ℵ0).
Proof.
Extend the signature Σ by adding max(|Σ|,ℵ0) new constants ki . Let
T ′ =T ∪ {ki ̸= kj : i ̸= j}.
By the Completeness Theorem 11.2 T ′ has a model of cardinality less or
equal than max(ℵ0, |Σ|).
Conversely, since all the ki must be distinct every model of T ′ must have a
cardinality greater of equal than max(ℵ0, |Σ|).
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Löwenheim-Skolem

Corollary 12.6
Any consistent theory T (on a single sort) such that |T |≤ℵ0 has a model
whose universe has cardinality at most ℵ0.
Proof.
Being consistent T has a model. Either T has an infinite model or it does
not. In the latter case, the result is obtained.
In the former case, by Theorem 12.5 the result follows since the language can
be limited to ℵ using only the symbols appearing in the theory, which form a
finite set by hypothesis.

Note how the Completeness Theorem 11.2 allows to prove a similar but
weaker result, since the model has the cardinality of the formulæ on the
language, which can be bigger than ℵ0 if the signature contains more than ℵ0
symbols.
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Löwenheim-Skolem

Theorem 12.7 (Upward Löwenheim-Skolem)
Let T be a theory on the signature Σ with just one sort. If T has a model of
cardinality α≥ℵ0 then T has a model of any cardinality β≥max(α, |Σ|).
Proof.
Fix any β≥max(α, |Σ|) and extend the signature Σ by adding β new
constants ki , i <β. Let T ′ =T ∪©

ki ̸= kj : i < j <βª
. Clearly, T ′ is a theory on

the extended signature.
Let F ⊆T ′ be any finite subset of T ′. Since it contains only a finite number
of axioms of the form ki ̸= kj , F has a model because the model for T being
infinite allows to validate the axioms ki ̸= kj , and clearly it makes true the
other axioms in F .
Thus by compactness T ′ has a model M and it must contain at least β
distinct elements. But by Theorem 12.5 there is model having exactly β

cardinality, by using the cardinality of the extended Σ as an upper bound.
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Löwenheim-Skolem

Theorem 12.8 (Löwenheim-Skolem)
Let T be a theory on the signature Σ with just one sort. If T has a model of
cardinality α≥ℵ0 then T has a model of each cardinality β≥max(|Σ|,ℵ0).
Proof.
Immediate by combining the upward and downward Löwenheim-Skolem
theorems.

Corollary 12.9
If T is a consistent theory on the signature Σ with just one sort then either T
has a finite model or it has a model for any cardinality greater than
max(|Σ|,ℵ0).
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Discussion

The Compactness Theorem 12.1 is a consequence of the completeness result.
One of its consequences is Proposition 12.2.
Thus, it is impossible to write a first-order theory which captures the notion
of having finite models only. Indeed, any theory T either has finite models
with a limit on their cardinality, or it has at least an infinite model.
Hence, the compactness result reveals a first, intrinsic limit to what can be
expressed in the first-order language.
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Discussion

The Löwenheim-Skolem Theorems provide other limitations to what can be
expressed in a first-order theory.
For example, Corollary 12.6 says that every ‘effective’ and consistent theory
has a model whose cardinality is either finite or ℵ0. Here, by ‘effective’ we
mean really writable, thus at least, with finite or denumerable symbols.
As a concrete instance we get that the theory of real numbers as developed in
any textbook of mathematical analysis, which can be formally rendered as a
first-order theory, has a countable model, which is much smaller than R.
Saying the same thing in another, provocative way, Mathematical Analysis
does not speak about real (or complex) numbers. It speaks about an infinite
set which is much smaller than R or C. So small that it disregards most of the
reals (or complex numbers), which play no rôle in Analysis.
[Analysts are greatly disturbed by this sentence but nevertheless it is true
when we regard Mathematical Analysis as a formal theory!]
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Discussion

Of course, we are investigating formal first-order theories. In this respect, the
Löwenheim-Skolem Theorems say that not only every ‘effective’ theory has a
finite or countable model, but if it has an infinite model, it has a model of any
infinite cardinality.
This has a deep impact. Consider for example a formal and effective theory of
arithmetic. Natural numbers form an obvious model and the theory is
intuitively consistent.
So, by Corollary 12.9 it has models of any infinite cardinality.
In other words, without even writing the formal theory, as far as we
require it to be effective we know that it does not capture only the model of
natural numbers. It must have models for each cardinal above ℵ0.
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Comparing models

Let Σ be a signature with just one sort and let T be a theory.
We have seen that T may have more than one model.
This means that we have a way to distinguish models. From the outside of a
theory this is obvious. But, from the inside?
If M and N are both models for T and they are distinct, we would like to find
a formula δ in the language on Σ which holds in M but is false in N.
The question is: can we always find such a formula?
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Comparing models

Completeness is a property of a formal system which says that whatever is
true in any model, it can be derived.
But there is an alternative notion of completeness which says

Definition 12.10 (Completeness)
A theory T on the signature Σ is complete if for every sentence φ on the same
language, either φ is true in any model of T , or ¬φ is true in any model of T .
Here, by ‘sentence’ we mean a first-order formula with no free variables.
Hence it does not depend on the interpretation of variables, which simplifies
the analysis.
Also we will write T Íφ to say that every model of T makes φ true.
So we have another question: are the two notions of completeness equivalent?
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Comparing models

Example 12.11
The simplest example of complete theory is Th(M)= ©

φ : φ is true in M
ª

with M any model on the signature Σ.
The key in the example is that since we are working in classical logic, every
sentence is either true or false in a model. So given two models M and N, we
can compare the models by comparing Th(M) and Th(N). When these
theories are different we know the models are different too. And there is at
least one sentence δ ̸∈Th(M)∩Th(N), which can be used to distinguish the
models.
But, when they are equal?
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Comparing models

Actually, the answer is simple: if a model M is infinite then the theory Th(M)
must have models of any infinite cardinality beyond the size of the language
by Theorem 12.7.
If we take one of those models, call it N, whose size is greater than the
cardinality of M we know that these models are distinct.
Consider Th(N): since N validates each formula in M, it makes true Th(M),
that is for every φ ∈Th(M) it holds that φ ∈Th(N).
Since every sentence φ in the language on Σ is either in Th(M) or
¬φ ∈Th(M) then Th(M)= Th(N).
So, we may have different models which are indistinguishable by what we can
express in the language.
Our counterexample shows that the models are distinguishable because they
have different cardinality, a fact that cannot be expressed inside a theory.
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Language

The language of the theory of sets is the usual first order language with
equality plus one additional symbol: ∈. The corresponding signature is

〈{S} ;;; {= : S ×S ,∈ : S ×S}〉

Since there is a unique sort we omit sort specifications from the syntax.
The intended meaning is that S stands for the collection of all possible sets
while ∈ denotes membership.
Note how there are no objects apart sets in the universe.
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Language

It is important to distinguish between formal set theory which is the first order
theory we are going to introduce, and informal set theory which is used to
describe the formal theory.
Although the former intends to model the latter, the latter is assumed in the
definition of the former. With this distinction in mind we cannot say that set
theory is constructed out of itself.
As we have already seen set theory admits a countable model, so the
collection of all sets seen ‘from the outside’ has the same cardinality as the
natural numbers. But looking ‘from the inside’, the collection of all sets is
much bigger.
This is just one of the various bizarre phenomena we should expect when
dealing with the formal theory.
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Language

The basic language of set theory is very poor so it is enriched via a number of
definitions which are universally quantified:
■ x not equal to y , x ̸= y abbreviates ¬x = y ;
■ x not in y , x ̸∈ y abbreviates ¬x ∈ y ;
■ x is a subset of y , x ⊆ y abbreviates ∀z .z ∈ x ⊃ z ∈ y ;
■ there is x in y such that A, ∃x ∈ y .A abbreviates ∃x .x ∈ y ∧A;
■ for all x in y , A, ∀x ∈ y .A abbreviates ∀x .x ∈ y ⊃A;
■ for some subset x of y , A, ∃x ⊆ y .A abbreviates ∃x .x ⊆ y ∧A;
■ for every subset x of y , A, ∀x ⊆ y .A abbreviates ∀x .x ⊆ y ⊃A;
■ there is at most one x such that A, ∃∗x .A abbreviates
∀x .∀y .A∧A[y/x ]⊃ x = y where y ̸∈FV(A).
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Classes and sets

Informally a set is a collection of elements. Although this is very intuitive and
helpful, the structure of a set is much more subtle and delicate.
We stipulate that collections of elements are called classes. This is part of the
intended meaning of set theory. Sets in the intended meaning are classes
which behave in a regular way.
As we will see there are classes which cannot be sets, while all sets are also
classes in the intended meaning. Each formal set has an extension, which is
the class representing the collection of its element in the intended model of
the theory. But a set is not its extension, although we would like to say the
converse, that is to every extension corresponds a unique set.
As we will see sets will have properties not shared by classes, e.g., sets have a
cardinality while proper classes have not. These properties are what identify
the structure of sets, and they are what we are allowed to use when proving
properties of sets, or when using sets in our proofs.
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Paradoxes

A very simple theorem we will be able to derive in set theory will be: for any
formula A such that x ̸∈FV(A),

(∃x .∀y .(y ∈ x)=A)⊃ (∃!x .∀y .(y ∈ x)=A) .

It means that when there is a set x whose members are exactly those making
the formula A true then the set x is uniquely defined. In other words the
property A defines the set x .
It is tempting to carry on this result by thinking that any formula A defines a
set. This amounts to assume

∃x .∀y .(y ∈ x)=A

as an axiom schema. This schema is usually called the unrestricted
Comprehension Axiom and it has been used to define sets by Gottlob Frege.
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Paradoxes

Unfortunately the unrestricted Comprehension Axiom is untenable as shown
by Russell’s paradox: take A≡ y ̸∈ y . Then by the axiom we have
∃x .∀y .y ∈ x = y ̸∈ y , and specialising we obtain ∃x .x ∈ x = x ̸∈ x , allowing to
derive ⊥, i.e., showing that the theory of sets is non consistent.
There are many variants of this paradox: we are presenting its formal version.
It is important to understand the key point: the collection of sets making A
true is a class. To be a set it has to show a ‘reasonable’ behaviour. In logical
terms a minimal reasonable behaviour is not to allow to derive a contradiction.
Thus, what the Russell’s paradox tells is
■ there are classes which are not sets;
■ every formula uniquely identifies a class: the elements which make it true.

This class may be proper that is, not a set.
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Paradoxes

Sets are a delicate concept. When we fix a universe which is a set and we do
mathematics within that universe, we do not see the problems sets pose. But
when we consider the totality of sets, things change.
Consider the following reasoning:
1. Let X = {x : x ∈ x ⊃Y }

2. Assume x =X , then (x ∈ x ⊃Y )= (X ∈X ⊃Y )
3. Thus, X ∈X is equivalent to X ∈X ⊃Y
4. So, an immediate deduction yields X ∈X ⊃Y because this is equivalent to

X ∈X ⊃ (X ∈X ⊃Y )
5. the other way around, (X ∈X ⊃Y )⊃X ∈X , so, by the previous step, we

can deduce X ∈X
6. Therefore, Y holds
Since Y can be any formula, fix Y ≡⊥ and set theory becomes
non-consistent. This is known as Curry’s paradox, and step 3 is the wrong
part since it assumes X to be a set.
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Paradoxes

Sets and properties as already seen are linked but different. Consider for
example the hyper-game paradox. Let G be the collection of all games
which can be played by two players by making successive alternate moves. A
game in G is said to be finite if in whatever way the players move, the game
terminates after a finite number of steps. When a game is not finite it is said
to be infinite.
Take tic-tac-toe: it must end at most after 9 moves so it is a finite game.
Define the super-game as the game in which the first player chooses a game
g ∈G , and then the second player starts playing g .
Is the super-game finite?
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Paradoxes

Since the first player may choose an infinite game, the super-game is clearly
infinite. So define a variant: the hyper-game is played like the super-game,
but the first player must choose a finite game.
Since the first player chooses a finite game g then the hyper-game cannot
take more than one move more than the moves to conclude g . But the moves
to conclude g are always finite so the hyper-game is finite.
Hence, the first player may choose the hyper-game as the game to play and
the second player may do the same. Forever. So the hyper-game is infinite.
Thus the first player cannot choose the hyper-game being infinite, and thus
the hyper-game always terminate in a finite number of steps.
The problem here is that the collection of all finite games is a class and we
define the hyper-game as a particular element which depends on the whole
class. This is something we want to do but, as the paradox shows, it cannot
be freely done with classes: a certain amount of ‘regularity’ in the class is
needed to define an element which depends on it.
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Comparing sets

Although many other paradoxes can be formed on sets, most of them require
some knowledge that we have not yet explained.
A few facts, which seem to be paradoxical at the first sight, are of common
use. And they are unavoidable.
Comparing two sets means to establish a correspondence between them. A
function, mapping all the elements of one set in the elements of another does
not say much. But when the function is bijective, we may think that the two
sets are equal except for a renaming of the elements in their extensions. We
write A∼=B to indicate that there is bijective map between the sets A and B.
Intuitively a set A is smaller than a set B when it can be embedded into B
modulo a renaming: formally this intuition is modelled by the existence of an
injective function A→B. Symmetrically A is greater than B when there is a
surjective function A→B.
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Comparing sets

This way of comparing sets is the standard and it works as one expects when
dealing with finite sets. But on infinite sets it reveals that sets are far more
complex objects than we may imagine at a first sight.

Theorem 13.1 (Schröder-Bernstein)
If f : A→B is injective and g : B →A is injective then A∼=B.
Proof. (i)
Let C0 =A \ g(B) and by induction Cn+1 =

©
g(x): x ∈Dn

ª
and

Dn = ©
f (x): x ∈Cn

ª
. Define

h(x)=
(

f (x) if x ∈Cn for some n
g−1(x) otherwise

This definition makes sense as g−1(x) is defined on g(B). ,→
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Comparing sets

,→ Proof. (ii)
Let x ,y ∈A. Suppose h(x)= h(y):
■ if x ∈Cm and y ∈Ck for some m and k then h(x)= f (x)= f (y)= h(y), so

x = y being f injective;
■ if x ̸∈Cn and y ̸∈Cn for any n then h(x)= g−1(x)= g−1(y)= h(y), so

g(g−1(x))= x = y = g(g−1(y));
■ if x ∈Cm for some m and y ̸∈Cn for any n, h(x)= f (x)= g−1(y)= h(y), so

(g ◦ f )(x)= y , that is, y ∈Cm+1 which is impossible.
Thus h is injective. ,→

( 290 )

Comparing sets

,→ Proof. (iii)
We must show that h(A)=B.
Observe that for any n and any z ∈Dn, z = f (x) for some x ∈Cn, so by
definition z = h(x).
Then let z ∈B \

S
n Dn. Evidently, by induction on n, g(z) ̸∈Cn for any n, thus

h(g(z))= g−1(g(z))= z . So h is surjective.

It is surprising how difficult is to prove this result, which is completely
elementary in the finite case.

( 291 )

Comparing sets

Example 13.2
Let P = {2n : n ∈N}. Since f : P →N such that f (x)= x is injective, and
g : N→P such that g(x)= 2x is injective, by Theorem 13.1 we conclude that
P ∼=N.

In general, an infinite set A is such that it is possible to find a proper subset
B ⊂A such that A∼=B. We can even use this property as a definition of being
infinite.
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Comparing sets

Example 13.3
N×N∼=N
Evidently, the function f : N→N×N mapping x 7→ (x ,x) is injective.
Oppositely, the function g : N×N→N defined as
g(x ,y)= (x +y)(x +y +1)/2+y is injective as it is easy to prove. Informally it
counts the pairs using diagonals which justifies the claim of being injective:
the formal proof is just arithmetic.
Thus, by Theorem 13.1 the result follows.

This result can be generalised to arbitrary infinite sets, although the proof
requires some technicalities.
A simpler result, which is immediately obtained by induction, is that Nk ∼=N
for any k > 0.
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Comparing sets

Example 13.4
The collection of finite sequences of naturals N∗ ∼=N
Obviously, the function f : N→N∗ mapping x 7→ {x } is injective.
Oppositely, calling gn : Nn →N the bijection from the Cartesian product of
n≥ 1 copies of N to N, we may define a function h : N∗ →N×N by
h({xi }1≤i≤n)= (n,gn(x1, . . . ,xn)). For n = 0 let h(;)= (0,0).
Evidently h is injective since gn is for each n≥ 1. So the composition g2 ◦h is
injective and the result follows by Theorem 13.1.

Again, the result can be generalised to arbitrary infinite sets, essentially by the
same proof.
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Comparing sets

An application of what has been obtained till now to logic is immediate: let Σ
be a signature with a finite number of symbols. Since the variables of sort s
are in a bijective correspondence with N, the collection of all variables is in
bijection with N.
Then the sequences of symbols given by the function symbols, the parentheses,
the commas, and the variables is in bijection with N. So the collection of all
terms on Σ being an infinite subset of that set, is in bijection with N too.
Analogously, the collection of all formulæ on Σ being an infinite subset of the
collection of sequences of symbols of Σ plus a finite set of logical symbols, is
in bijection with N.
All these result can be easily extended to arbitrary signatures, using the
generalised versions of the previous examples.
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Comparing sets

Example 13.5
℘(N) ̸∼=N.
This result, which specialises a famous Theorem by Cantor, says that the
collection of subsets of N is not in bijection with N. The proof is a classical
masterpiece that introduces a technique called diagonalisation.
We can identify each subset A⊆N with its characteristic function
χA : N→ {0,1}. Suppose that all these functions are in bijection with N. So
we have ℘(N)∼=

©
χAi

ª
i∈N. Observe how each function f : N→ {0,1} uniquely

identifies the subset {x : f (x)= 1}⊆N.
Define ∆ : N→ {0,1} as ∆(x)= 1−χAx (x). Thus ∆ must appear somewhere in
the sequence, i.e., ∆=χAk for some k ∈N. Which is impossible since
χAk (k)=∆(k)= 1−χAk (k) and χAk ∈ {0,1}. Hence the characteristic
functions are not in bijection with N, that is ℘(N) ̸∼=N.
Again, this result can be generalised to any infinite set. As a side effect, since
the functions N→ {0,1} are in evident bijection with the real interval [0,1] we
get that R>N strictly. In other words, infinity is not unique!
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Axiomatic set theory

The axioms of Zermelo-Frænkel set theory are presented and discussed in the
following slides.
As said in the previous lecture, they are deputed to model sets but not classes,
avoiding the formation of paradoxes, which arise when a naive notion of sets
is adopted.
Also, in the background, we already know that formal sets will be bizarre
mathematical objects, in which infinity is not unique. To start analysing this
fact, which proves to be fundamental to sketch and use set theory, we will
introduce the notion of ordinal.
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Axioms: extensionality

Informally a set is uniquely determined by its extension. This fact is captured
by the following axiom:

Axiom (Extensionality)
∀x .∀y . (∀z .(z ∈ x)= (z ∈ y))⊃ x = y.

Proposition 14.1
If x ̸∈FV(A) then ⊢ (∃x .∀y .(y ∈ x)=A)⊃ (∃!x .∀y .(y ∈ x)=A).
Proof.
The formal proof is easy but long to write down. Essentially if z is another set
satisfying ∀y .(y ∈ z)=A, it must be that x = z by extensionality.

The content of the proposition is that whenever the collection of the y ’s
satisfying a formula corresponds to the extension of a set, it identifies a
unique set.
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Axioms: empty set

Axiom (Empty set)
∃x .∀y .y ̸∈ x.

Since by Proposition 14.1 the set x is unique, we will denote it by ; as usual.
This axiom establishes that there is at least one set, the empty one.
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Axioms: pairs

Axiom (Pair)
∀x .∀y .∃z .∀u.(u ∈ z)= (u = x ∨u = y).

This axiom says that given two elements x and y we can form the set z
whose extension contain exactly x and y . Again, we adopt the standard
notation {x ,y } since by extensionality a pair set is uniquely identified.
Note that when x = y , we have singletons, {x }.
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Axioms: union

Axiom (Union)
∀x .∃y .∀z .(z ∈ y)= (∃u ∈ x .z ∈ u).

The axiom says that given a set x , we can form another set y whose
extension is the collection of elements in the members of x . Since as usual,
the set y is unique by extensionality, we adopt the standard notation Sx for
it, or also, we write {z : ∃u ∈ x .z ∈ u}, or also S

u∈x u. When x is a pair {A,B}
we write A∪B for y .
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Axioms: infinity

Axiom (Infinity)
∃x .; ∈ x ∧∀y .y ∈ x ⊃ y ∪ {y } ∈ x.

In general we will write Succ(x) for x ∪ {x }, and we will call it the successor of
x . The axiom says that there is at least one set which is non empty
containing the empty set and which is closed under the successor operation.
Not immediately but it is possible to formally prove that there is a unique set
that satisfies the axiom minimally, that is, its extension is minimal among all
the collections containing the empty set and closed under the successor
operation. This set is in biijection with the set of natural numbers. We will
denote this minimal set as ω.
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Axioms: power set

Axiom (Power set)
∀x .∃y .∀z .(z ∈ y)= (z ⊆ x).

The power set of x has as extension the collection of all the subsets of x . We
will denote it as ℘(x), or also {z : z ⊆ x }.
Working formally by extensionality we get that if ℘(x)= x then
∀y ∈℘(x).y ∈ x , but x ∈℘(x) so x ∈ x . Thus, as this behaviour is something
we want to ban from our set theory, we want to introduce an axiom which
prevents this phenomenon to happen. The consequence will be that ℘(x) ̸= x
for every set x .
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Axioms: regularity

Axiom (Regularity)
∀x .x ̸=;⊃∃y ∈ x .¬∃z .z ∈ x ∧z ∈ y.

Similarly to extensionality and differently from the preceding axioms,
regularity states a property of all non empty sets instead of providing a way to
construct new sets. Precisely, it says that each non empty set x contains an
element y which is disjoint from x .
It is a bit technical to show and beyond the aims of this course, but the
axioms prevents the construction of circular chains of membership, banning
the existence of a set x satisfying x ∈ x , or x ∈ y ∈ x , . . .
Thus paradoxes like the hyper-game and Russell’s cannot be constructed in
the framework of formal set theory.
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Axioms: separation

Axiom (Separation)
Let P be a formula such that FV(P) = {u} then
∀x .∃y .∀z .(z ∈ y)= (z ∈ x ∧P[z/u]).

Properly speaking separation provides an axiom schema, i.e., a family of
axioms one for each possible instance of P.
It says that given a set x , the collection of elements in x satisfying P is the
extension of a set y .
An immediate application is the construction of intersection: A∩B is defined
as the set formed by separation from A applying the property P(u) = u ∈B.
Another immediate application is the construction of subsets: {x ∈A : P} is
exactly the result of applying separation to A with the property P.
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Axioms: replacement

Axiom (Replacement)
Let P be a formula such that FV(P) = {x ,y } then
(∀x .∃!y .P)⊃∀z .∃u.∀y .(y ∈ u)= (∃x ∈ z .P).

It says that whenever P behaves like a function mapping x to y , the image of
any set x through P is a set.
Again, replacement is an axiom schema whose instance are defined as soon as
P is given.
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Further definitions

With these fundamental definitions together with their justifying axioms, we
can easily define the usual operations on sets like difference, Cartesian
product, sequence, . . .
The set theory developed so far is interesting by itself: it is called ZF, for
Zermelo-Frænkel, its creators.
Although set theory is an important branch of mathematical logic, its
development is far beyond the aim of this course and involves some of the
most stunning results of XXth century.
As a matter of fact, the collection of axioms we have shown is enough to
develop most of elementary mathematics, although in the following we will
introduce another couple of axioms. In particular the so-called Axiom of
Choice has a special rôle as it allows to prove some fundamental results in
algebra, although it is also responsible for a few theorems which are really
counter-intuitive like the Tarski-Banach Theorem.
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Well orders

Definition 14.2
An order 〈A;≤〉 is total when for each pair x ,y ∈A either x ≤ y or y ≤ x .

Definition 14.3
An order 〈A;≤〉 is a well order when every non empty subset S ⊆A has a
minimum, i.e., there is m ∈ S such that for every x ∈ S, m≤ x .

Fixed a set A it is always possible to add a relation to it so to make it an
order, e.g., take ≤ to be equality. Also, it is immediate to define an order
relation on A which makes it a total order, e.g., take ≤ to be the set A×A.
But it is not clear whether it is possible to define an order relation which
makes it a well order.
However, a well order, as we will see soon, allows for an induction principle
that is a very powerful instrument to reason about the set and its properties.
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Ordinals

Definition 14.4
A set S is an ordinal if and only if 〈S;∈∪=〉 is a total well order and for each
x ∈ S, x ⊆ S.
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Ordinals

Proposition 14.5
Every ordinal S is totally well ordered by inclusion.
Proof.
Consider the structure 〈S;⊆〉. Clearly, ⊆ forms an ordering relation. Also,
being S an ordinal, for each A,B ∈ S,
■ A=B or
■ A ∈B, which implies for all x ∈A, x ∈B by transitivity, i.e., A⊆B, or
■ B ∈A, which implies by the same argument B ⊆A.

So, the structure is totally ordered.
Moreover being S an ordinal, for each non empty A⊆ S there is m ∈A such
that for all x ∈A either m = x or m ∈ x , that is, m⊆ x . So, A is well ordered
by inclusion, too.
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Ordinals

Proposition 14.6
If S is an ordinal and x ∈ S then x is an ordinal and S =S

x∈S x.
Proof.
Immediate since x ∈ S implies x ⊆ S being S an ordinal.

Proposition 14.7
The collection of all ordinals is not a set.
Proof.
Suppose Ord= {x : x is an ordinal} is a set. Then it is immediate to check
that Ord must be an ordinal. So Ord ∈Ord contradicting regularity.

Admitting Ord to be a set generates a contradiction. This argument is called
the Burali-Forti paradox.
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Transfinite induction

Proposition 14.6 intuitively justifies

Principle 14.8 (Transfinite induction)
If P is a property and assuming that P holds for every ordinal less than α, we
can prove that P holds for α, then P holds for any ordinal.

This principle can be relativised to all the ordinals less than some fixed ordinal
β, leading to

Principle 14.9 (Transfinite induction)
If P is a property and assuming that P holds for every ordinal less than α<β,
we can prove that P holds for α, then P holds for any ordinal less than β.
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Transfinite induction

We have to prove that transfinite induction is a sound principle, that is, it
does not allow to derive false consequences from true statements.

Proposition 14.10
If P is a property and assuming that P holds for every ordinal less than α, we
can prove that P holds for α, then P holds for any ordinal.
Proof.
Assume that if P(x) is true for every ordinal x ∈α then P(α) holds. And by
contradiction assume there is an ordinal β for which P(β) is false.
Since β is an ordinal, it is well-ordered. Then there exists the minimal ordinal
γ≤β such that P(γ) is false.
Being γ minimal, for every x ∈ γ, P(x) is true. So by hypothesis P(γ) holds,
which contradicts the existence of γ, and thus, the existence of β.
The relativised principle is an immediate corollary by considering the property
β≤ x ∨P(x).
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Transfinite induction

Since ; is an ordinal and whenever x is an ordinal, its successor x ∪ {x } is an
ordinal too, we can classify ordinals in three classes:
■ the empty ordinal ;;
■ the successor ordinals x such that there is an ordinal y for which

x = y ∪ {y };
■ the limit ordinals x , which are those ones not falling in the previous classes.

These are characterised by x =S
y<x y .

It is worth remarking that the set of natural numbers is in bijection with ω,
the ordinal containing ; and closed under the successor operation.
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Transfinite induction

Principle 14.11 (Transfinite induction)
If P is a property and
■ if P holds for ;;
■ supposing P holds for an ordinal x then P holds for the successor of x ;
■ supposing P holds for any ordinal y < x with x a limit ordinal then P holds

also for x;
we can conclude that P holds for any ordinal. Of course, as before, the
principle can be relativised to the ordinals less than β.

Transfinite induction is a powerful instrument to reason about infinite sets:
we already used it to prove the completeness theorem for first order logic.
Also, note how the usual induction principle on natural numbers is equivalent
to the transfinite induction principle relativised to ω.
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Transfinite induction

Proposition 14.12
If α and β are ordinals and α∼=β monotonically then α=β.
Proof.
Let f : α→β be a monotone bijection between the ordinals whose is inverse is
monotone. Consider the property P(x)≡∀u ∈Ord.x ∼= u ⊃ x = u.
By transfinite induction on α we show P(α).
If x ∈α then f (x) ∈β, but also x ⊆α since α is an ordinal. The restriction of
the bijection f to x is a monotone bijection so f (x)∼= x and by induction
hypothesis f (x)= x , thus x ∈β. Hence, α⊆β.
By transfinite induction on β we show P(β).
If y ∈β then f −1(y) ∈α but also y ⊆β since β is an ordinal. The restriction
of the bijection f −1 to y is a monotone bijection so f −1(y)∼= y , and by
induction hypothesis f −1(y)= y , thus y ∈α. Hence, β⊆α.
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Ordinal arithmetic

Definition 14.13 (Ordinal addition)
Let α and β be ordinals then α+β is the unique ordinal such that there is
h : S →α+β biijective and monotone, i.e., such that x ≤ y in S implies
h(x)≤ h(y) in α+β where S = 〈α⊔β;≤〉, the disjoint union of α and β, and
x ≤ y if and only if x ≤ y in α, or x ≤ y in β, or x ∈α and y ∈β.

On finite ordinals, i.e., on natural numbers it is just arithmetical addition. But
on infinite ordinals, it is not commutative. For example 1+ω=ω but
ω+1 ̸=ω since ω+1 has a maximum, while ω has not.
The intuition one should keep in mind is that α+β is α followed by β.
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Ordinal arithmetic

We state without proof the following properties of ordinal sum.

Proposition 14.14
Let α, β, and γ be ordinals. Then
1. α+ (β+γ)= (α+β)+γ;
2. α+0=α;
3. α+1= Succ(α);
4. α+Succ(β)= Succ(α+β);
5. if β is a limit ordinal then α+β=S

ξ<β(α+ξ).

( 321 )

Ordinal arithmetic

Definition 14.15 (Ordinal multiplication)
Let α and β be ordinals then αβ is the unique ordinal such that there is
h : S →αβ biijective and monotone where S = 〈Fi∈βα;≤〉 with x ≤ y in S
when either x ∈αi and y ∈αj with i < j , or x ,y ∈αi and x ≤ y in α.

On finite ordinals it is just arithmetical multiplication, but on infinite ordinals
it is not commutative. For example 2ω is the total order formed by ω copies
of 0< 1. So 2ω=ω by choosing h(x)= 2i +x when x ∈ 2i . On the contrary,
ω2=ω+ω ̸=ω since there is a limit ordinal, ω inside ω+ω while there is none
in ω.
The intuition behind ordinal multiplication is that αβ is the ordinal consisting
of the sequence composed by β copies of α.
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Ordinal arithmetic

We state, without proving

Proposition 14.16
Let α, β, and γ be ordinals. Then
■ α(βγ)= (αβ)γ;
■ α0= 0;
■ α1=α.
■ αSucc(β)=αβ+α;
■ If β is a limit ordinal, αβ=S

ξ∈β(αξ);
■ α(β+γ)=αβ+αγ.

Note how most of these properties do not commute when ordinals are infinite.
For example it is possible that (β+γ)α ̸=βα+γα: indeed
(1+1)ω= 2ω=ω ̸= 1ω+1ω=ω+ω.
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Comparing sets, again

Definition 15.1
For any pair of sets A and B, A⪯B if and only if there is an injective function
A→B. Also, we write A≈B when there is a bijective function A→B. Finally
A≺B when A⪯B but B ̸⪯A.

Proposition 15.2
The relation ⪯ is reflexive and transitive, while ≈ is an equivalence relation.
Proof.
Since the identity function is bijective, x ⪯ x and x ≈ x . Since the composition
of injective (bijective) functions is injective (bijective), ⪯ (≈) is transitive.
Finally, since the inverse of a bijective function is bijective, ≈ is
symmetric.

Theorem 15.3 (Schröder-Bernstein)
If A⪯B and B ⪯A then A≈B.
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Cardinals

Definition 15.4 (Cardinality)
If the set A can be well ordered, |A|, the cardinality of A is the least ordinal α
such that A≈α.
It can be shown that if A can be well ordered, it holds that A≈α for some
ordinal α which depends on the well ordering. Forming the set of ordinals
{α : A≈α} it has a minimum, so the definition of cardinality is well-founded.

Definition 15.5 (Cardinal)
An ordinal α is a cardinal if and only if α= |α|.
Equivalently, the ordinal α is a cardinal whenever for all β ∈α, β ̸≈α.
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Cardinals

Proposition 15.6
Let α and β be ordinals. If |α|≤β≤α then |α| = |β|.
Proof.
Since β⊆α, β⪯α and α≈ |α|⊆β, so α⪯β. Then α≈β by Theorem 15.3.
Thus |α|≈α≈β≈ |β| so |α| = |β| by Proposition 14.12.

Proposition 15.7
If n ∈ω then n ̸≈ n+1 and for every ordinal α, if α≈ n, then α= n.
Proof.
By induction on n it follows immediately that n ̸≈ n+1. The second part is an
instance of Proposition 15.6 by noting that |n| = n.
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Cardinals

Corollary 15.8
Each n ∈ω is a cardinal and ω is a cardinal.

Definition 15.9
A set A is finite if and only if |A| <ω; A is countable if and only if |A|≤ω.
Infinite means not finite, and uncountable means not countable.
Note that if A≈ n ∈ω then A can be well ordered so |A| is defined. This is a
general fact: when A≈α with α an ordinal, then A can be well ordered by the
relation which is the image of ⊆ through the bijection α→A. Hence, |A| is
defined.
If A cannot be well ordered, which is possible in the framework described so
far, A is both infinite and uncountable.
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Cardinal arithmetic

Definition 15.10
Let α and β be cardinals. Then α⊕β= |α⊔β| and α⊗β= |α×β|.
Note how cardinal addition and cardinal product are different from ordinal
addition and product.

Proposition 15.11
Cardinal addition and product are associative and commutative operations
with units.
Proof.
Since α⊔β≈β⊔α and α×β≈β×α, commutativity follows. Also,
associativity derives from the corresponding property of ⊔ and ×, up to ≈. It
is immediate to check that 0 and 1 are the units of addition and
multiplication, respectively.

( 331 )

Cardinal arithmetic

Proposition 15.12
Let α and β be cardinals. Then
1. |α+β| = |β+α| =α⊕β;
2. |αβ| = |βα| =α⊗β.

Proof.
Immediate unfolding the definitions.

Proposition 15.13
For n,m ∈ω, n⊕m = n+m and n⊗m = nm.
Proof.
By induction on m ∈ω.
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Cardinal arithmetic

Proposition 15.14
Every infinite cardinal is a limit ordinal.
Proof.
If α is an infinite cardinal and α=β+1, since 1+β=β,
α= |α| = |β+1| = |1+β| = |β|, a contradiction.

We state without proving

Proposition 15.15
If α is an infinite cardinal, α⊗α=α.

Corollary 15.16
Let α and β be infinite cardinals. Then α⊕β=α⊗β=max{α,β}.
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Cardinal arithmetic

Theorem 15.17 (Cantor)
For any set A, A≺℘(A).
Proof.
Clearly, A⪯℘(A) by the mapping x ∈A 7→ {x }.
Suppose there is a bijective map f : A→℘(A), and define
B = ©

x ∈A : x ̸∈ f (x)
ª
, which is a set by the Comprehension Axiom.

Since B ⊆A, B ∈℘(A), thus there is a y ∈A such that f (y)=B being f
surjective.
Now, if y ∈B then y ∈ f (y)=B, which is impossible.
Conversely, if y ̸∈B = f (y) then y ∈B by the definition of B, another
contradiction.
Thus f cannot be surjective.
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Hierarchy of cardinals

We state without proving that

Proposition 15.18
For every cardinal α there is a cardinal β such that α<β strictly.

Definition 15.19
For any cardinal α, α+ is the least cardinal strictly greater than α. We say
that the cardinal β is a successor cardinal when β=α+ for some cardinal α.
We say that the cardinal β is a limit cardinal when β>ω and β is not a
successor cardinal.
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Hierarchy of cardinals

Definition 15.20
By transfinite induction we define the map ℵ from ordinals to cardinals:
■ ℵ0 =ω;
■ ℵα+1 = (ℵα)+;
■ for γ a limit ordinal, ℵγ =

S
α<γℵα.

By transfinite induction on the ordinal α one shows

Proposition 15.21
Each ℵα is a cardinal and every infinite cardinal equals ℵα for some α. Also,
the map ℵ is monotone, ℵα is a limit cardinal if and only if α is a limit
ordinal, and ℵα is a successor cardinal exactly when α is a successor ordinal.
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Hierarchy of cardinals

Proposition 15.22
ℵ1 ≤℘(ℵ0).
Proof.
By Proposition 15.21 ℵ0 <ℵ1. By Theorem 15.17 ℵ0 <℘(ℵ0). By definition
ℵ1 is the least cardinal greater than ℵ0, so ℵ1 ≤℘(ℵ0).
This result can be easily extended to any ordinal α.
Since, although we are not going to prove this fact, the collection of functions
from the cardinal α to 2, the finite cardinal composed by two distinct
elements, has the same cardinality as ℘(α), the notation 2α =℘(α) is
common.
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Axiom of Choice

We have mentioned the Axiom of Choice many times. In most cases we said
that this principle allows to say that any set can be well ordered, or
equivalently that any set is in bijection with a cardinal.

Axiom (Choice)
For any non empty family {Xi }i∈I of non empty sets such that Xi ∩Xj =; for
any i , j ∈ I, i ̸= j , there exists a function f : I →S

i∈I Xi such that f (i) ∈Xi for
every i ∈ I.

The meaning is that, whenever we are given such a family, we have the ability
to make a choice that simultaneously picks an element from each set.
Although this principle seems very natural it cannot be derived from the ZF
set theory. So when we adopt this axiom, we will speak of ZFC, the
Zermelo-Frænkel set theory with the Axiom of Choice.
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Axiom of Choice

As a matter of fact, when I, the index set of the family, is finite the Axiom of
Choice can be derived from ZF. But when I is infinite, this is not possible.
Some important results in Mathematics require the Axiom of Choice to be
proved: as a small collection of examples take
■ every non empty vector space has a base;
■ every field has an algebraic closure, which is unique modulo isomorphisms;
■ the notion of adjunction in category theory;
■ the compactness theorem in first order logic.
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Axiom of Choice

But the Axiom of Choice allows to prove critical results, like the the
Tarski-Banach theorem.
Its geometric form is: given a sphere S in the usual Euclidean space, it is
possible to divide it into a finite set of pieces so to obtain, using only
rotations and translations, a reassembling of those pieces in two spheres both
identical to S.
Of course, this seems to be impossible since we consider pieces which are
measurable, or if you prefer, they possess a volume. On the other hand, if we
take pieces, i.e., subspaces of the sphere for which the notion of volume is
meaningless, the above composition becomes possible. In the proof the pieces
are constructed using the Axiom of Choice.
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Axiom of Choice

There a number of equivalent formulation of the Axiom of Choice: the most
common and useful ones are
■ the Well Ordering Theorem
■ the Zorn Lemma
■ the Hartog’s Theorem
■ the Cartesian product of a family {Xi }i∈I of non empty sets, is non empty.
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Well ordering theorem

Theorem 16.1 (Well ordering)
For any set X, X ≈ |X |.
Proof.
By the Axiom of Choice there is function c : ℘(X ) \ {;}→S

℘(X )=X such
that for every non empty S ⊆X , c(S) ∈ S.
By transfinite induction we define a bijection s between X and some ordinal
α: assuming s(β) has been defined for all β ∈α, if X \

©
s(β): β ∈αª ̸=; then

s(α)= c (X \
©
s(β): β ∈αª

). We note that the construction must eventually
stop otherwise X would be in bijection with a proper class, the collection of
all ordinals. And moreover s is a bijection as it is immediate to see. By
definition |X | is the least ordinal which is in bijection with X , and we know
that there is one, α.
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Well ordering theorem

Assuming the Well Ordering Theorem as an axiom we can prove the Axiom of
Choice: let F be a non empty family of non empty, pairwise disjoint sets.
Consider S

X∈F X : by the Well Ordering Theorem for each X ∈F , X ≈ IX for
some ordinal IX , that is, there is gX : IX →X bijective.
Then we can define a choice function f : F →S

C∈F X as f (X )= gX (;).
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Zorn lemma

Theorem 16.2 (Zorn Lemma)
If 〈X ;≤〉 is a non empty order such that every proper ordered subset has an
upper bound then 〈X ;≤〉 contains a maximal element, i.e., an element which
is not smaller than any other element in X.

Theorem 16.3 (Hartog)
If A and B are two sets it holds that either |A|≤ |B| or |B|≤ |A|.

Although we are not going to prove these results, they shed some light to the
meaning of the Axiom of Choice: indeed, they say that the notion of
cardinality takes the usual, intuitive meaning only when we assume that
principle to hold.
For this reason when no set theory is specified usually ZFC is intended.
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Continuum Hypothesis

Another axiom which is commonly considered in the theory of sets is the
so-called Continuum Hypothesis:

Axiom (Continuum Hypothesis)
ℵ1 = 2ℵ0 .

It admits an obvious generalisation:

Axiom (Generalised Continuum Hypothesis)
ℵi+1 = 2ℵi for every ordinal i .

Although the generalised Continuum Hypothesis implies the plain version the
converse does not hold. And both the versions are independent from ZFC,
that is, they cannot be proved from the axioms of ZFC nor it can be proved
them to be false.
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Continuum Hypothesis

While the Axiom of Choice justifies the intuitive notion of cardinality, the
(generalised) Continuum Hypothesis is more technical and not easy to accept.
In fact, assuming the Continuum Hyothesis the collection of all sets becomes
a quite regular structure. On the contrary assuming the Continuum
Hypothesis to be false, the collection of all sets provides a very rich universe.
Intuition does not help: the effects of the Continuum Hypothesis are sensible
for large sets and the trade between regularity and wealth becomes difficult.
In the common practice of higher set theory, which is far beyond the scope of
this course, the Continuum Hypothesis is generally assumed not to hold,
although some weaker regularity conditions may be considered.
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What is a set?

As we said in the beginning the notion of set is not simple.
The intuitive notion of a set as a collection of elements does not work because
of Russell’s paradox. So, formal theories like ZFC have been introduced.
In those theories a large number of principles, like the Axiom of Choice or the
Continuum Hypothesis, are admissible but not provable: they are consistent
with the theory but also their negation is consistent with it.
So, at least from the formal point of view we do not know exactly what is a
set. We have a variety of structures (theories if you prefer) that provide a
reasonable notion of set. In some of these structures we are able to prove
results which are difficult to accept, like the Tarski-Banach Theorem. But
avoiding the principles underlying these structures, like the Axiom of Choice,
we loose some basic, intuitive notion like the cardinality of a set.
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Motivation

Computability theory is the branch of logic which studies the notion of
‘computation’. Generally, it is considered in the borderline between
mathematics and theoretical computer science, but at least historically, it has
been the part of logic from which computer science was born.
From a mathematical point of view describing what can be really computed is
an essential part of the XXth century’s mathematics. Consider the notion of
algorithm and how fundamental it revealed in many fields.
For logicians computability theory is an essential ingredient to understand the
reasons behind constructive mathematics. But it is also the fundamental tool
to prove the results about the limit of formal reasoning.
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Computable functions

Computability theory aims at describing the functions N→N which can be
effectively calculated.
We note how the vast majority of functions from naturals to naturals cannot
be calculated. Indeed if we think that calculation is a process which
mechanically transforms the argument of a function in its result, we have to
pose a few limits on this process:
■ it must take a finite amount of time;
■ it must operate on a finitely generated formal language;
■ it must rely on a finite description of the process which precisely describes

the steps to be performed.
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Computable functions

At least we have a language on a finite alphabet, which is used to describe
the process. No matter how we interpret the language we know that the set
of all the possible procedures is contained in the collection of finite sequences
of symbols in the alphabet. So, the cardinality of the language is at most ℵ0
since the alphabet is finite. It is evident that it is at least ℵ0 as we may write
an infinite amount of procedures. But the cardinality of the set of functions
from N to N is 2|N| = 2ℵ0 , which is strictly greater than ℵ0. So most functions
are not computable.
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Computable functions

There are many ways to describe computations. For our purposes, which are
not aimed at studying computations but rather using the computable
functions to reason about what can be effectively proved inside a formal
system, we will use partial recursive functions.
In fact, we admit a computation may not terminate, hence partial functions,
in which non termination is modelled as the function being undefined for the
non terminating input.
Instead of using some abstract machine which ‘performs’ the computation we
will directly define computable functions as the class of functions that can be
written in a special form. Although it is not immediately clear that this class
contains all the computable functions, it is best suited to application in logic.
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Primitive recursive functions

Definition 17.1 (Primitive recursive functions)
A function f : Nk →N is primitive recursive when
1. f is the zero function 0(n)= 0 for all n ∈N;
2. f is the successor function succ(n)= n+1 for all n ∈N;
3. f is a projection function Uk

i (n1, . . . ,nk)= ni with k ≥ 1, 1≤ i ≤ k;
4. f is obtained by substitution: if g ,h0, . . . ,hm are primitive recursive

functions, f (n1, . . . ,nk)= g (h0(n1, . . . ,nk), . . . ,hm(n1, . . . ,nk));
5. f is obtained by primitive recursion: if g and h are primitive recursive

functions, f (n1, . . . ,nk ,0)= g(n1, . . . ,nk) and
f (n1, . . . ,nk ,m+1)= h(n1, . . . ,nk ,m, f (n1, . . . ,nk ,m)).

It is clear that primitive recursive functions are computable. It is also evident
that there are computable functions which are not primitive recursive: for
example the function everywhere undefined.
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Primitive recursive functions

Example 17.2
The identity function id(x) = x is primitive recursive: id=U1

1 .

Example 17.3
The constant function k(x)= k is primitive recursive. Indeed by induction on
k, if k = 0, 0 is primitive recursive by definition; if k = k ′+1, k = succ◦k ′ by
substitution and k ′ is primitive recursive by induction hypothesis.

Example 17.4
Addition, multiplication and exponentiation are primitive recursive.

n+0= id(n) n ·0= 0(n)

n+ (m+1)= succ
³
U3

3 (n,m,n+m)
´

n · (m+1)=m+0(n)+m ·n
n0 = 1(n)

nm+1 = n ·1(m) ·nm

Note how 00 = 1, which sounds odd.
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Primitive recursive functions

Example 17.5
The predecessor function defined by

pred(n)=
(

n−1 when n > 0
0 otherwise

is primitive recursive: pred(0) = 0(0), and pred(n+1)=U2
1 (n,pred(n)).

Example 17.6
The recursive difference defined by

m .−n =
(

m−n if m≥ n
0 otherwise

is primitive recursive: m .−0=m and m .− (n+1)= pred(m .−n).
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Primitive recursive functions

Example 17.7
The absolute difference |m−n| is primitive recursive:

|m−n| = (m .−n)+ (n .−m) .

Example 17.8
The sign function defined by

sg(n)=
(

0 if n = 0
1 otherwise

is primitive recursive: sg(0)= 0(0), and sg(n+1)=U2
2 (n,1(n)).

( 361 )

Primitive recursive functions

Example 17.9
Integer division and the remainder function are primitive recursive: write
x/y = d(y ,x) and x mod y = r(y ,x), then

r(n,0)= 0
r(n,m+1)= sg(n .− succ(r(n,m))) · succ(r(n,m)) ,

and

d(n,0)= 0
d(n,m+1)= d(n,m)+ sg(n .− succ(r(n,m))) .
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Primitive recursive functions

Example 17.10
The integer logarithm is primitive recursive:

logb(0)= 0

logb(n+1)= logb(n)+ sg
³
succ(n) .−bsucc(logb(n))

´
.
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Primitive recursive functions

There are functions which are computable but not primitive recursive.

Definition 17.11 (Ackermann)
The Ackermann’s function A is defined as

A(m,0)=m+1
A(0,n+1)=A(1,n)

A(m+1,n+1)=A(A(m,n+1),n) .

To give an impression: A(0,0)= 1, A(1,1)= 3, A(2,2)= 7, A(3,3)= 61, but

A(4,4)= 2265536
.

The function N→N given by n 7→A(n,n) can be shown to grow faster than
any primitive recursive function, so it is not primitive recursive.
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Partial recursive functions

Definition 17.12 (Partial recursive functions)
A partial function f : Nk →N is recursive when
1. f is the zero function 0(n)= 0 for all n ∈N;
2. f is the successor function succ(n)= n+1 for all n ∈N;
3. f is a projection function Uk

i (n1, . . . ,nk)= ni with k ≥ 1, 1≤ i ≤ k;
4. f is obtained by substitution: if g ,h0, . . . ,hm are partial recursive functions,

f (n1, . . . ,nk)= g (h0(n1, . . . ,nk), . . . ,hm(n1, . . . ,nk));
5. f is obtained by primitive recursion: if g and h are partial recursive

functions, f (n1, . . . ,nk ,0)= g(n1, . . . ,nk) and
f (n1, . . . ,nk ,m+1)= h(n1, . . . ,nk ,m, f (n1, . . . ,nk ,m));

6. f is obtained by minimalisation: if g is a partial recursive function, then
f (n1, . . . ,nk)=µm. (g(n1, . . . ,nk ,m)= 0), with µm.P(m)=m0 if and only if
P(m0) holds and for all m <m0, P(m) does not.

We will speak of recursive functions when we will consider only computable
total functions.
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Partial recursive functions

Definition 17.13
Let S be a set and R a relation. The characteristic functions of S and R are
given by

χS(x)=
(

1 if x ∈ S
0 if x ̸∈ S

χR(x1, . . . ,xn)=
(

1 if (x1, . . . ,xn) ∈R
0 otherwise

We say that S or R is recursive when χS or χR are total recursive functions.
We say they are primitive recursive when the corresponding characteristic
functions are.

Example 17.14
The relation ≤⊆N×N is primitive recursive: χ≤(n,m)= 1 .− sg(n .−m).
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Partial recursive functions

Example 17.15
If P and Q are (primitive) recursive relations on Nk , then so are ¬P, P ∧Q,
and P ∨Q.

χ¬P(x1, . . . ,xk)= 1 .−χP(x1, . . . ,xk)
χP∧Q(x1, . . . ,xk)=χP(x1, . . . ,xk) ·χQ(x1, . . . ,xk)
χP∨Q(x1, . . . ,xk)= sg(χP(x1, . . . ,xk)+χQ(x1, . . . ,xk)) .

Example 17.16
Every finite set is primitive recursive.

Example 17.17
If R and S are primitive recursive subsets of N, so are N\R, R ∩S, and R ∪S.

( 367 )

Partial recursive functions

Proposition 17.18
If R(n1, . . . ,nk ,m) is a recursive relation, then f : Nk →N defined by

f (n1, . . . ,nk)=µm.R(n1, . . . ,nk ,m)

i.e., the least m such that R(n1, . . . ,nk ,m) holds, is partial recursive.
Proof.
Immediate by noting that f (n1, . . . ,nk)=µm. (χ¬R(n1, . . . ,nk ,m)= 0).

Church-Turing Thesis
A function f : Nk →N is computable exactly when f is partial recursive.
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Universal function

Theorem 17.19 (Enumeration)
There is a partial recursive function e(x ,y) that enumerates all the partial
recursive functions, that is, defining φx (y)= e(x ,y),

©
φx

ª
x∈N is the collection

of all the partial recursive functions.
Proof. (i)
In the first place, we note that since for any k ∈N, Nk ∼=N and the bijection is
computable, we may safely reduce to enumerate the computable functions
N→N.
Partial recursive functions can be coded as naturals:
■ [0]= 2;
■ [succ]= 3
■ [Uk

i ]= 5 ·17k ·19i ;
■ substitution:

[g (h0(n1, . . . ,nk), . . . ,hm(n1, . . . ,nk))]= 7 ·17[g ] ·19[h0] · · · · ·p[hm]
7+m, with©

pi
ª
i∈N the sequence of prime numbers; ,→
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Universal function

,→ Proof. (ii)
■ primitive recursion: [f ]= 11 ·17[g ] ·19[h];
■ minimalisation: [f ]= 13 ·17[g ].

The coding is injective thus invertible thanks to the unique factorisation in
primes of any natural number. Moreover, it is computable and the inverse is
computable, too. Precisely, the coding is primitive recursive, as it is
immediate to check.
Defining ⊥ as the partial function which is everywhere undefined, we can
invert the [_] coding:

φn =
(

f if there is f such that [f ] = n
⊥ otherwise

Since ⊥(x)=µm.(1(x)= 0) the decoding is computable.
Then, e(x ,y)=φx (y). It enjoys the enumeration property by
construction.
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Universal function

Proposition 17.20
There is no {fx }n∈N of all total computable functions which admits an
enumeration function e(x ,z)= fx (z).
Proof.
Consider the function h(x)= fx (x)+1. It is total since each fx is.
Assume there is a recursive function e enumerating {fx }n∈N. Then
h(x)= e(x ,x)+1, so h is recursive.
But h also occurs in {fx }n∈N, so there is k ∈N such that fk = h.
Thus h(k)= e(k ,k)+1= fk(k)+1= h(k)+1 hence 0= 1, a contradiction.
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Universal function

Theorem 17.21
Let m,n≥ 1. Then there is a computable function Sm

n : Nm+1 →N such that

fα(x1, . . . ,xm,y1, . . . ,yn)= fSmn (α,x1,...,xm)(y1, . . . ,yn) .

Although we will not prove the theorem we want to remark its meaning: it
shows that considering some arguments as parameters is an admissible
operation in the computational world.
We can start the study of computable functions by considering an
enumeration of them which has a couple of properties: being computable, and
satisfying the Sm

n theorem. Then

Theorem 17.22 (Turing, 1936)
There is a computable partial function U : N2 →N such that fn(x)=U(n,x).
Such a function is called universal and it is the first computer. But this is
another story. . .
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Fixed points

Theorem 17.23 (Kleene)
If f is a computable partial function then exists k ∈N for which φf (k) =φk in
any good enumeration of the partial recursive functions.
Proof.
Let h(x)=φx (x). This partial function is computable because it can be
written as h(x)=U(x ,x). Then f ◦h is computable too. So, f ◦h =φe for
some e ∈N.
Therefore φf (h(e)) =φφe(e) =φh(e). Thus k = h(e) is the sought fixed
point.
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λ-calculus

The λ-calculus is a family of formal systems based on Alonzo Church’s work
in the 1930s. These systems are deputed to describe computable functions
using the simplest syntax. Surprisingly not only they describe computable
functions, but when equipped with types they show a hidden link between
logic and computability.
In this lectures, we want to introduce the λ-calculus and its simplest typed
version. Our aim is to illustrate the general aspects of the theory and to
derive a few results we will use in the following lessons.
In many cases we will avoid proving all the results we will introduce. This is
done on purpose: the simplicity of the formal system has as a natural
counterpart a deep and complex technical development. Although this
technical part has many pearls, which shed light to some important aspects of
computability, it lies beyond the aims of this course.
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λ-term

Definition 18.1 (λ-term)
Fixed a set V of variables, which has to be both infinite and recursive, a
λ-term is inductively defined as:
■ any x ∈V is a λ-term and FV(x)= {x };
■ if M and N are λ-terms, so is (M ·N) called application and

FV(MN)= FV(M)∪FV(N);
■ if x ∈V and M is a λ-term, so is (λx .M) called abstraction and

FV(λx .M)= FV(M) \ {x }.
The set FV(M) is called the set of free variables in M and the variables in M
not occurring in FV(M) are said to be bound.

Example 18.2
(λx .x) is a λ-term with no free variables representing the identity function.
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λ-term

As usual, to simplify notation we introduce a number of conventions:
■ outermost parentheses are not written: λx .x instead of (λx .x);
■ a sequence of consecutive abstractions is grouped: λx ,y .x ·y instead of
λx .(λy .x ·y);

■ we treat application as a product omitting the dot: xy instead of x ·y ;
■ we assume application associates to the left: xyz instead of (xy)z .

Also, we use the term combinator to denote a λ-term having no free variables.
Example 18.3
The following are combinators
■ I ≡λx .x ;
■ K ≡λx ,y .x ;
■ S ≡λx ,y ,z .(xz)(yz);
■ Ω≡ (λx .xx)(λx .xx).
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Substitution

Definition 18.4 (Substitution)
For any M, N λ-terms and x variable, M[N/x ] is the substitution of x with N
in M defined by induction on M as:
■ x [N/x ]≡N;
■ y [N/x ]≡ y when x ̸≡ y ;
■ (PQ)[N/x ]≡ (P[N/x ])(Q[N/x ]);
■ (λx .P)[N/x ]≡λx .P;
■ (λy .P)[N/x ]≡λy .P[N/x ] when x ̸≡ y and y ̸∈FV(N);
■ (λy .P)[N/x ]≡λz .(P[z/y ])[N/x ] when x ̸≡ y and y ∈FV(N) and

z ̸∈FV(P)∪FV(N).
In the last clause the z variable is said to be new and it is always possible to
choose a z which satisfies the constraint.
The purpose of the last clause is to prevent variable capturing.
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α-equivalence

Definition 18.5 (α-equivalence)
The λ-terms M and N are α-equivalent, M =α N when
■ M ≡N;
■ M ≡PQ, N ≡P ′Q′ and P =α P ′, Q =α Q′;
■ M ≡λx .P, N ≡λx .P ′ and P =α P ′;
■ M ≡λx .P, N ≡λy .P, and P =α P ′[x/y ], P[y/x ]=α P ′.

So two λ-terms are α-equivalent when they differ for the names of bound
variables only.
From now on, we identify terms which are α-equivalent.
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α-equivalence

It is immediate to see that α-equivalence is an equivalence relation, but it is
also a congruence with respect to substitution:

Proposition 18.6
If M =α M ′ and N =α N ′ then M[N/x ]=α M ′[N ′/x ].

Therefore, using α-equivalence as equality between λ-terms is sound.
As a side note, we observe that α-equivalence is decidable, i.e., there is a
recursive function to decide whether two λ-terms are α-equivalent.
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β-reduction

Definition 18.7 (β-reduction)
The binary relation between λ-terms M▷1,βN, spelt M β-reduces to N in one
step, holds if and only if M ≡M ′[(λx .P) ·Q/z ] and N ≡M ′[(P[Q/x ])/z ],
where the z variable occurs in M ′ exactly once.
We say that M β-reduces to N, M ▷βN, when there is a finite sequence
P1, . . . ,Pn such that M =P1, N =Pn and for each 1≤ i < n, Pi ▷1,βPi+1.

In the λ-calculus computation is performed by β-reduction.

Definition 18.8 (β-normal form)
A term N is said to be in β-normal form when it does not contain any
subterm of the form (λx .P)Q.
With respect to computations λ-terms in β-normal form represent the values.
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Church-Rosser theorem

Theorem 18.9 (Church-Rosser)
If M ▷βP and M ▷βQ then there is a λ-term R such that P ▷βR and Q▷βR.

Corollary 18.10
If M ▷βN and N is a β-normal form then N is unique up to α-equivalence.

The Church-Rosser Theorem and its corollary say that although the
computation in λ-calculus is non-deterministic, the result, when it exists, is
uniquely determined.
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β-equality

Definition 18.11 (β-equality)
We say that P is β-equivalent to Q, P =β Q, when there is a finite sequence
R1, . . . ,Rn such that P ≡R1, Q ≡Rn, and for all 1≤ i < n, Ri ▷1,βRi+1, or
Ri+1▷1,βRi , or Ri =α Ri+1.
The notion of β-equivalence models the fact that two λ-terms are equal as
computations.
It is easy to prove that β-equality is an equivalence relation, and a congruence
with respect to substitution.
It is significant that β-equality, in general, is not decidable.
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Fixed point theorem

Theorem 18.12 (Fixed point)
There is a combinator Y such that Yx =β x(Yx).

Proof.
Let U ≡λu,x .x(uux) and let Y≡UU. Then
Yx ≡ (λu,x .x(uux))Ux ▷β (λx .x(UUx))x ▷β x(UUx)≡ x(Yx).

The proof of the fixed point theorem as above is due to Alan Turing.
The fixed point theorem says that every λ-term, when thought of as a
function, has a fixed point which is calculated by the Y combinator. This is
an important property which suggests that each function which can be
represented as a λ-term, has to be continuous.
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Representable functions

Definition 18.13 (Numerals)
For every n ∈N, the Church numeral n is a λ-term inductively defined as:
■ 0=λx ,y .y ;
■ n+1=λx ,y .x(nxy).

Definition 18.14 (Representable functions)
Let f : Nk →N be a partial function. A λ-term F is said to represent the
function f when
■ for all n1, . . . ,nk ∈N if f (n1, . . . ,nk)=m then Fn1, . . . ,nk =m;
■ for all n1, . . . ,nk ∈N if f (n1, . . . ,nk) is undefined then Fn1, . . . ,nk has no
β-normal form.

Theorem 18.15
Every partial recursive function can be represented in the λ-calculus.
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Representable functions

The proof of the theorem is difficult beyond the aim of this course. But we
will show a few examples to justify it.
Example 18.16
The successor function is represented by λx ,s ,z .s(xsz).
Addition is represented by λx ,y ,s ,z .xs(ysz).
Multiplication is represented by λx ,y ,s .x(ys).
Exponentiation is represented by λx ,y .yx
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Representable functions

Example 18.17
The Boolean values ⊤ and ⊥ are represented as λx ,y .y and λx ,y .x ,
respectively.
Then ‘if x then y else z ’ is represented by λx ,y ,z .xzy .

if ⊥ then A else B
≡ (λx ,y ,z .xzy)(λx ,y .x)AB

=β (λy ,z .(λx ,y .x)zy)AB
=β (λy ,z .z)AB =β B ,

if ⊤ then A else B
≡ (λx ,y ,z .xzy)(λx ,y .y)AB

=β (λy ,z .(λx ,y .y)zy)AB
=β (λy ,z .y)AB =β A .
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Representable functions

To get a clue why these representations work we could read them as
computations over logical structures. For example natural numbers are
inductively defined from 0 and the successor. Hence a model for the naturals
is specified when we provide a set together with a way to interpret 0 as some
specific element and the successor as an injective function which transforms
an element into another.
Consider 0≡λx ,y .y : this is a function from the model which provides an
element of the model. The model is specified by providing the specification of
the successor and the specification of zero. The result is the specification of 0.
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Representable functions

Consider n+1≡λx ,y .x(nxy): since n transforms a model into a number, the
term nxy evaluates to n in the model (x ,y). But x stands for the successor
function so we are taking the successor of n in the model.
Thus, x +y ≡λx ,y ,s ,z .xs(ysz) is calculated by interpreting x in a model
where the successor function is the given one but the zero element is ysz , i.e.,
the number which stands for y in the model.
Similarly, the product xy is calculated by interpreting x in a model where the
successor function moves by y steps at once.
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Simple theory of types

The simple theory of types is, in essence, a λ-calculus with an extended
syntax, in which terms are equipped with types.
The general idea is that functions must take arguments in their domain, and
produce results in their codomain.
The types are deputed to model this behaviour, and to prevent the formation
of terms which do not conform.
Hence, typed terms behave as λ-terms with respect to computation, but they
are a subset of all the possible λ-terms, so we do not expect they capture the
whole realm of computable functions.
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Types

Definition 19.1 (Type)
Fixed a denumerable set VT of type variables, a type is inductively defined:
■ x ∈VT is a type;
■ 0 and 1 are types;
■ if α and β are types, so are (α×β), (α+β), and (α→β).

As usual, we omit parentheses when they are not strictly needed: × binds
stronger that +, and + binds stronger than →, so α×β+γ→ (α+γ)× (β+γ)
stands for ((α×β)+γ)→ ((α+γ)× (β+γ)).
A type is used to constrain the main entity of interest in the theory of types,
the term.
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Terms

Definition 19.2 (Term)
Fixed a family {Vα}α of variables indexed by the collection of types such that
for each α, Vα is denumerable and distinct from the set of type variables, and
such that Vα∩Vβ =; whenever α ̸=β, a term t : α of type α along with the
set of its free variables is inductively defined as:
■ if x ∈Vα for some type α, x : α is a term and FV(x : α)= {x : α};
■ ∗ : 1 is a term and FV(∗ : 1)=;;
■ for each type α, □α : 0→α is a term and FV (□α : 0→α)=;;
■ if A : α and B : β are terms, 〈A,B〉 : α×β is a term and

FV(〈A,B〉 : α×β)= FV(A : α)∪FV(B : β);
■ if A : α×β is a term, so are π1A : α and π2A : β and

FV(π1A : α)=FV(π2A : β)= FV(A : α×B); ,→
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Terms

,→ (Term)

■ if A : α is a term then for any type β, iβ1 A : α+β and iβ2 A : β+α are terms
and FV(iβ1 A : α+β)= FV(iβ2 A : β+α)= FV(A : α);

■ if C : α+β, A : α→ γ, and B : β→ γ are terms, so is δ(C ,A,B): γ and
FV(δ(C ,A,B): γ)= FV(C : α+β)∪FV(A : α→ γ)∪FV(B : β→ γ);

■ if A : β is a term and x ∈Vα then λx : α.A : α→β is a term and
FV(λx : α.A : α→β)= FV (A : β) \ {x : α};

■ if A : α and B : α→β are terms then B ·A : β is a term and
FV(B ·A : β)= FV (A : α)∪FV(B : α→β).

Terms represent the primitive computational statements.
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Reductions

Terms can be reduced according to the following rules where it is assumed
that both sides of the equalities are correctly typed:
■ π1〈A,B〉=A; π2〈A,B〉=B;
■ (λx : α.A) ·B =A[B/x ] the act of substituting B for x (β-reduction);
■ λx : α.(A ·x)=A when x : α ̸∈FV(A : α→β) (η-reduction).

It is clear that these rules, which should be read as oriented from left to right,
are computable.
Observe how equality = should be understood as α-equivalence, and
substitution is defined analogously to the pure λ-calculus.
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Reductions

Moreover, the □ operator is subject to the following reductions:
■

¡
□α→βA

¢ ·B =□βA
■ π1□α×βA=□αA; π2□α×βB =□βB;
■ δ(□α+βA,B,C)=□γA;
■ □α(□0A)=□αA.
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Reductions

Finally, the δ operator is subject to the following reductions:
■ δ(i1C ,A,B)=A ·C ; δ(i2C ,A,B)=B ·C ;
■ π1δ(p1,p2,p3)= δ(p1,π1p2,π1p3); π2δ(p1,p2,p3)= δ(p1,π2p2,π2p3);
■ □γδ(p1,p2,p3)= δ(p1,□γp2,□γp3);
■ δ(p1,p2,p3) ·p4 = δ(p1,p2 ·p4,p3 ·p4);
■ δ(δ(p1,p2,p3),p4,p5)= δ(p1,δ(p2,p4,p5),δ(p3,p4,p5)).
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Intended interpretation

The intended meaning of types is not too difficult to grasp:
■ a type variable stands for a generic type.
■ 0 stands for the empty type, and 1 stands for the type inhabited by a

single, distinct element, the term ∗.
■ the α×β type stands for the Cartesian product of the α and β types; it is

inhabited by the pairs 〈A,B〉 and its computational behaviour tells that the
first (second) projection π1 (π2) yields the first (second) element in a pair,
and pairing both the projections of an element yields the element itself.

■ the α+β type stands for the disjoint union of α and β, and the iβ1 A, iβ2 A
terms are the injections of the A term in the disjoint union, on the left and
on the right, respectively.

■ the α→β type stands for the function space having α as domain and β as
codomain. Application is then function application, and abstraction is like
in the pure λ-calculus.
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Intended interpretation

In this respect, the δ operator is a selector for the disjoint union: given an
element A in the disjoint union, it computes an element in the γ type by
applying to A the second argument if A lies in the first component of the
union, and applying to α the third argument if A lies in the second
component of the union.
The β-reduction rules tells that given the description of a function, its
application to some argument can be computed by substituting the argument
inside the description.
The η-reduction, λx : α.(Ax)=A, is more complex, and ultimately says that
functions are to be interpreted extensionally, that is, f = g if and only if,
f x = g x for every x .
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Church-Rosser theorem

The Church-Rosser theorem holds in the simple theory of types without the +
types.
To prove it, one has to show that reductions are closed with respect to typing,
that is, if A▷B as pure terms, and A : α then B : α.
This property, called subject reduction, is fundamental and subtle. Indeed, in
type theories more complex than the simple theory of types, it may fail in
unexpected ways.
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Enriching the system

We can easily derive in the simple theory of types a representation of the
natural numbers together with the operations of addition, multiplication and
exponentiation, the Boolean values, the if-then-else construction, and so on.
Indeed, these representations are nothing but the same we used for the pure,
non-typed λ-calculus.
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Simple theory of types

If we restrict to the subsystem whose types are those generated by type
variables, →, and ×, and whose terms are correspondingly the variables, and
those of the form λx : α.A : α→β, called abstractions, A ·B : β, called
applications, 〈A,B〉 : α×β, called pairs, π1A : α and π2A : β, called
projections, we get a subsystem of special interest, which corresponds to the
original typed system introduced by Alonzo Church.
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Syllabus

Computability theory:
■ The strong normalisation of the simple theory of types
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The formal system

We consider the subsystem of the Simple Theory of Types whose types are
■ type variables;
■ function spaces A→B;
■ products A×B.

and whose terms are variables, applications f · t, abstractions λx :A.t, pairs
〈t1,t2〉, and projections π1t, π2t.
The one-step reduction ▷1 is the congruence generated by
■ π1〈a,b〉Ï a;
■ π2〈a,b〉Ï b;
■ (λx :A.t) ·a Ï t[a/x ].

As usual ▷ is the reflexive and transitive closure of ▷1.
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Strong normalisation

Definition 20.1 (Strongly normalisable)
A term t is said to be strongly normalisable when no reduction sequence
starting from t, t ▷ t1▷ · · ·▷ tn can be indefinitely extended.

In computational terms, it means that t eventually terminates.

Definition 20.2 (Neutral term)
A term t is said to be neutral when t is a variable, a projection t ≡π1t1,
t ≡π2t2, or an application t ≡ t1 · t2.
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Strong normalisation

Definition 20.3 (Reducibility candidates)
The set of reducibility candidates of type T , denoted as R(T ), is a set of
terms of type T defined by induction on the type T :
■ if T is a type variable, t ∈R(T ) if and only if t is strongly normalisable;
■ if T ≡A×B, t ∈R(T ) if and only if π1t ∈R(A) and π2t ∈R(B);
■ if T ≡A→B, t ∈R(T ) if and only if, for all a ∈R(A), t ·a ∈R(B).
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Strong normalisation

Proposition 20.4
The following three properties hold for reducibility candidates:
1. If t ∈R(T ) then t is strongly normalisable;
2. If t ∈R(T ) and t ▷ t ′ then t ′ ∈R(T );
3. If t is neutral and for all t ′ such that t ▷1 t ′, t ′ ∈R(T ) then t ∈R(T ).
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Strong normalisation

Proof. (i)
By induction on T .
If T is a type variable then:
1. the result follows by definition of R(T ).
2. since t is strongly normalisable every term to which t reduces has to be

strongly normalisable and thus in R(T ).
3. A proper reduction sequence starting from t must pass through some t ′ as

for the hypothesis. By definition of R(T ) all these terms t ′ are strongly
normalisable and thus also t must be, which implies t ∈R(T ). ,→
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Strong normalisation

,→ Proof. (ii)
If T ≡A×B then:
1. if t ∈R(A×B) then π1t ∈R(A), so π1t is strongly normalisable by

inductive hypothesis. Every reduction sequence from t maps into a
reduction sequence from π1t applying π1 to every element, thus t has to
be strongly normalisable.

2. If t ▷ t ′ then π1t ▷π1t ′ and π2t ▷π2t ′. Since t ∈R(A×B) then
π1t ∈R(A) and π2t ∈R(B) by definition of R. Hence, by inductive
hypothesis π1t ′ ∈R(A) and π2t ′ ∈R(B), thus t ′ ∈R(A×B) by definition
of R.

3. If t▷1 t ′ then π1t▷π1t ′. Since t ′ ∈R(A×B), π1t ′ ∈R(A) by definition of
R. Also, since t is neutral, i.e., not a pair, π1t ▷1π1t ′. Since π1t is
neutral by inductive hypothesis π1t ∈R(A). Symmetrically, one proves
π2t ∈R(B), so t ∈R(A×B) by definition. ,→
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Strong normalisation

,→ Proof. (iii)
If T ≡A→B then:
1. Let x :A be a variable: x is irreducible and neutral so by inductive

hypothesis on A, x ∈R(A). Then since t ∈R(A→B), t ·x ∈R(B). By
inductive hypothesis on B, t ·x is strongly normalisable. Hence, every
reduction sequence starting from t can be mapped in a reduction sequence
starting from t ·x applying x to every element. Thus, the sequence from t
cannot be indefinitely extended and so t is strongly normalisable.

2. Let a ∈R(A). Since t ∈R(A→B), t ·a ∈R(B) by definition of R. Also
t ▷1 t ′ maps to t ·a▷ t ′ ·a. By inductive hypothesis on B, t ′ ·a ∈R(B),
thus t ′ ∈R(A→B) by definition. ,→
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Strong normalisation

,→ Proof. (iv)
If T ≡A→B then:
3. Let a ∈R(A). Then a is strongly normalisable by inductive hypothesis.

By induction on the reduction sequences from a to show that if t ·a▷1 r
then r ∈R(B):
□ if t ·a▷1 t ′ ·a because t ▷1 t ′ then t ′ ∈R(A→B) by hypothesis so

t ′ ·a ∈R(B) by definition of R.
□ if t ·a▷1 t ·a′ because a▷1 a′ then a′ ∈R(A) by the main induction hypothesis

(2) on A, so the secondary induction hypothesis on a′ tells t ·a′ ∈R(B).
□ t ·a does not reduce as a whole since t is neutral by hypothesis so we already

considered all the possible cases.
Hence t ·a ∈R(B) by induction hypothesis (3) on B. Thus by definition of
R, t ∈R(A→B).
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Strong normalisation

Proposition 20.5
If a ∈R(A) and b ∈R(B) then 〈a,b〉 ∈R(A×B).
Proof.
By induction on the reduction sequences starting from a or b to show that if
π1〈a,b〉▷1 t then t ∈R(A):
■ if π1〈a,b〉▷1 a, a ∈R(A) by hypothesis;
■ if π1〈a,b〉▷1π1〈a′,b〉 because a▷1 a′ then a′ ∈R(A) by point 2 in

Proposition 20.4, so π1〈a′,b〉 ∈R(A) by inductive hypothesis;
■ if π1〈a,b〉▷1π1〈a,b′〉 because b▷1 b′ then b′ ∈R(B) by point 2 in

Proposition 20.4, so π1〈a,b′〉 ∈R(A) by inductive hypothesis.
Since π1〈a,b〉 is neutral, by point 3 in Proposition 20.4 π1〈a,b〉 ∈R(A).
Symmetrically, one shows that π2〈a,b〉 ∈R(B).
Hence by definition of R, 〈a,b〉 ∈R(A×B).
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Strong normalisation

Proposition 20.6
If for all a ∈R(A), b[a/x ] ∈R(B) then λx :A.b ∈R(A→B).
Proof.
By point 3 of Proposition 20.4 x ∈R(A), so b[x/x ]≡ b ∈R(B) by hypothesis.
Fix a ∈R(A). By induction on the reduction sequences starting from a or b
to show that if (λx :A.b) ·a▷1 t then t ∈R(B):
■ if (λx :A.b) ·a▷1 b[a/x ] then b[a/x ] ∈R(B) by hypothesis;
■ if (λx :A.b) ·a▷1 (λx :A.b′) ·a because b▷1 b′ then b′ ∈R(B) by point 2

of Proposition 20.4, so (λx :A.b′) ·a ∈R(B) by inductive hypothesis;
■ if (λx :A.b) ·a▷1 (λx :A.b) ·a′ because a▷1 a′ then a′ ∈R(A) by point 2

of Proposition 20.4, so (λx :A.b) ·a′ ∈R(B) by inductive hypothesis.
Since (λx :A.b) ·a is neutral, by point 3 of Proposition 20.4
(λx :A.b) ·a ∈R(B), so λx :A.b ∈R(A→B) by definition of R.

( 419 )

Strong normalisation

Proposition 20.7
Let t be a term of type T and let FV(t)⊆ {x1 :A1, . . . ,xn :An}. Let ai ∈R(Ai )
for all 1≤ i ≤ n. Then t[a1/x1, . . . ,an/xn] ∈R(T ).
Proof. (i)
By induction on the term t
■ if t ≡ xi for some 1≤ i ≤ n then T ≡Ai and t[a1/x1, . . . ,an/xn]≡ ai ∈R(Ai )

by hypothesis.
■ if t ≡π1t ′ then t ′[a1/x1, . . . ,an/xn] ∈R(T ×B) by inductive hypothesis. So

t[a1/x1, . . . ,an/xn]≡π1t ′[a1/x1, . . . ,an/xn] ∈R(T ) by definition of R.
■ if t ≡π2t ′ then t ′[a1/x1, . . . ,an/xn] ∈R(B×T ) by inductive hypothesis. So

t[a1/x1, . . . ,an/xn]≡π2t ′[a1/x1, . . . ,an/xn] ∈R(T ) by definition of R.
■ if t ≡ 〈t1,t2〉 then T ≡T1 ×T2 and by inductive hypothesis

t1[a1/x1, . . . ,an/xn] ∈R(T1) and t2[a1/x1, . . . ,an/xn] ∈R(T2). Then
t[a1/x1, . . . ,an/xn]≡ 〈t1[a1/x1, . . . ,an/xn],t2[a1/x1, . . . ,an/xn]〉 ∈R(T1 ×T2)
by Proposition 20.5. ,→

( 420 )



Strong normalisation

,→ Proof. (ii)
■ if t ≡ t1 · t2 then t1[a1/x1, . . . ,an/xn] ∈R(B→T ) and

t2[a1/x1, . . . ,an/xn] ∈R(B) by inductive hypothesis. Hence
t[a1/x1, . . . ,an/xn]≡ t1[a1/x1, . . . ,an/xn] · t2[a1/x1, . . . ,an/xn] ∈R(T ) by
definition of R.

■ if t ≡λy :B.t1 then T ≡B→T1 and for all b ∈R(B),
t1[a1/x1, . . . ,an/xn,b/y ] ∈R(T1) by inductive hypothesis. Hence
t[a1/x1, . . . ,an/xn]≡λy :B.t1[a1/x1, . . . ,an/xn] ∈R(B→T1) by
Proposition 20.6.
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Strong normalisation

Theorem 20.8
For every term t of type T , t ∈R(T ).
Proof.
Let FV(t)⊆ {x1 :A1, . . . ,xn :An}. By point 3 of Proposition 20.4 being xi
irreducible and neutral, xi ∈R(Ai ).
Hence by Proposition 20.7, t[x1/x1, . . . ,xn/xn]≡ t ∈R(T ).

Theorem 20.9 (Strong normalisation)
Every term is strongly normalisable.
Proof.
Let t be a term of type T . By Theorem 20.8 t ∈R(T ) so t is strongly
normalisable by point 1 in Proposition 20.4.
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Discussion

The strong normalisation property is extremely powerful: it tells that every
element in the class of computable functions which can be represented in the
simple theory of types is a total function.
In more complex type theories this result is critical, and often invalid. Also, it
has consequences in logic, which will be remarked in due time, after
introducing the so-called Curry-Howard isomorphism.
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Dependent types

The simple theory of types is a nice theory with many good properties, like
strong normalisation. But it fails to model complex mathematics. The
situation is similar to propositional logic which have to be extended to
first-order logic to cope with real mathematical theories. Indeed, as we will
see in the next part of the course, the comparison with propositional logic is
quite precise.
There are many ways to extend the simple theory of types. However, one way,
introducing dependent types proved to be extremely useful and with deep
consequences, both practical and theoretical.
In this lecture we want to sketch the fundamentals of dependent types, to
grasp the main idea but leaving out most of the theory, which is far more
complex than the one of simple types, and still researched.
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Dependent types

The basic idea is to define types and terms together, by means of a set of
inference rules. Along with the presentation of the inference rules, we describe
and comment the related concepts.
The conclusion and the premises of each inference rule are judgements:
■ a context judgement has the form Γctx, where Γ is a context;
■ a regular judgement, or simply a judgement, has the form Γ⊢ t :T where t

is a term and T is a type;
■ an equivalence judgement, or simply an equivalence, has the form
Γ⊢ t1 ≡ t2 :T where t1,t2 are terms and T is a type.

Therefore, the terms and types are those expressions which are generated as
conclusions of valid derivations formed by the inference rules shown in the
following slides.
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Contexts

First, we introduce contexts: a context is a finite list of typed variables. As
usual, we assume to have a predefined infinite and recursive set of variables.
We write A :Ui with i ∈N to mean that the expression A is a type (this will
be refined shortly).
Then, the inference rules governing context judgements are

ctx−EMP•ctx
Γ⊢A :Ui

ctx−EXT
Γ,x :Actx

that is, the empty context is a valid context, and if A is a type in Γ, then
Γ,x :A is a valid context provided the variable x does not appear in Γ.
The fundamental inference on a context allows to derive a typed variable:

x1 :A1, . . . ,xn :An ctx
Vble

x1 :A1, . . . ,xn :An ⊢ xi :Ai

with 1≤ i ≤ n.
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Judgemental equivalence

Equivalence judgements are governed by a number of rules. Some of them are
specific for each type constructor, and they will be introduced later. First of
all, we want to say that ≡ is an equivalence relation between terms:

Γ⊢ a :A
≡−refl

Γ⊢ a≡ a :A
Γ⊢ a≡ b :A

≡−sym
Γ⊢ b ≡ a :A

Γ⊢ a≡ b :A Γ⊢ b ≡ c :A
≡−trans

Γ⊢ a≡ c :A

and substituting equivalent types is licit:

Γ⊢ a :A Γ⊢A≡B :Ui ≡−subst
Γ⊢ a :B

Γ⊢ a≡ b :A Γ⊢A≡B :Ui ≡−subst−eq
Γ⊢ a≡ b :B

Equivalence, or judgemental equivalence, wants to model the fact that two
terms are equivalent with respect to the reduction rules, similarly to
β-equality. However, the reduction rules are more complex, and they will be
specified as inference rules.
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Universes

An important feature of dependent types, is that there is no strict distinction
between terms and types: every type is also a term. However, types as terms
have a universe as a type.
Universes are organised in a cumulative hierarchy indexed by natural numbers,
thus Ui is a term in the type Ui+1. Also, if A is type in the i-th universe, it is
so in every universe above i .

Γctx
U−intro

Γ⊢Ui :Ui+1
Γ⊢A :Ui

U−cumul
Γ⊢A :Ui+1

Γ⊢A≡B :Ui
U−cumul−eq

Γ⊢A≡B :Ui+1
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Universes

It is important to remark that there is no maximal universe. In fact, it could
be proved that the existence of a maximal universe induces the Burali-Forti
paradox.
Hence, it makes sense to not have universes at all, or to have an infinite
amount of them, indexed by a limit ordinal. We consider the only possibility
for the second case which provides an effective theory.
The system with no universes is interesting, anyway. Indeed, one can present
the simple theory of types in it. And, even with dependent types, it enjoys
some properties, like normalisation, which are difficult, if not impossible, to
show in the system with universes.
This fact also makes evident that adding universes really makes the type
system more powerful, essentially a real higher-order system.

( 432 )



Dependent function spaces

Dependent function spaces, sometimes called dependent products, are types
describing the dependent functions from A to B.
A dependent function f from A to B, notation f :Πx :A.B, maps an element
a of A in an element f a of B[a/x ].
For example, an n-vector of reals can be represented as a list of reals whose
length is n. Then, the 0 vector is a dependent function, taking n as an
argument, and yielding the list of length n whose elements are all 0.
Indeed, to show significant examples, one should say that Π can be
interpreted as the ∀ quantifier of x of type A, and the type B, depending on
x , is a formula describing the elements of the target type.
When B does not depend on x , i.e., when x ̸∈ FV(B), we get the usual
function space A→B as in the simple theory of types.
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Dependent function spaces

The rules to form a dependent function space are the following:

Γ⊢A :Ui Γ,x :A⊢B :Ui
Π−form

Γ⊢Πx :A.B :Ui

Γ⊢A≡A′ :Ui Γ,x :A⊢B ≡B′ :Ui
Π−form−eq

Γ⊢Πx :A.B ≡Πx :A′.B′ :Ui

( 434 )

Dependent function spaces

The rules to construct a dependent function, using the λ constructor, are

Γ,x :A⊢ b :B
Π−intro

Γ⊢λx :A.b :Πx :A.B
Γ,x :A⊢ b ≡ b′ :B Γ⊢A≡A′ :Ui

Π−intro−eq
Γ⊢λx :A.b ≡λx :A′.b′ :Πx :A.B

The equivalence introduced in the −eq rule says that ≡ is a congruence with
respect to abstraction.
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Dependent function spaces

The rules to apply a dependent function, using the · operator, are:

Γ⊢ f :Πx :A.B Γ⊢ a :A
Π−elim

Γ⊢ f a :B[a/x ]
Γ⊢ f ≡ g :Πx :A.B Γ⊢ a≡ b :A

Π−elim−eq
Γ⊢ f a≡ g b :B[a/x ]
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Dependent function spaces

The reductions associated to dependent function are β and η, captured by the
following inference rules:

Γ,x :A⊢ b :B Γ⊢ a :A
Π−comp

Γ⊢ (λx :A.b)a≡ b[a/x ] :B[a/x ]
Γ⊢ f :Πx :A.B

Π−uniq
Γ⊢λx :A. f x ≡ f :Πx :A.B

It is worth observing that, when x ̸∈FV(B), i.e., when the function space is
not dependent, these rules coincide with the reductions of the simple theory
of types about the A→B type.
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Dependent pair types

A dependent pair type, written as Σx :A.B, also called dependent sum, is a
type whose extension could be described as the set of pairs (a,b) such that
a :A and b :B[a/x ].
As an example, in Computer Science, consider a record in a data base
describing employees at the university: if the employee is a professor, their
record will contain a list of taught courses; if the employee is a lab technician,
their record will contain a list of the served laboratories.
Indeed, many examples can be easily shown when considering that Σ can be
interpreted as the ∃ quantifier of x of type A of a formula B depending on x .
When B does not depend on x , i.e., when x ̸∈ FV(B), we get the usual
Cartesian product A×B as in the simple theory of types.
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Dependent pair types

The rule to form a dependent pair type is

Γ⊢A :Ui Γ,x :A⊢B :Ui
Σ−form

Γ⊢Σx :A.B :Ui

And the rule to construct a dependent pair is

Γ⊢Σx :A.B :Ui Γ⊢ a :A Γ,x :A⊢ b :B
Σ−intro

Γ⊢ (a,b) :Σx :A.B
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Dependent pair types

The elimination rule for dependent pairs codes induction:

Γ⊢Σx :A.B :Ui
Σ−elim

Γ⊢ indΣx :A.B :ΠC : (Σx :A.B)→Ui ,

g :Πx :A.Πy :B.C (x ,y),

p : (Σx :A.B).C p

It says that, given a formula C depending on a dependent pair, given a proof
g mapping x and y to C(x ,y), and given a point p which is a dependent pair,
the induction tells that the property C holds on p.
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Dependent pair types

The reduction associated to dependent pairs is

Γ⊢Σx :A.B :Ui
Γ⊢ (a,b) :Σx :A.B

Γ⊢C : (Σx :A.B)→Ui
Γ⊢ g :Πx :A.Πy :B.C (x ,y)

Σ−comp
Γ⊢ indΣx :A.B C g (a,b)≡ g ab :C (a,b)

that is, computing induction on a pair, yields the property on that pair as
established by g .
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More types

In a similar vein, more types can be defined, each one equipped with a
formation rule, a number of introduction rules, one for each constructor, an
elimination rule stating the induction principle, and a number of computation
rules, showing how induction reduces when applied to an instance of a
constructor.
In particular, the unit type (1), the empty type (0), the coproduct type A+B
of the simple theory of types can be easily defined.
Interestingly, an important type can be defined: equality a =A b, with a,b :A.
Its elements are the ways to show that equality between a and b holds.
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Dependent type theories

The type theory illustrated so far is one of the many variants of Martin-Löf
type theory. This theory has been used to define many contemporary
functional programming languages, e.g. Haskell, and it has many deep and
not yet completely understood properties.
However, identity types, i.e. a =A b, can be interpreted as the space of paths
from a to b in a topological space. Together with a subtle axiom, univalence,
the theory of dependent types can be then interpreted in homotopy spaces
and shown to be a very good and deep description of them. This theory is
known as homotopy type theory, which has been under deep research in the
last years.
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Motivation

Consider the following

Proposition 22.1
There are a and b irrational numbers such that ab is rational.
Proof.
Let a = b =

p
2. Then ab =

p
2
p

2 is either rational or irrational. In the former
case the statement is proved, otherwise take a =

p
2
p

2 and b =
p

2. Then

ab =
µp

2
p

2
¶p2

=
p

22 = 2.

This proof is correct but still unsatisfactory: at the end we don’t know a pair
of irrationals with the stated property. We have a choice between two
candidate pairs but no way to decide which pair satisfies our requirement.
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Motivation

On the contrary the following proof is different:

Proof.
Let a =

p
2 and b = log2 9. It is well known that a is irrational but also b is.

Indeed, if log2 9=m/n for some m,n ∈N then by the properties of logarithm
2m = 9n, which is impossible since the left-hand of the equality is even while
the right-hand is odd. But ab =

p
2log2 9 = 2(log2 9)/2 = 2log2 3 = 3.

Here the statement says that there are two irrationals a and b such that ab is
rational and the proof provides an evidence for this exhibiting such a pair.
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Motivation

In general, we would like that any time we have to prove a statement of the
form A∨B or ∃x .P, we are able to indicate which disjunct hold between A
and B or a value for x . And we would like that these pieces of information lie
in the proof.
More precisely we would like to say that a proof for statements of this form
would consist of an algorithm that indicate the true disjunct or constructs a
value for x .
This attitude is perfectly reasonable but comes with a price: we cannot use
anymore axioms that directly violate the requirement. In particular there is an
axiom in the classical system that evidently violates the requirement.
In fact the Law of Excluded Middle says that A∨¬A for any formula A, but it
provides no way to decide which of these mutually exclusive facts holds. So,
the Law of Excluded Middle must be rejected if we adopt a notion of proof as
the one above.
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Motivation

The Law of the Excluded Middle is essential in the first proof of
Proposition 22.1: it avoids the need to decide whether

p
2
p

2 is rational or not
(in fact, it is not).
But rejecting the Law of Excluded Middle is not sufficient. There are a
number of principles which pose problems.
For example the Axiom of Choice. In one of its consequences, the already
cited Tarski-Banach theorem, we can cut a sphere into a finite number of
pieces so that we can reassembly two spheres identical to the original one.
The proof ‘constructs’ the pieces using the Axiom of Choice. But any
non-mathematician would call that result a miracle unless you show how to
cut the original sphere and how to reassemble the pieces! And any
mathematician would note that the proof does not provide an effective way
to calculate the shape of the pieces.
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Motivation

Indeed, what we would like to have is a logical system which allows to
calculate the objects or the choices we have to make. In a sense we are
interested in systems where proofs are a sort of algorithm to construct the
results implicit in their statements.
This attitude toward Mathematics is called constructivism and it produced a
different kind of logical systems. In these systems, principles like the Law of
Excluded Middle are rejected or accepted on the basis that they permit or
deny the possibility to ‘construct’ the objects their statement imply to exists
or the possibility to make the choices required in the proofs.
There are many constructive systems and many variations on the theme.
Different philosophical foundations have been proposed to support the
constructive approaches, and there are degrees of constructiveness in the
logical system which claim themselves to adhere to these approaches.
An indisputable fact is that constructive mathematics had, have, and probably
will have a deep impact in the study of computability.
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Intuitionistic logic

Among the many constructive system, intuitionistic logic has a special place.
Historically it has been the first formal attempt to capture in a formal system
the original idea of a constructive approach to Mathematics. Practically, it is
the simplest, most studied, and in some sense best understood system in this
line of thought.
In the following we will introduce intuitionistic first-order logic showing some
of its main features. Differently from the study we pursued of classical
systems, we will not prove every result and we will easily skip over some
important parts: the field of constructive mathematics is wide, deep, and
complex, and our objective is to show how and why a non-classical system
could be of interest.
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Syntax

Syntactically, intuitionistic logic is very similar to classical logic. In the
propositional case formulæ are formed in exactly the same way. In the
first-order case terms and formulæ are constructed identically.
The difference lie in the construction of proofs: the valid intuitionistic proofs
are the classical proofs in natural deductions where the Law of Excluded
Middle does not appear. In other words, the propositional calculus and the
first-order calculus are identical to the corresponding classical calculi except
that the Law of Excluded Middle is dropped.
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Expressive power

Evidently, by definition every proof π : Γ⊢T A performed in the intuitionistic
logic, i.e., without the Law of Excluded Middle, is also a valid classical proof.
So we may think that intuitionistic logic is less expressive than classical logic:
possibly there are statement which are provable in the classical system, which
cannot be proved in the intuitionistic system because they use the Law of
Excluded Middle in an essential way. On the contrary, every result which can
be proved in an intuitionistic system is also valid in a classical system because
each intuitionistic proof is also a classical proof where there is no application
of the Law of Excluded Middle.
In a sense the above remark is correct. But in another sense it is not. . .
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Expressive power

. . . since the ability to prove more having an additional inference rule, may
lead to prove more theories to be non consistent.
For example, Church Thesis in computability theory says that a function
N→N is computable if and only if there is a Turing machine computing it. If
we say that every function we can write in arithmetic is computable, we get
the so-called formal Church Thesis. It turns out that the formal theory of
arithmetic plus formal Church thesis is a perfectly reasonable intuitionistic
theory, which can be proved to be consistent with respect to (classical)
arithmetic. On the contrary, the very same theory in classical logic turns out
to be inconsistent.
The reason is simple: in classical logic it is possible to prove that a function
exists which is not computable by showing that it is impossible that it is
computable. So the formal Church thesis, which asserts that every function is
computable, leads to a contradiction. In intuitionistic the proof of that
function to be not computable cannot be carried on.
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Expressive power

It is important to remark the deep mathematical meaning of the example: we
would like to write a theory of computable functions. However, this is
impossible in classical logic, unless we accept to describe a wider class of
functions.
We really want to study what happens when we limit to consider computable
functions only. In the end, it is the mathematical theory of Computer Science!
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Expressive power

From another point of view, in a sense every theorem in classical logic can be
proved in intuitionistic logic modulo a translation. The precise statement is as
follows:

Definition 22.2
The Gödel-Gentzen translation is a map of formulæ to formulæ inductively
defined as:
■ (⊤)N =⊤, (⊥)N =⊥;
■ for any A atomic (A)N =¬¬A;
■ (A∧B)N = (A)N ∧ (B)N ;
■ (A∨B)N =¬

³
¬(A)N ∧¬(B)N

´
;

■ (A⊃B)N = (A)N ⊃ (B)N ;
■ (∀x : s .A)N =∀x : s . (A)N ;
■ (∃x : s .A)N =¬∀x : s .¬(A)N .
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Expressive power

Proposition 22.3
In classical logic, for any formula A there is a proof π : ⊢A= (A)N .
Proof. (i)
By induction on the formula A:
■ A≡⊥,⊤: ⊢⊥⊃⊥ and ⊢⊤⊃⊤ by implication introduction so ⊢⊥=⊥ and
⊢⊤=⊤.

■ A is atomic:

[A]1 [¬A]2
¬E⊥

¬I2¬¬A
⊃I1

A⊃¬¬A

lem
A∨¬A [A]1

[¬¬A]2 [¬A]1
¬E⊥

⊥E
A

∨E1
A

⊃I2¬¬A⊃A

,→
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Expressive power

,→ Proof. (ii)
■ A≡B∧C : by induction hypothesis there are ⊢B = (B)N and ⊢C = (C)N ,

and (A)N = (B)N ∧ (C)N so

[B∧C ]1
∧E1B

·····
(B)N

[B∧C ]1
∧E2C

·····
(C)N

∧I
(B)N ∧ (C)N

⊃I1
B∧C ⊃ (B)N ∧ (C)N

£
(B)N ∧ (C)N¤1

∧E1
(B)N
·····
B

£
(B)N ∧ (C)N¤1

∧E2
(C)N
·····
C

∧I
B∧C

⊃I1
(B)N ∧ (C)N ⊃B∧C

,→
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Expressive power

,→ Proof. (iii)
■ A≡B∨C : by induction hypothesis there are ⊢B = (B)N and ⊢C = (C)N ,

and (A)N =¬¡¬(B)N ∧¬(C)N ¢
so

[B∨C ]1
[B]2

£¡¬(B)N ∧¬(C)N¢¤3
∧E1

¬(B)N
·····
¬B

¬E⊥
[C ]2

£¡¬(B)N ∧¬(C)N¢¤3
∧E2

¬(C)N
·····
¬C

¬E⊥
∨E2

⊥
¬I3

¬
³
¬(B)N ∧¬(C)N

´

⊃I1
B∨C ⊃¬

³
¬(B)N ∧¬(C)N

´

for the implicit proofs see the ¬ case. ,→
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Expressive power

,→ Proof. (iv)

lem
B∨¬B

[B]1
∨I1B∨C

lem
C ∨¬C

[C ]2
∨I2B∨C

[¬B]1
·····

¬(B)N

[¬C ]2
·····

¬(C)N
∧I

¬(B)N ∧¬(C)N £¬¡¬(B)N ∧¬(C)N ¢¤3

¬E
⊥

⊥E
B∨C

∨E2
B∨C

∨E1
B∨C

⊃I3
¬

³
¬(B)N ∧¬(C)N

´
⊃B∨C

for the implicit proofs see the ¬ case. ,→
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Expressive power

,→ Proof. (v)
■ A≡B ⊃C : by induction hypothesis there are ⊢B = (B)N and ⊢C = (C)N ,

and (A)N = (B)N ⊃ (C)N so

[B ⊃C ]1

£
(B)N¤2

·····
B

⊃E
C
·····

(C)N
⊃I2³

(B)N ⊃ (C)N
´

⊃I1
(B ⊃C)⊃

³
(B)N ⊃ (C)N

´

£¡
(B)N ⊃ (C)N¢¤1

[B]2
·····

(B)N
⊃E

(C)N
·····
C

⊃I2
B ⊃C

⊃I1³
(B)N ⊃ (C)N

´
⊃ (B ⊃C)

,→
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Expressive power

,→ Proof. (vi)
■ A≡¬B: by induction hypothesis there is ⊢B = (B)N so

[¬B]1

£
(B)N¤2

·····
B

¬E⊥
¬I2

¬(B)N
⊃I1

¬B ⊃¬(B)N

£¬(B)N¤1

[B]2
·····

(B)N
¬E⊥

¬I2¬B
⊃I1

¬(B)N ⊃¬B

,→
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Expressive power

,→ Proof. (vii)
■ A≡∀x .B: by induction hypothesis there is ⊢B = (B)N , and

(A)N ≡∀x .(B)N so

[∀x .B]1
∀E

B
·····

(B)N
∀I

∀x .(B)N
⊃I1

(∀x .B)⊃
³
∀x .(B)N

´

£∀x .(B)N¤1
∀E

(B)N
·····
B

∀I∀x .B
⊃I1³

∀x .(B)N
´
⊃ (∀x .B)

,→
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Expressive power

,→ Proof. (viii)
■ A≡∃x .B: by induction hypothesis there is ⊢B = (B)N , and

(A)N ≡¬∀x .¬(B)N so

[∃x .B]1

[B]2
·····

(B)N

£∀x .¬(B)N¤3
∀E

¬(B)N
¬E⊥

∃E2
⊥

¬I3
¬∀x .¬(B)N

⊃I1
(∃x .B)⊃¬∀x .¬(B)N

,→
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Expressive power

,→ Proof. (ix)

lem
(∃x .B)∨¬(∃x .B) [∃x .B]1

[¬(∃x .B)]1

£
(B)N¤2

·····
B

∃I∃x .B
¬E⊥

¬I2
¬(B)N

∀I
∀x .¬(B)N £¬¡∀x .¬(B)N ¢¤3

¬E⊥
⊥E∃x .B
∨E1

∃x .B
⊃I3

¬
³
∀x .¬(B)N

´
⊃∃x .B
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Expressive power

Proposition 22.4
If π : Γ⊢A in classical logic then there is π′ :

n
(γ)N : γ ∈ Γ

o
⊢ (A)N in

intuitionistic logic.
We will not prove this theorem: who is interested can inspect it having a look
at the references at the end of this lesson.
The proposition has a number of consequences: the relevant ones to us are
■ each classical theory and thus each classical proof can be translated into

intuitionistic logic, yielding a classically equivalent result. So classical logic
is not really more expressive than intuitionistic logic.

■ Intuitionistic logic is more expressive than classical logic since it allows to
distinguish formulæ which are classically equivalent.
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Heyting algebra

Definition 23.1 (Heyting algebra)
A Heyting algebra H = 〈H;≤〉 is a bounded lattice such that for every
x ,y ∈H there is c ∈H, the relative pseudo-complement of x with respect to y ,
notation x ⊃ y , such that
1. x ∧c ≤ y ;
2. for every z ∈H such that x ∧z ≤ y , z ≤ c .
The relative pseudo-complement of x ∈H with respect to ⊥ is called the
pseudo-complement of x and it is denoted by ¬x .
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Heyting algebra

Examples:
■ Every Boolean algebra is also a Heyting algebra.
■ Every totally ordered set forming a bounded lattice is a Heyting algebra. In

particular x ⊃ y = y when y < x , and x ⊃ y =⊤ otherwise.
■ The lattice of open sets in any topology is a Heyting algebra. In particular

A⊃B is the interior of Ac∪B.

The last example shows that a Heyting algebra is not always a Boolean
algebra since the interior of Ac∪B is usually different from Ac∪B, or in
logical terms A⊃B ̸=¬A∨B.
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Heyting algebra

Fact 23.2
In any Heyting algebra for each element x, x ∧¬x =⊥.
Proof.
By definition of bottom and pseudo-complement ⊥≤ x ∧¬x ≤⊥.

Fact 23.3
In any Heyting algebra for all elements x and y, x ≤ y if and only if x ⊃ y =⊤.
Proof.
Since x = x ∧⊤ if x ≤ y , x ⊃ y =⊤ being ⊤ the maximal element z such that
x ∧z ≤ y . Conversely, if x ⊃ y =⊤ then x ∧ (x ⊃ y)= x ∧⊤= x ≤ y by
definition of pseudo-complement.
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Heyting algebra

Fact 23.4
There is a Heyting algebra such that for some element x, x ∨¬x ̸=⊤.

Proof.
Consider the total order 0< 1/2< 1. It is immediate to check that it is a
Heyting algebra. But 1/2∨¬1/2= 1/2∨0= 1/2 ̸= 1=⊤.

Proposition 23.5
Every Heyting algebra is a distributive lattice.
Proof.
It suffices to prove x ∧ (y ∨z)= (x ∧y)∨ (x ∧z). By definition of ∨, y ≤ y ∨z
and z ≤ y ∨z , thus by definition of ∧, x ∧y ≤ x and x ∧y ≤ y ≤ y ∨z , so
x ∧y ≤ x ∧ (y ∨z). Symmetrically, it holds that x ∧z ≤ x ∧ (y ∨z). Then by
definition of ∨, (x ∧y)∨ (x ∧z)≤ x ∧ (y ∨z).
Conversely, x ∧y ≤ (x ∧y)∨(x ∧z) and x ∧z ≤ (x ∧y)∨(x ∧z) by definition of
∨. So, y ≤ (x ⊃ (x ∧y)∨(x ∧z)) and z ≤ (x ⊃ (x ∧y)∨(x ∧z)) by definition of
⊃, thus by definition of ∨, y ∨z ≤ (x ⊃ (x ∧y)∨(x ∧z)). Then by definition of
⊃, x ∧ (y ∨z)≤ (x ∧y)∨ (x ∧z).
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Propositional semantics

For the sake of simplicity we will consider just the pure logic instead of a
generic theory in the following. The results can be naturally generalised.

Definition 23.6 (Semantics)
Fixed a Heyting algebra H = 〈H;≤〉 and a map ν : V →H evaluating each
variable in some element of H , the meaning �A� of a propositional formula A
is a map from the set of formulæ to H inductively defined as
1. if A≡ x a variable, �A�= ν(x);
2. �⊤�=⊤ and �⊥�=⊥;
3. �B∧C�= �B�∧�C�, �B∨C�= �B�∨�C�, �B ⊃C�= �B� ⊃ �C�, and
�¬B�=¬�B�.

We say that a formula A is valid or true in the model (H ,ν) when �A�=⊤.
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Soundness

Theorem 23.7 (Soundness)
If π : Γ⊢A is a proof in the intuitionistic natural deduction calculus then in
every model (H ,ν) such that each G ∈ Γ is valid, A is true.
Proof. (i)
Fixed a generic model by induction on the structure of a proof π : ∆⊢B with
∆ a finite set of assumptions, we prove that V

D∈∆�D� ≤ �B�:
■ if π is a proof by assumption B ∈∆, so V

D∈∆�D� ≤ �B� by definition of ∧.
■ if π is an instance of ⊤-introduction B ≡⊤, thus by definition of ⊤,V

D∈∆�D� ≤⊤= �B�.
■ if π is an instance of ⊥-elimination by induction hypothesis and by

definition of ⊥, V
D∈∆�D� ≤ �⊥�=⊥≤ �B�.

■ if π is an instance of ∧-introduction B ≡B1∧B2 and by induction
hypothesis V

D∈∆�D� ≤ �B1� and V
D∈∆�D� ≤ �B2�, so by definition of ∧,V

D∈∆�D� ≤ �B1�∧�B2�= �B1∧B2�= �B�. ,→
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Soundness

,→ Proof. (ii)
■ if π is an instance of ∧1-elimination or ∧2-elimination then by induction

hypothesis V
D∈∆�D� ≤ �B∧B1�= �B�∧�B1� or V

D∈∆�D� ≤ �B1∧B�=
= �B1�∧�B�, respectively. Thus by definition of ∧, V

D∈∆�D� ≤ �B� in
both cases.

■ if π is an instance of ∨1-introduction or ∨2-introduction then B ≡B1∨B2
and by induction hypothesis V

D∈∆�D� ≤ �B1� or V
D∈∆�D� ≤ �B2�,

respectively. Thus by definition of ∨,V
D∈∆�D� ≤ �B1�∨�B2�= �B1∨B2�= �B� in both cases.

■ if π is an instance of ∨-elimination, by induction hypothesis
�C1�∧

V
D∈∆�D� ≤ �B� and �C2�∧

V
D∈∆�D� ≤ �B�, so by definition of ⊃,

�C1� ≤
V

D∈∆�D� ⊃ �B� and �C2� ≤
V

D∈∆�D� ⊃ �B�, thus
�C1�∨�C2�= �C1∨C2� ≤

V
D∈∆�D� ⊃ �B�. Hence by definition of ⊃,

�C1∨C2�∧
V

D∈∆�D� ≤ �B�.
Since by induction hypothesis V

D∈∆�D� ≤ �C1∨C2�, by definition of ∧,
�C1∨C2�∧

V
D∈∆�D�=

V
D∈∆�D� ≤ �B�. ,→
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Soundness

,→ Proof. (iii)
■ if π is an instance of ⊃-introduction, B ≡B1 ⊃B2 and by induction

hypothesis �B1�∧
V

D∈∆�D� ≤ �B2�. So by definition of ⊃,V
D∈∆�D� ≤ �B1� ⊃ �B2�= �B1 ⊃B2�= �B�.

■ if π is an instance of ⊃-elimination by induction hypothesisV
D∈∆�D� ≤ �C ⊃B�= �C� ⊃ �B� thus by definition of ⊃,

�C�∧V
D∈∆�D� ≤ �B�. Since by induction hypothesis V

D∈∆�D� ≤ �C�, by
definition of ∧, �C�∧V

D∈∆�D�=
V

D∈∆�D� ≤ �B�.
■ if π is an instance of ¬-introduction, B ≡¬C and by induction hypothesis
�C�∧V

D∈∆�D� ≤ �⊥�=⊥. So by definition of ¬,V
D∈∆�D� ≤¬�C�= �¬C�= �B�.

■ if π is an instance of ¬-elimination, by induction hypothesisV
D∈∆�D� ≤ �¬C�=¬�C� thus by definition of ¬, �C�∧V

D∈∆�D� ≤ �⊥�.
Since by induction hypothesis V

D∈∆�D� ≤ �C�, by definition of ∧,
�C�∧V

D∈∆�D�=
V

D∈∆�D� ≤ �⊥�=⊥≤ �B� by definition of ⊥. ,→
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Soundness

,→ Proof. (iv)
Now consider π : Γ⊢A as in the statement of the theorem: since the proof π
uses just a finite number of assumptions Γ0 ⊆ Γ, by the induction aboveV

G∈Γ0�G� ≤ �A�. But for each G ∈ Γ, �G�=⊤ by hypothesis, thusV
G∈Γ0�G�=⊤≤ �A� ≤⊤ by definition of ⊤. So by anti-symmetry of ≤,

�A�=⊤.
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Completeness

We will show a simplified completeness result. A more general result can be
easily obtained by extending the presented core along the guidelines we
followed in the classical case.

Theorem 23.8 (Completeness)
If the propositional formula A is valid in any Heyting model (H ;ν) then A is
provable in the propositional natural deduction calculus for intuitionistic logic.
Proof. (i)
Let F be the collection of all formulæ. We define A∼B if and only ⊢A=B.
Evidently, ∼ is an equivalence relation over F :
■ A∼A since ⊢A⊃A;
■ if A∼B then ⊢A⊃B and ⊢B ⊃A, so B ∼A;
■ if A∼B and B ∼C then ⊢A⊃B and ⊢B ⊃C , thus ⊢A⊃C but also
⊢C ⊃B and ⊢B ⊃A, so ⊢C ⊃A thus A∼C . ,→
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Completeness

,→ Proof. (ii)
Let H = F/∼ and let [A]∼ ≤ [B]∼ exactly when A⊢B. Then 〈H;≤〉 is an order
since
■ [A]∼ ≤ [A]∼ because A⊢A;
■ if [A]∼ ≤ [B]∼ and [B]∼ ≤ [A]∼ then A⊢B and B ⊢A, so ⊢A=B, that is

A∼B, i.e., [A]∼ = [B]∼;
■ if [A]∼ ≤ [B]∼ and [B]∼ ≤ [C ]∼ then A⊢B and B ⊢C , so A⊢C , that is,

[A]∼ ≤ [C ]∼.
Also, 〈H;≤〉 is bounded:
■ ⊥= [⊥]∼, indeed ⊥⊢A for any formula A by ⊥-elimination, so [⊥]∼ ≤ [A]∼;
■ ⊤= [⊤]∼, indeed A⊢⊤ for any formula A by ⊤-introduction, so

[A]∼ ≤ [⊤]∼. ,→
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Completeness

,→ Proof. (iii)
Moreover, 〈H;≤〉 is a lattice:
■ [A]∼∧ [B]∼ = [A∧B]∼, indeed A∧B ⊢A and A∧B ⊢B by ∧-elimination,

so [A∧B]∼ ≤ [A]∼ and [A∧B]∼ ≤ [B]∼; if [C ]∼ ≤ [A]∼ and [C ]∼ ≤ [B]∼ then
C ⊢A and C ⊢B, so C ⊢A∧B by ∧-introduction, that is [C ]∼ ≤ [A∧B]∼;

■ [A]∼∨ [B]∼ = [A∨B]∼, indeed A⊢A∨B and B ⊢A∨B by ∨-introduction,
so [A]∼ ≤ [A∨B]∼ and [B]∼ ≤ [A∨B]∼; if [A]∼ ≤ [C ]∼ and [B]∼ ≤ [C ]∼ then
A⊢C and B ⊢C , so A∨B ⊢C by ∨-elimination, that is [A∨B]∼ ≤ [C ]∼.

Finally 〈H;≤〉 is a Heyting algebra: [A]∼ ⊃ [B]∼ = [A⊃B]∼, indeed
A∧ (A⊃B)⊢B by ⊃-elimination, so [A∧ (A⊃B)]∼ = [A]∼∧ [A⊃B]∼ ≤ [B]∼;
when [A]∼∧ [C ]∼ = [A∧C ]∼ ≤ [B]∼, A∧C ⊢B, so C ⊢A⊃B by
⊃-introduction, that is [C ]∼ ≤ [A⊃B]∼. It is worth noting that ¬[A]∼ = [¬A]∼
since ⊢¬A= (A⊃⊥). ,→
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Completeness

,→ Proof. (iv)
Let ν : V →H be ν(x)= [x ]∼ for any variable x .
By induction on the structure of A we prove that �A�= [A]∼ in ((H;≤) ,ν):
■ if A≡ x , a variable, by definition �A�= ν(x)= [x ]∼ = [A]∼;
■ if A≡⊤, �A�=⊤= [⊤]∼;
■ if A≡⊥, �A�=⊥= [⊥]∼;
■ if A≡B∧C , by induction hypothesis
�A�= �B�∧�C�= [B]∼∧ [C ]∼ = [B∧C ]∼ = [A]∼;

■ if A≡B∨C , by induction hypothesis
�A�= �B�∨�C�= [B]∼∨ [C ]∼ = [B∨C ]∼ = [A]∼;

■ if A≡B ⊃C , by induction hypothesis
�A�= �B� ⊃ �C�= [B]∼ ⊃ [C ]∼ = [B ⊃C ]∼ = [A]∼;

■ if A≡¬B, by induction hypothesis �A�=¬�B�=¬[B]∼ = [¬B]∼ = [A]∼. ,→

( 483 )

Completeness

,→ Proof. (v)
By hypothesis of the theorem, A is valid in any model that is �A�=⊤ in any
model, so in particular �A�=⊤ in ((H;≤) ,ν). But in ((H;≤) ,ν),
[A]∼ = �A�=⊤= [⊤]∼, thus A∼⊤, that is ⊢A⊃⊤ and ⊢⊤⊃A. By
⊤-introduction and ⊢⊤⊃A we get that ⊢A.
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Propositions as types

If we put side by side propositional logical formulæ and types in the simple
theory of types, we get:

types formulæ
variable variable

0 ⊥
1 ⊤

α×β α∧β
α+β α∨β
α→β α⊃β

This correspondence shows that we can translate any logical formula in a type
and any type in a formula by a one-to-one map.
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Propositions as types

If we put side by side the inference rules in the intuitionistic natural deduction
system, and the term constructors in the simple theory of types, we get:

proof assumption ⊤I ⊥E ∧I ∧E1,2 ∨I1,2 ∨E ⊃I ⊃E
term variable ∗ □α 〈_,_〉 π1,π2 iα1 , iα2 δ λ ·

There is an evident one-to-one correspondence which perfectly matches the
one on types.
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Propositions as types

Example 24.1
If A : α and B : β are terms then 〈A,B〉 : α×β becomes

····· A
α

····· B
β

∧I
α∧β

Example 24.2
If A : β is a term and x : α a variable then λx : α.A : α→β becomes

[α]∗
····· A
β

⊃I∗
α⊃β

where the label ∗ stands for x .
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Propositions as types

Example 24.3
Consider the proof:

[¬A]1 [A]2
¬E⊥

¬I1¬¬A
⊃I2

A⊃¬¬A
It gets translated in the typed term:

λx1 : A,x2 : A→ 0.x1 ·x2 : A→ ((A→ 0)→ 0) .
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Propositions as types

The correspondence illustrated so far is known as the propositions-as-types
interpretation and also as the Curry-Howard isomorphism.
At a first glance the simple theory of types is just a way to write proofs and
formulæ as linear expressions instead of adopting the tree-like syntax of
natural deduction.
But the logical syntax is coupled with a semantics, and the type theory with a
computational meaning given by the reduction rules.
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Computations, logically

Since every formal proof in intuitionistic logic corresponds to a typed term
and typed terms are also λ-terms, each proof is a program which computes
something.
It is possible to associate to each proof an object, which is an evidence of its
type, or its conclusion if you prefer. So the evidence of A∧B is a pair of
evidences for A and B; the evidence of A∨B is a pair (w ,e) with w ∈ {1,2}
telling us which disjunct holds and e an evidence for it; the evidence of A ⊃B
is a function mapping any evidence of A into an evidence of B.
These evidences are the intermediate results of the computation performed by
the λ-term associated to the proof. So in a constructive system proving a
statement is essentially equivalent to write a computer program satisfying a
specification given by the conclusion.
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Proofs, computationally

Since typed terms are proofs under the correspondence, we can reduce them
to a normal form. Formalising this process leads to state that every proof
possesses a normal form.
Thus, considering any proof π : ⊢A∨B it can be reduced to a proof
π′ : ⊢A∨B in normal form whose last step is either an instance of ∨I1 or ∨I2.
Hence the conclusion of the last but one step would be either A or B.
Similarly, considering any proof π : ⊢∃x : s .A it can be reduced to a proof
π′ : ⊢∃x : s .A in normal form whose last step is an instance of ∃I. Hence the
conclusion of the last but one step would be A[t/x ] for some term t,
providing a witness to the existential statement.
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Normalisation

We want to discuss the normalisation process, which has been sketched
before, in the case of intuitionistic propositional logic.
The objective of normalisation is to eliminate the redundant steps in a proof
and to give it a standard format, minimal in a sense.
A natural requirement for a proof in natural deduction is that no conclusion of
an introduction rule must be the major premise of an elimination rule. The
major premise is the formula containing as principal connective the one which
is eliminated by an elimination rule.
Also another natural requirement is that discharged assumptions should be
used in disjunction elimination, while the false elimination rule has to derive a
conclusion which is not ⊥.
Finally, although the previous requirements seem evident they can be hidden,
because of multiple subsequent elimination rules which can be permuted.
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Normalisation

The detour conversions are deputed to eliminate detours, i.e., redundant
elementary steps in a proof given by an introduction rule in the major premise
of an elimination rule:
■ ∧ rules:

····· p1

A

····· p2

B
∧I

A∧B
∧E1A

⇝
····· p1

A

····· p1

A

····· p2

B
∧I

A∧B
∧E2B

⇝
····· p2

B

■ ⊃ rules:
[A]1
····· p1

B
⊃I1

A⊃B

····· p2

A
⊃E

B

⇝

····· p2

A
····· p1

B
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Normalisation

■ ∨ rules: ····· p1

A
∨I1A∨B

[A]1
····· p2

C

[B]1
····· p3

C
∨E1

C

⇝

····· p1

A
····· p2

C

····· p1

B
∨I2A∨B

[A]1
····· p2

C

[B]1
····· p3

C
∨E1

C

⇝

····· p1

B
····· p3

C
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Normalisation

Since ¬A≡A⊃⊥ we do not need detour conversions for ¬ rules as soon as
we rewrite them as instances of the ⊃ rules. The conversions for ⊃ and ∨ are
justified by Proposition 6.2, which allows to join proofs.
There are no detour conversions for ⊥ and ⊤ since these connectives lack an
introduction and elimination rule, respectively.
It is instructive to see these conversions through the propositions-as-types
correspondence:
■ ∧ rules: π1〈p1,p2〉⇝p1 and π2〈p1,p2〉⇝p2;
■ ⊃ rules: (λx1 : A.p1) ·p2⇝p1[p2/x1];
■ ∨ rules: δ(i1 p1,p2,p3)⇝p2[p1/x1] and δ(i2 p1,p2,p3)⇝p3[p1/x1].

This observation shows that the conversion rules are precisely the reduction
rules of the simple theory of types.
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Normalisation

Detour conversions eliminate obviously redundant steps in a proof. However,
there are instances of the disjunction elimination rule that are indeed
redundant, those in which one of the discharged assumptions is not used.
This fact leads to define the following simplification conversions: if in

····· p1

A∨B

[A]1
····· p2

C

[B]1
····· p3

C
∨E1

C

either the assumption A in p2 is not used or the assumption B in p3 is not
used then we can use p2 or p3, respectively to prove the conclusion.
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Normalisation

····· p1

A∨B

····· p2

C

[B]1
····· p3

C
∨E1

C

⇝
····· p2

C

····· p1

A∨B

[A]1
····· p2

C

····· p3

C
∨E1

C

⇝
····· p3

C
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Normalisation

Moreover, the instances of the ⊥ elimination rule in which the conclusion is ⊥
are obviously redundant and we can apply another simplification conversion to
eliminate them. ····· p

⊥
⊥E⊥

⇝
····· p
⊥

In the Curry-Howard isomorphism, these conversions map to the admissible
reductions:
■ δ(p1,K p2,p3)⇝p2;
■ δ(p1,p2,K p3)⇝p3;
■ □0p⇝p.
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Normalisation

Sometimes detours and simplifications cannot be directly applied because they
are hidden inside a proof. This happens when we apply an elimination rule
whose major premise is an application of the disjunction elimination rule.
In those cases, we can move the disjunction elimination downwards,
eventually revealing hidden detours and simplifications. The rules to do so are
called permutation conversions.
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Normalisation

■ ∧ elimination:

····· p1

A∨B

[A]1
····· p2

C ∧D

[B]1
····· p3

C ∧D
∨E1

C ∧D
∧E1C

⇝ ····· p1

A∨B

[A]1
····· p2

C ∧D
∧E1C

[B]1
····· p3

C ∧D
∧E1C

∨E1
C

····· p1

A∨B

[A]1
····· p2

C ∧D

[B]1
····· p3

C ∧D
∨E1

C ∧D
∧E2D

⇝ ····· p1

A∨B

[A]1
····· p2

C ∧D
∧E2D

[B]1
····· p3

C ∧D
∧E2D

∨E1
D
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Normalisation

■ ⊥ elimination:

····· p1

A∨B

[A]1
····· p2

⊥

[B]1
····· p3

⊥
∨E1

⊥
⊥E

C

⇝ ····· p1

A∨B

[A]1
····· p2

⊥
⊥E

C

[B]1
····· p3

⊥
⊥E

C
∨E1

C
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Normalisation

■ ⊃ elimination:

····· p1

A∨B

[A]1
····· p2

C ⊃D

[B]1
····· p3

C ⊃D
∨E1

C ⊃D

····· p4

C
⊃E

D

⇝

⇝ ····· p1

A∨B

[A]1
····· p2

C ⊃D

····· p4

C
⊃E

D

[B]1
····· p3

C ⊃D

····· p4

C
⊃E

D
∨E1

D
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Normalisation

■ ∨ elimination:

····· p1

A∨B

[A]1
····· p2

C ∨D

[B]1
····· p3

C ∨D
∨E1

C ∨D

[C ]2
····· p4

E

[D]2
····· p5

E
∨E2

E

⇝

⇝ ····· p1

A∨B

[A]1
····· p2

C ∨D

[C ]2
····· p4

E

[D]2
····· p5

E
∨E2

E

[B]1
····· p3

C ∨D

[C ]3
····· p4

E

[D]3
····· p5

E
∨E3

E
∨E1

E
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Normalisation

By applying all these conversions, mimicking the reduction process of the
simple theory of types, we get the following result

Theorem 24.4 (Normalisation)
Each derivation in intuitionistic natural deduction reduces to a normal
derivation, in which none of the detour, simplification, and permutation
conversions can be applied.
Although we are not going the see the details of the proof since they rely on a
complex double induction, we are able to derive a few consequences which are
relevant.

Theorem 24.5 (Subformula property)
Let π : Γ⊢A be a normal derivation in intuitionistic propositional logic. Then
each formula in π is a subformula of some formula in Γ∪ {A}.
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Normalisation

By looking at the proof of the Normalisation Theorem,

Corollary 24.6
Let π : Γ⊢A be a normal derivation in intuitionistic propositional logic. If A is
not atomic or ⊥ then the last step is an introduction rule.

An immediate consequence is that disjunction is decidable.

Corollary 24.7 (Disjunction property)
Let π : Γ⊢A∨B be a normal derivation in intuitionistic propositional logic.
Then there is a subproof π′ of π whose conclusion is either A or B.

Similar results hold for intuitionistic first order logic, and in particular

Corollary 24.8 (Explicit definability)
Let π : Γ⊢∃x .A be a normal derivation in intuitionistic first order logic. Then
there is a subproof π′ of π whose conclusion is either A[t/x ] for some term t.
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Normalisation

It is important to remark that we have proved these results about
normalisation in the natural deduction system for pure propositional logic.
Choosing a different deductive system although sound and complete, does not
necessarily lead to the same result.
Also adding a theory and thus instances of the axiom rule may lead to
alternative normalisation procedures, or to systems in which normalisation
cannot be obtained.
In these cases the constructive nature of intuitionistic logic, stemming from
Corollaries 24.7 and 24.8 is not automatically achieved.
As an obvious counterexample consider that classical logic is just intuitionistic
logic plus the theory {A∨¬A : A formula}.
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Normalisation

An extremely important consequence of normalisation is that logic is
consistent.
Suppose ⊢⊥. Then there is a normal proof π : ⊢⊥ by Theorem 24.4.
Moreover, by Theorem 24.5, every formula occurring in π must be a
subformula of ⊥.
Also, by Corollary 24.6, the last step of π must not be an introduction rule.
Hence, the last step of π is necessarily an instance of ⊥-elimination from the
premise ⊥.
Which is impossible, being π in normal form.
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Syllabus

Constructive mathematics:
■ Semantics of first-order intuitionistic logic
■ Heyting categories
■ Logical categories
■ Kripke semantics
■ Realizability

( 513 )

Semantics

The algebraic semantics based on Heyting algebras can be generalised to
provide a meaning to first-order intuitionistic logic.
There are many ways to achieve this result, obtaining a soundness and
completeness theorem:
■ Heyting categories;
■ Logical categories;
■ Kripke semantics.

( 514 )

Heyting categories

Heyting categories are categories with a somewhat involved structure such
that the class of sub-objects of any object form a Heyting algebra, ordered by
the factorisation of morphisms.
Although it is beyond the scope of these lessons to provide a formal account,
the idea is that quantifiers get a meaning by considering the maximal and the
minimal element in a Heyting algebra which is related to the algebra used to
interpret the quantified formula, so that these extreme elements are generated
by the relation of algebras, which models the elimination of the quantified
variable.
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Toposes

Since any topos is also a Heyting category, one can limit the class of models
to toposes. It turns out that it suffices to prove a completeness result.
Moreover, a further limitation to Grothendieck toposes suffices too. This
becomes interesting because a topos of sheaves, the prototypical Grotendieck
topos, provides a model which is composed by a collection of almost classical
models a la Tarski, but in the internal set theory of the topos linked together
by a relation modelling the growth of knowledge implicit in the constructive
nature of intuitionistic first-order logic.
These models suffice to prove a completeness result, too.
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Toposes

Models based on Heyting categories, toposes, or Grothendieck toposes are
extremely useful and interesting. However, their study lies far beyond the
scope of this course.
Interested students may find more about this fascinating topic in the courses
about Topos Theory and Categorical Logic.

( 517 )

Logical categories

On a different line, by using categories naturally equipped with a Heyting
algebra and a sort of topological structure modelling the link between a
quantified formula and its instances through the introduction and elimination
inference rules, one obtains another sound and complete semantics.
These categories are known as logical categories. They are simpler than
Heyting categories, and allow to prove a completeness result in which there is
a simple classifying model.
All these semantics are strictly related one to the other, emphasising some
aspects of the deep nature of constructive logical systems, and this is the
reason why all of them have been developed.

( 518 )

Kripke’s semantics

The semantics based on Grothendieck toposes can be further specialised to
the category of sets and functions. Again, it is possible to prove a soundness
and completeness result.
This semantics is closer to Tarski’s semantics for first-order classical logic, and
it is called Kripke’s semantics.
Its precise definition and its properties will be sketched in the next slides: the
definition is quite technical, and difficult to justify (indeed, it is much easier
looking at the categorical description). The soundness theorem poses no
difficulties: it is proved, as usual, by an induction on the structure of proofs to
show that the inference rules preserve validity.
The completeness theorem is similar to the one for classical logic, with a more
involved saturation (the analogous of the construction of a Henkin set given a
consistent set). In the end, using sets, it is just more complex than the one
for Tarski’s semantics, but with no conceptual novelties.
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Kripke’s semantics

Definition 25.1 (Kripke’s structure)
Let Σ be a first-order signature with just one sort s. A Kripke’s structure on
Σ is K = 〈W ,≤, {Mw }w∈W 〉 where 〈W ,≤〉 is a preorder with a minimum
w0 ∈W and Mw is a Σ-structure for every w ∈W such that
■ �s�Mu ⊆ �s�Mv when u ≤ v ;
■ for every function symbol f in Σ, if u ≤ v then �f �Mu = �f �Mv ⇂ �s�Mu , with
⇂ the restriction of the function on the left to the domain on the right;

■ for every relation symbol r in Σ, if u ≤ v then �r�Mu = �r�Mv ⇂ �s�Mu , with
⇂ the restriction of the relation on the left to the domain on the right.

Intuitively, a Kripke’s structure is a collection of classical Σ-structures,
extending each other in accord with the indexing preorder.
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Kripke’s semantics

In a figure:

W
w0

u

v

≤ ≤

Mw0

r
Mu

r

Mv

r
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Kripke’s semantics

Definition 25.2 (Forcing)
Fixed a Kripke’s structure 〈W ,≤, {Mw }w∈W 〉, a world w ∈W , and an
evaluation of variables e in Mw , the forcing ⊩ of a formula in w under e is
inductively defined as:
■ w ⊩e ⊤;
■ w ̸⊩e ⊥;
■ w ⊩e r(t1, . . . ,tn), with r a relation symbol, if and only if

(�t1�w ,e , · · · ,�tn�w ,e) ∈ �r�w ;
■ w ⊩e A∧B if and only if w ⊩e A and w ⊩e B;
■ w ⊩e A∨B if and only if w ⊩e A or w ⊩e B;
■ w ⊩e A⊃B if and only if, for every u ≥w , u ̸⊩e A or u ⊩e B;
■ w ⊩e ∃x .A if and only if there is a ∈Mw such that w ⊩e[a/x ] A;
■ w ⊩e ∀x .A if and only if, for every u ≥w and for every a ∈Mu, it holds

u ⊩e[a/x ] A.
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Kripke’s semantics

Observe how the forcing relation, ignoring the worlds beyond w , reduces to
the usual semantics for first order classical logic.
In other terms, Kripke’s semantics extends the classical semantics by
considering multiple models, each one connected to the others through the ≤
relation. The interesting aspect is that the ordering of the worlds induces a
coherent extension of domains, and thus of interpretations.
So, we can recover the classical semantics by considering Kripke’s semantics
on the trivial preorder with just one element.
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Kripke’s semantics

Fixed a Kripke’s structure, a formula A is valid in the w world under the
evaluation of variables e on Mw when w ⊩e A.
In turn, fixed a Kripke’s structure and an evaluation of variables e on w0, the
initial world, a formula is valid in the structure under e when it is valid in w0.
A Kripke’s model for a theory T is pair composed by a Kripke’s structure and
an evaluation of variables on w0, making all the formualæ of T valid.

Theorem 25.3 (Soundness and Completeness)
Fixed a theory T and a formula A:
■ if ⊢T A in intuitionistic first order logic, then A is valid in every Kripke’s

model for T ;
■ if A is valid in every Kripke’s model for T , then ⊢T A.
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Realizability

On a very different line, some intuitionistic theories admit a very interesting
semantics that links them to computability.
The prominent one is Kleene’s realizability, which interprets the (intuitionistic)
truth of arithmetical statements on natural numbers.
To understand the key idea, let’s fix a reasonable enumeration of all the
partial recursive functions

©
φi

ª
i∈ω. Observing that ⊤ can be defined as 0= 0,

we can decide (realise) whether a formula F with no free variables is true by
providing just a number.
Indeed, any atomic formula has the form t = s which is decidable, so no
additional information is needed to realise it; A∧B is realised when we have
two numbers a and b realising A and B, so the pair 〈a,b〉 realises A∧B; to
realise A∨B it suffices to have a number n which tells which disjunct holds,
and another number to realise that disjunct; to realise A⊃B it suffices to
have the index i of a function φi mapping realizers of A into realizers of B.
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Realizability

Definition 25.4 (Kleene’s realizability)
Let E be a sentence in the language of arithmetic. Fix a reasonable
enumeration

©
φi

ª
i∈ω of all the partial recursive functions. Then e ∈N realises

E , notation e ⊩E , when
■ if E is atomic, i.e., E ≡ (s = t) then e ⊩E exactly when E is valid;
■ e ̸⊩⊥;
■ e ⊩A∧B when there are a,b ∈N such that e = 〈a,b〉, a⊩A and b ⊩B;
■ e ⊩A∨B when there are c ,d ∈N such that e = 〈c ,d〉, and d ⊩A when

c = 0, and d ⊩B when c ̸= 0;
■ e ⊩A⊃B when, for every a ∈N such that a⊩A, φe(a) is defined and
φe(a)⊩B;

■ e ⊩∀x .A when, for every n ∈N, φe(n) is defined and φe(n)⊩A[Sn(0)/x ];
■ e ⊩ ∃x : A when e = 〈n,a〉 and a⊩A[Sn(0)/x ].

For a formula A, e ⊩A when e ⊩∀x1, . . . ,xn.A with FV(A)= {x1, . . . ,xn}.
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Realizability

The fundamental result is soundness:

Theorem 25.5 (Nelson)
If Γ⊢A in Heyting arithmetic, and every hypothesis in Γ is realisable, so is the
conclusion.

Heyting arithmetic is the standard formal theory of naturals: it will be
introduced in the next lecture.
There is not a corresponding completeness theorem because some principles
which cannot be derived in Heyting arithmetic, are still realised. For example,
the already cited formal Church Thesis.
However, the Law of Excluded Middle is easily shown to be non-realisable.
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Limiting results:
■ Peano arithmetic
■ Standard and non-standard models
■ Representable entities
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Peano arithmetic

Peano arithmetic is the standard formal theory describing natural numbers
and their properties.
It is composed by a series of axioms divided into groups, and it is interpreted
in classical first order logic.
The very same theory interpreted in intuitionistic first order logic is called
Heyting arithmetic. Despite they are syntactically identical their
interpretations are quite different. For example, in Peano arithmetic it is
possible to show that there are functions which cannot be computed, while
every function which can be proved to exist in Heyting arithmetic, is
computable because of the constructive nature of the logic.
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Peano arithmetic

Peano arithmetic is based on the language generated by the the signature

〈{N} ; {0: N,S : N→N,+, · : N×N→N} ; {= : N×N}〉 .

The first group of axioms defines what is a natural number:

∀x ,y .S x = S y ⊃ x = y ; (1)

∀x .S x ̸= 0 . (2)
The idea is that natural numbers are the elements of the free algebra
generated by 0 and S. The successor function S given a number x calculates
the next number, x +1. So natural numbers are written in the unary
representation and they are naturally equipped with a total order structure
with minimum.
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Peano arithmetic

The second group of axioms defines addition and multiplication:

∀x .0+x = x ; (3)

∀x ,y .S x +y = S(x +y) ; (4)
∀x .0 ·x = 0 ; (5)

∀x ,y .S x ·y = x ·y +y . (6)
It is worth remarking the inductive nature of these definitions.
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Peano arithmetic

The third and last group of axioms is a schema: for any formula A

A[0/x ]∧ (∀x .A⊃A[S x/x ])⊃∀x .A (7)

This schema formalises induction on the structure of natural numbers:
■ if A holds on 0
■ and assuming that A holds on x we can show that it holds on S x ,
■ then A holds for every x ∈N.
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Standard model

The standard model for Peano arithmetic is the structure which interprets the
signature as
■ the unique sort into the set of natural numbers denoted by N;
■ the function symbols into the zero number, the successor function, and the

usual addition and multiplication, respectively.
Any model, i.e., any pair (M ,σ) is said to be standard when M is the
structure above while no restriction is posed on the evaluation σ of variables.
Although it may be apparently confusing we adopt the standard notation
which uses the same symbols to denote the formal elements of the syntax and
their intended interpretation. In any standard model this convention makes no
difference.
Since the purpose of the theory of arithmetic is to characterise the class of
standard models, it would be nice if these were the only models of the theory.
Unfortunately this is not the case.
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Non-standard models

Definition 26.1 (Non-standard model)
Any structure N on the language of Peano arithmetic which is not
isomorphic to the standard model M but for some evaluation σ of variables is
a model (N ,σ) of Peano arithmetic, is called a non-standard model.
In the definition above an isomorphism between structures f : N →M is
■ an invertible function between the universes;
■ for each term t, f (�t�N )= �t�M .

If a non-standard model exists it means that there is a structure N which
makes Peano arithmetic true but interprets some term into an element e in
the universe which cannot be mapped in some natural number.
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Non-standard models

Proposition 26.2
There is a non-standard model for Peano arithmetic.
Proof. (i)
Define S0(0)= 0 and S i+1(0)= S S i (0). Evidently the term Sn(0) gets
interpreted in n in any model.
Let Σn = ©

x ̸= S i (0): i < n
ª

be a collection of formulæ and let Σ=S
n∈NΣn.

Calling M the structure of the standard model and defining σn such that
σn(x)= n, evidently the standard model (M ,σn) makes Σn valid together
with all the axioms of Peano arithmetic.
Thus any finite Ξ⊂Σ has a model because it is contained in Σn for some n.
Then by the Compactness Theorem 12.1 Σ has a model (N ,σ) which makes
true also all the axioms of Peano arithmetic. ,→
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Non-standard models

,→ Proof. (ii)
In this model σ(x) ̸= n for any n ∈N because x ̸= Sn(0) occurs in Σ so by
definition of interpretation σ(x) ̸= �Sn(0)�N .
Hence there is an element k ̸∈N such that σ(x)= k. But interpreting x on M

leads to some n ∈N whatever evaluation of variables we may choose. So any
function mapping N to M has to be non-invertible on the term x .
Thus, (N ,σ) is a model of Peano arithmetic which is not isomorphic to any
standard model, so it is non-standard.
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Discussion

The existence of a non-standard model for Peano arithmetic shows that this
theory does not describe exactly the natural numbers and their properties
which can be expressed in the language. Here, not exactly means not only.
The first thought is to try to complete Peano arithmetic to prevent the
construction of a model like the (N ,σ) above. Clearly, the shape of the proof
using the Compactness Theorem, does not allow to obtain this result in a
direct way.
However, it is not evident whether the existence of a non-standard model is
disturbing: we cannot use the proof of Proposition 26.2 to write a formula
which holds in the non-standard model while it does not in any standard
model. Indeed we used this property to synthesise the non-standard model
from the standard one.
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Discussion

Of course, we can use a theory to separate the non-standard model from any
standard one: this is exactly the purpose of the Σ theory in Proposition 26.2.
But still it is not clear whether there is closed formula, i.e., a formula with no
free variables, allowing to separate standard models from non-standard ones.
This would be crucial since such a formula φ does not depend on the
evaluation of variables, thus its truth variable would be defined by the
structure of the model only. In a sense φ, if it exists, cannot be provable even
if it is true in any standard model because it would be false in some
non-standard model, thus by the Soundness Theorem it cannot be proved.
If such a φ exists, it means that we have a way to separate models within the
theory of Peano arithmetic just by adding an axiom φ, or its complement ¬φ.
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Representable entities

Definition 27.1 (Numerals)
Given n ∈N the numeral n representing n is defined as 0≡ 0 and n+1≡ S n.

Definition 27.2 (Representation)
A relation R ⊆Nk is representable in Peano arithmetic if and only if there is a
formula φ such that
■ if (n1, . . . ,nk) ∈R then ⊢PA φ(n1, . . . ,nk);
■ if (n1, . . . ,nk) ̸∈R then ⊢PA ¬φ(n1, . . . ,nk);

where ⊢PA means ‘provable in Peano arithmetic’.
A function f : Nk →N is representable in Peano arithmetic if the relation
R = ©

(n1, . . . ,nk ,m): m = f (n1, . . . ,nk)
ª

is representable.
A set S ⊂N is representable in Peano arithmetic if its characteristic function is
representable.

( 545 )

Representable entities

Proposition 27.3
If the relation P ,Q ⊆Nk are representable in Peano arithmetic, so are ¬P,
P ∧Q, and P ∨Q.
Proof.
Since P and Q are representable there are φP and φQ as in Definition 27.2.
So (n1, . . . ,nk) ∈¬P if and only if (n1, . . . ,nk) ̸∈P. Thus ¬φP represents ¬P
because ¬¬φP(n1, . . . ,nk)=φP(n1, . . . ,nk).
Also (n1, . . . ,nk) ∈P ∧Q if and only if (n1, . . . ,nk) ∈P and (n1, . . . ,nk) ∈Q.
Thus φP∧Q =φP ∧φQ . Similarly φP∨Q =φP ∨φQ .
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Representable entities

Proposition 27.4
The 0 function is representable.
Proof.
Since 0: N→N we have to find a formula representing Z = ©

(n,m): m = 0(n)
ª
.

Consider φ0(x ,y)≡ (y = 0).
■ If (n,m) ∈Z then m = 0(n), so m = 0. Thus φ0(n,m)≡ (m = 0)≡ (0= 0),

so ⊢PA φ0(n,m) by reflexivity.
■ If (n,m) ̸∈Z then m ̸= 0(n), so m ̸= 0. Thus m≡ S m′ and
φ0(n,m)≡ (m = 0)≡ (S m′ = 0), so ⊢PA ¬φ0(n,m) by axiom.
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Representable entities

Proposition 27.5
The successor function is representable.
Proof.
The formula y = x +1 represents the successor function succ(x) = y .

Proposition 27.6
The projection functions are representable.
Proof.
The formula y = xi represents the projection Uk

i (x1, . . . ,xk)= y .
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Representable entities

Proposition 27.7
If g and h0, . . . ,hk are representable, so is f obtained by substitution.
Proof.
Let φg and φh0 , . . . ,φhk be the formulæ representing g(z1, . . . ,zk)= y and
h0(x1, . . . ,xm)= y , . . . ,hk(x1, . . . ,xm)= y respectively, making explicit the link
between variables and arguments and results. Then the formula

φf ≡∃z1, . . . ,zk . φh0 [z1/y ]
∧ · · ·
∧φhk [zk/y ]
∧φg

represents f (x1, . . . ,xm)= y .
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Representable entities

Proposition 27.8
If g is representable, so is f obtained by minimalisation.
Proof.
Let φg be the formula representing g(x1, . . . ,xk ,m)= z .
Then f (x1, . . . ,xk)= y is represented by

φg [y/m,0/z ]∧∀z .z < y ⊃¬φg [0/z] .

Proposition 27.9
Addition, multiplication and the relation equal to 0 are all representable.
Proof.
Clearly x +y = z and xy = z represent addition and multiplication. Also x = 0
represents the relation equal to 0.
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Representable entities

Fact 27.10
The pairing function 〈x ,y〉= (x +y)(x +y +1)/2+x is representable. So are
its projections π1 and π2.
Proof.
The pairing function is represented by 2z = (x +y)(x +y +1)+2x ; π1(z)= x is
represented by ∃y .z = 〈x ,y〉 and π2(z)= y is represented by ∃x .z = 〈x ,y〉. All
these functions are primitive recursive.

Fact 27.11
The function rem(x ,y)= z with z the remainder of y/x is representable.
Proof.
It is represented by ∃d .y = dx +z ∧∃e.e ̸= 0∧x = z +e.
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Representable entities

To show that a function constructed by primitive recursion is representable we
need a couple of preliminary results.

Theorem 27.12 (Chinese remainder)
Let n1, . . . ,nk ∈N be pairwise coprime, i.e., gcd(ni ,nj)= 1 when i ̸= j . Then for
every x1, . . . ,xk ∈N there is a ∈N such that a≡ xi (mod ni ) for every 1≤ i ≤ k.
Proof.
Let N =Qk

i=1 ni and Ni =N/ni , 1≤ i ≤ k.
Observe that gcd(Ni ,ni )= 1 so there are pi ,qi ∈N such that qiNi = pini +1 by
Bézout identity.
Define ei = qiNi . Then ei ≡ 1 (mod ni ) and ei ≡ 0 (mod nj) for i ̸= j .
Let a =Pk

i=1 eixi . Hence

a =
Ã
eixi +

kX
j=1,i ̸=j

ejxj

!
≡

Ã
1xi +

kX
j=1,i ̸=j

0xj

!
= xi (mod ni ) .
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Representable entities

Fix y0, . . . ,yk . Let m =max{k ,y0, . . . ,yk }+1 and xi = 1+ (1+ i)m!, 0≤ i ≤ k.

Proposition 27.13
x0, . . . ,xk are pairwise coprime.
Proof.
Suppose p is a prime dividing xi and xj , i ̸= j . Then p divides xi −xj .
Unfolding the definition of x , p has to divide (i − j)m!.
Since p divides xi , it holds (1+ i)m!≡−1 (mod p), thus p does not divide m!,
which implies p >m.
Hence p has to divide i − j , that is i ≡ j (mod p). However, i ≤ k ≤m < p and
i ≤ k ≤m < p, hence i = j , contradiction.

Fact 27.14
For each 0≤ i ≤ k, yi < xi .
Proof.
yi <m≤m!< xi .
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Representable entities

Definition 27.15 (β function)
Define β∗(d0,d1, i)= rem(1+ (i +1)d1,d0) and β(d , i)=β∗(π1(d),π2(d), i).

Fact 27.16
The functions β∗ and β are both representable and primitive recursive.
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Representable entities

Proposition 27.17
For every sequence a0, . . . ,an ∈N there is a value d such that β(d , i)= ai for
each 0≤ i ≤ n.
Proof.
As before let m =max{n,a0, . . . ,an}+1 and xi = 1+ (i +1)m!, 0≤ i ≤ n.
Then x0, . . . ,xn are pairwise coprime and all bigger than a0, . . . ,an.
Hence by Theorem 27.12 there is d0 ∈N such that d0 ≡ ai (mod xi ) for every
0≤ i ≤ n.
Since xi > ai , rem(xi ,ai )= ai = rem(xi ,d0).
Pose d = 〈d0,m!〉.
Then β(d , i)=β∗(d0,m!, i)= rem(1+ (i +1)m!,d0)= rem(xi ,d0)= ai .
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Representable entities

Proposition 27.18
If g and h are representable, so is f constructed by primitive recursion:
f (x1, . . . ,xk ,0)= g(x1, . . . ,xk) and
f (x1, . . . ,xk ,m+1)= h(x1, . . . ,xk ,m, f (x1, . . . ,xk ,m)).
Proof.
If φg represents g(x1, . . . ,xn)= y and φh represents h(x1, . . . ,xn,m,q)= y then
we can easily represent f (x1, . . . ,xn,y)= z if we suppose there is a sequence
p0, . . . ,py such that

py = z ∧φg [p0/y ]∧∀i .0≤ i < y ⊃φh[i/m,pi/q,pi+1/y ] .

This requirement, which is not a formula by itself, can be expressed as a
proper formula in Peano arithmetic using the β function:

∃p. β(p,y)= z
∧φg [β(p,0)/y ]
∧∀i .0≤ i < y ⊃φh[i/m,β(p, i)/q,β(p, i +1)/y ] .
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Representable entities

Theorem 27.19
All recursive functions are representable in Peano arithmetic.
Proof.
Immediate consequence of Propositions 27.4, 27.5, 27.6, 27.7, 27.8,
and 27.18.

Corollary 27.20
All recursive sets and relations are representable in Peano arithmetic.

Note that it is a constructive proof: given a partial recursive function f it
provides an effective method to build a formula representing f .

( 557 )
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Induction, again

The induction principle says that fixed a property P ⊆N, if 0 ∈P and for any
n ∈N, if n ∈P then n+1 ∈P, then P =N.
Clearly, the induction schema (7) in Peano arithmetic is just an approximation
of the real induction principle: since

¯̄
℘(N)

¯̄
= 2|N| while the collection of

formulæ on the language of arithmetic has cardinality |N| we have not enough
formulæ to represent all the possible properties.
The gap between what can be formalised and what is the intended meaning
about the structure of natural numbers, the induction principle at the first
place, is responsible for non-standard models.
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Incompleteness theorem

Theorem 28.1 (Gödel’s Incompleteness Theorem)
Let T be an effective theory which is consistent, and able to represent all the
recursive functions. Then there is a closed formula G such that T ̸⊢G and
T ̸⊢¬G.

A theory is said to be effective when the set of axioms is recursive, that is
applying a coding to its axioms so that they become a set of numbers, this
set is recursive.
A coding of Peano arithmetic is a total map g from the expressions of the
syntax (terms, formulæ, proofs) to N such that
■ g is injective;
■ g is recursive;
■ g−1 on the image of g is recursive too.
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Strategy

The proof of the incompleteness theorem is complex. It has a difficult part,
the fixed point lemma and a lot of technicalities.
The strategy is to consider the sentence “this sentence is not provable”.
■ we will show that there is a coding function that maps terms, formulæ,

and proofs into natural numbers;
■ hence it is possible to write a formula which says “there is a number p

which is the code of a proof of the sentence x”;
■ negating that formula we can express the fact that x is not provable;
■ we will show a fixed point theorem saying that there exists a fixed point of

the transformation which maps each sentence x to the code of the
sentence expressing that x is not provable;

■ thus the sentence G becomes the formula stating that x is not provable
with x substituted with the fixed point;

■ the meaning of G is that G is not provable;
■ but G must be true in the standard model otherwise the theory would be

contradictory, so the result follows.
( 563 )

Coding terms

In the following for the sake of simplicity, we will assume the set of variables
in the language of Peano arithmetic to be V = {xi : i ∈N}.

Definition 28.2 (Coding terms)
The Gödel’s coding function g on terms is inductively defined as follows:
■ g(0)= 2 ·3;
■ g(xi )= 2 ·32 ·5i+1;
■ g(S t)= 2 ·33 ·5g(t);
■ g(t + s)= 2 ·34 ·5g(t) ·7g(s);
■ g(t · s)= 2 ·35 ·5g(t) ·7g(s).

Thanks to the theorem saying that natural numbers admit a unique
factorisation in primes, g is computable, injective, and g−1 is computable.
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Coding terms

A few remarks are needed:
■ each code for a term is of the form 2 ·n with n odd;
■ the exponent of the factor 3 tells whether the term is 0, a variable, a

successor, a sum, or a multiplication;
■ the parameters of a term, i.e., the index of the variable, or the arguments

of the successor, of the sum, or the multiplication, are the exponents of
the factors 5 and 7, in that order.

Hence, it is possible to write a formula in Peano arithmetic that tells whether
its argument is a code of a term by Proposition 27.20. Observe how, by the
same result, one can write representations of the function extracting the
various pieces of information about a coded term.
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Coding formulæ

Definition 28.3 (Coding formulæ)
The Gödel’s coding function g on formulæ extends the coding of terms and it
is inductively defined as follows:
■ g(⊤)= 22 ·3;
■ g(⊥)= 22 ·32;
■ g(t = s)= 22 ·33 ·5g(t) ·7g(s);
■ g(¬A)= 22 ·34 ·5g(A);
■ g(A∧B)= 22 ·35 ·5g(A) ·7g(B);
■ g(A∨B)= 22 ·36 ·5g(A) ·7g(B);
■ g(A⊃B)= 22 ·37 ·5g(A) ·7g(B);
■ g(∀x .A)= 22 ·38 ·5g(A) ·7g(x);
■ g(∃x .A)= 22 ·39 ·5g(A) ·7g(x).

Again the coding g is computable, injective, and g−1 is computable too.
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Coding formulæ

A few remarks are needed:
■ each code for a formula is of the form 22 ·n with n odd, so we can separate

the codes of terms from the ones of formulæ just looking the exponent of
the factor 2;

■ the exponent of the factor 3 tells which kind of formula the code
represents;

■ the parameters of a formula are the exponents of the factors 5 and 7, in
that order.

Hence, it is possible to write a formula in Peano arithmetic that tells whether
its argument is a code of a formula, and formulæ to tell the various pieces of
information about a given coded formula.
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Coding sequences

Definition 28.4 (Coding finite sequences)
The Gödel’s coding function g of a finite sequence n1, . . . ,nk of natural
numbers is g(n1, . . . ,nk)= 23 ·Q1≤i≤k pni+1

i+1 with pj the j-th prime number.

It is clear that the coding function is injective, computable, and its inverse is
computable too. Also the codes for sequences can be separated by the codes
of terms and formulæ, and the set of codes for sequences can be represented
in the sense of Proposition 27.20 by some formula of Peano arithmetic.
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Coding proofs

Definition 28.5 (Coding proofs)
The Gödel’s coding function g on proofs extends the previous coding g and it
is inductively defined as:

■ g
µ
π1 : Γ⊢A π2 : Γ⊢B

∧I
A∧B

¶
= 24 ·3 ·5g(π1 : Γ⊢A) ·7g(π2 : Γ⊢B) ·13g(A∧B);

■ g
µ
π : Γ⊢A∧B

∧E1A

¶
= 24 ·32 ·5g(π : Γ⊢A∧B) ·13g(A);

■ g
µ
π : Γ⊢A∧B

∧E2B

¶
= 24 ·33 ·5g(π : Γ⊢A∧B) ·13g(B);

■ g
µ
π : Γ⊢A

∨I1A∨B

¶
= 24 ·34 ·5g(π : Γ⊢A) ·13g(A∨B);

■ g
µ
π : Γ⊢B

∨I2A∨B

¶
= 24 ·35 ·5g(π : Γ⊢B) ·13g(A∨B); ,→

( 569 )

Coding proofs

,→ (Coding proofs)

■ g
µ
π1 : Γ⊢A∨B π2 : Γ,A⊢C π3 : Γ,B ⊢C

∨E
C

¶
=

24 ·36 ·5g(π1 : Γ⊢A∨B) ·7g(π2 : Γ,A⊢C) ·11g(π3 : Γ,B⊢C) ·13g(C);

■ g
µ
π : Γ,A⊢B

⊃I
A⊃B

¶
= 24 ·37 ·5g(π : Γ,A⊢B) ·13g(A⊃B);

■ g
µ
π1 : Γ⊢A⊃B π2 : Γ⊢A

⊃E
B

¶
= 24·38·5g(π1 : Γ⊢A⊃B)·7g(π2 : Γ⊢A)·13g(B);

■ g
µ
π : Γ,A⊢⊥

¬I¬A

¶
= 24 ·39 ·5g(π : Γ,A⊢⊥) ·13g(¬A);

■ g
µ
π1 : Γ⊢¬A π2 : Γ⊢A

¬E⊥

¶
= 24 ·310 ·5g(π1 : Γ⊢¬A) ·7g(π2 : Γ⊢A) ·13g(⊥);

■ g
³

⊤I⊤
´
= 24 ·311 ·13g(⊤); ,→
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Coding proofs

,→ (Coding proofs)

■ g
µ
π : Γ⊢⊥

⊥E
A

¶
= 24 ·312 ·5g(π : Γ⊢⊥) ·13g(A);

■ g
³

lem
A∨¬A

´
= 24 ·313 ·13g(A∨¬A);

■ g
µ
π : Γ⊢A

∀I∀x .A

¶
= 24 ·314 ·5g(π : Γ⊢A) ·13g(∀x .A) ·19g(x);

■ g
µ
π : Γ⊢∀x .A

∀E
A[t/x ]

¶
= 24 ·315 ·5g(π : Γ⊢∀x .A) ·13g(A[t/x ]) ·17g(t) ·19g(x);

■ g
µ
π : Γ⊢A[t/x ]

∃I∃x .A

¶
= 24 ·316 ·5g(π : Γ⊢A[t/x ]) ·13g(∃x .A) ·17g(t) ·19g(x);

■ g
µ
π1 : Γ⊢∃x .A π2 : Γ,A⊢B

∃E
B

¶
=

24 ·317 ·5g(π1 : Γ⊢∃x .A) ·7g(π2 : Γ,A⊢B) ·13g(B) ·19g(x); ,→
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Coding proofs

,→ (Coding proofs)
■ g

³
ax∀x .x = x

´
= 24 ·318 ·13g(∀x .x=x) ·19g(x);

■ g
³

ax∀x ,y .x = y ⊃ y = x
´
= 24 ·319 ·13g(∀x ,y .x=y⊃y=x) ·19g(x ,y);

■ g
³

ax∀x ,y ,z .x = y ∧y = z ⊃ x = z
´
=

24 ·320 ·13g(∀x ,y ,z .x=y∧y=z⊃x=z) ·19g(x ,y ,z);

■ g
µ
π1 : Γ⊢A[t/x ] π2 : Γ⊢ t = r

ax
A[r/x ]

¶
=

24 ·321 ·5g(π1 : Γ⊢A[t/x ]) ·7g(π2 : Γ⊢t=r) ·13g(A[r/x ]) ·19g(x);
■ g

³
ax∀x1, . . . ,xn.∃!z .z = f (x1, . . . ,xn)

´
=

24 ·322 ·13g(∀x1,...,xn .∃!z .z=f (x1,...,xn)) ·17g(f (x1,...,xn)) ·19g(x1,...,xn ,z);
■ g

³
ax∀x .S x ̸= x

´
= 24 ·323 ·13g(∀x .S x ̸=x) ·19g(x); ,→
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Coding proofs

,→ (Coding proofs)
■ g

³
ax∀x ,y .S x = S y ⊃ x = y

´
= 24 ·324 ·13g(∀x ,y .S x=S y⊃x=y) ·19g(x ,y);

■ g
³

ax∀x .0+x = x
´
= 24 ·325 ·13g(∀x .0+x=x) ·19g(x);

■ g
³

ax∀x ,y .S x +y = S(x +y)
´
= 24 ·326 ·13g(∀x ,y .S x+y=S(x+y)) ·19g(x ,y);

■ g
³

ax∀x .0 ·x = 0
´
= 24 ·327 ·13g(∀x .0·x=0) ·19g(x);

■ g
³

ax∀x ,y .S x ·y = x ·y +y)
´
= 24 ·328 ·13g(∀x ,y .S x ·y=x ·y+y)) ·19g(x ,y);

■ g
³

ax
A[0/x ]∧ (∀x .A⊃A[S x/x ])⊃∀x .A

´
=

24 ·329 ·5g(A) ·13g(A[0/x ]∧(∀x .A⊃A[S x/x ])⊃∀x .A) ·19g(x);
■ if A ∈ Γ is a proof by assumption g(A)= 24 ·330 ·5g(A) ·7g(Γ) ·13g(A) with
Γ= ©

γ1, . . . ,γn
ª

and g(Γ)= g(g(γ1), . . . ,g(γn)).
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Coding proofs

Although it is long and tedious to verify g is injective, computable, and g−1 is
recursive. Also, the coding function is written down to make easy to tell
pieces apart. For example, the code of the conclusion is always the exponent
of the 13 factor.
As before, all the function telling apart the pieces of information about a
coded proof can be represented in Peano arithmetic, as well as the fact that a
number is the code of a proof.
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Numeral

Definition 28.6 (Numeral)
The numeral ⌜A⌝ of a formula A is defined as ⌜A⌝= Sg(A)(0), that is the
code of A written in the syntax of Peano arithmetic.
Similarly, the numeral of a term t is ⌜t⌝= Sg(t)(0), the numeral of a proof π
is ⌜π⌝= Sg(π)(0), and the numeral of a sequence is
⌜e1, . . . ,en⌝= Sg(e1,...,en)(0).

Numerals allow to internalise the codes: we can indirectly speak of a formula
(term, proof, sequence) by stating a property of its code. As soon as the
property does not rely on the value but on the “meaning” of the code, this is
a perfectly reasonable way to proceed.
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Fixed point lemma

Lemma 28.7 (Fixed point)
Let Ξ be a theory in which every (primitive) recursive function is
representable and let A be a formula such that FV(A) = {y }.
Then there is a formula δA such that FV(δA)=; and ⊢Ξ δA =A[⌜δA⌝/y ].
Proof. (i)
First it is provable in pure logic that

⊢B[k/z ]= (∃z .z = k ∧B)

for every formula B and for every term t of the same sort as z .
Let ∆F be the map from formulæ to formulæ defined by

∆F (B)≡∃z .z = ⌜B⌝∧B .

Evidently this function is primitive recursive. ,→
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Fixed point lemma

,→ Proof. (ii)
Thus the map ∆N defined by

∆N(g(B))= g(∆F (B))

is total on the image of g and (primitive) recursive.
By hypothesis there is a formula ∆ with FV(∆)= {x ,y } such that ∆ represents
the function ∆N. In particular it is provable that

⊢Ξ (y = ⌜∆N(g(B))⌝)=∆[⌜B⌝/x ] .

With no loss of generality we may define

δA ≡∆F (F )

for some formula F to be determined. ,→
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Fixed point lemma

,→ Proof. (iii)
A[⌜δA⌝/y ]

≡A[⌜∆F (F )⌝/y ] (definition of δA)
≡A[⌜∆N(g(F ))⌝/y ] (definition of ∆N)
= ∃y .y = ⌜∆N(g(F ))⌝∧A (avoiding substitution)
= ∃y .∆[⌜F⌝/x ]∧A (definition of ∆)
= ∃x .x = ⌜F⌝∧∃y .∆∧A (avoiding substitution)

Hence posing F ≡∃y .∆∧A,

≡∃x .x = ⌜F⌝∧F (definition of F )
≡∆F (F ) (definition of ∆F )
≡ δA (definition of δA)
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Provability predicate

Definition 28.8 (Provability predicate)
The formula D with FV(D)= {x ,y } is defined as

D ≡ isConclusion(y ,x)∧ isProof(x)∧ isFormula(y) .

The provability predicate T is the formula ∃x .D having FV (T )= {y }.

Clearly D[⌜π⌝/x ,⌜A⌝/y ] holds exactly when A is the conclusion of the proof
π : ⊢A. And consequently T [⌜A⌝/y ] holds when A is provable.
The formulæ isConclusion(x ,y), isProof(x), and isFormula(y) in the definition
of D have not been made explicit. Their definitions come from the fact that
the collection of proofs and formulæ is recursive, and the functions to tell
pieces apart are computable, as already remarked.

( 579 )

Incompleteness theorem

Theorem 28.9 (Gödel’s Incompleteness Theorem)
Let T be an effective theory which is consistent and able to represent all the
recursive functions. Then there is a closed formula G such that

T ̸⊢G and T ̸⊢¬G .

Proof.
Consider the formula ¬T [x/y ]: applying the fixed point lemma there is G
such that FV(G)=; and ⊢G =¬T [⌜G⌝/y ].
Assume there is π : ⊢G . Then ⊢¬T [⌜G⌝/y ]. But because π : ⊢G it holds
that ⊢D[⌜π⌝/x ,⌜G⌝/y ], and thus ⊢∃x .D[⌜G⌝/y ], that is ⊢T [⌜G⌝/y ]
making the theory non consistent. Hence ̸⊢G .
Oppositely suppose there is π : ⊢¬G . Then ⊢T [⌜G⌝/y ] by definition of G ,
so ⊢∃x .D[⌜G⌝/y ]. But this means that there exists θ : ⊢G with x = ⌜θ⌝.
Thus again we get a contradiction. Hence ̸⊢¬G .
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Properties of provability

Proposition 29.1
In Peano arithmetic, ⊢A if and only if ⊢T [⌜A⌝/y ].
Proof.
Let π : ⊢A. Then ⊢D[⌜π⌝/x ,⌜A⌝/y ] by Definition 28.8, thus ⊢T [⌜A⌝/y ].
Conversely, if ⊢T [⌜A⌝/y ] then in the standard model there is number which
is the code of a proof ⊢A by Definition 28.8.

Proposition 29.2
In Peano arithmetic, if ⊢T [⌜A⌝/y ] then ⊢T [⌜T [⌜A⌝/y ]⌝/y ].
Proof.
This is just Proposition 29.1 with A≡T [⌜A⌝/y ].
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Properties of provability

Proposition 29.3
In Peano arithmetic, if ⊢T [⌜A⊃B⌝/y ] then ⊢T [⌜A⌝/y ]⊃T [⌜B⌝/y ].
Proof.
Let ⊢T [⌜A⊃B⌝/y ], then by Proposition 29.1 ⊢A⊃B.
Assume A. Then ⊢B by implication elimination and ⊢T [⌜B⌝/y ] by
Proposition 29.1.
Since T [⌜A⌝/y ] is equivalent to A by Proposition 29.1,
⊢T [⌜A⌝/y ]⊃T [⌜B⌝/y ] by implication introduction.

( 585 )

Löb theorem

Theorem 29.4 (Löb)
In Peano arithmetic let θ be a closed formula.
Then ⊢T [⌜θ⌝/y ]⊃ θ if and only if ⊢ θ.
Proof. (i)
If ⊢ θ then ⊢T [⌜θ⌝/y ]⊃ θ obviously.
Conversely assume ⊢T [⌜θ⌝/y ]⊃ θ.
By Lemma 28.7 there is a closed formula φ such that ⊢φ= (T [⌜φ⌝/y ]⊃ θ).
Then

⊢φ⊃ (T [⌜φ⌝/y ]⊃ θ)
⇒ ⊢T [⌜φ⊃ (T [⌜φ⌝/y ]⊃ θ)⌝/y ] (by Proposition 29.1)
⇒ ⊢T [⌜φ⌝/y ]⊃T [⌜T [⌜φ⌝/y ]⊃ θ⌝/y ] (by Proposition 29.3)
⇒ ⊢T [⌜φ⌝/y ]⊃ (T [⌜T [⌜φ⌝/y ]⌝/y ]⊃T [⌜θ⌝/y ]) (by Proposition 29.3)

By Proposition 29.2 ⊢T [⌜φ⌝/y ]⊃T [⌜T [⌜φ⌝/y ]⌝/y ]. ,→
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Löb theorem

,→ Proof. (ii)
So

⊢φ⊃ (T [⌜φ⌝/y ]⊃ θ)
⇒ ⊢T [⌜φ⌝/y ]⊃T [⌜θ⌝/y ]
⇒ ⊢T [⌜φ⌝/y ]⊃ θ (by hypothesis)
=φ (by definition of φ)
⇒ ⊢T [⌜φ⌝/y ] (by Proposition 29.1)

Hence ⊢ θ by definition of φ.

( 587 )

Second incompleteness theorem

Theorem 29.5 (Gödel’s second incompleteness theorem)
There is no provable formula C in Peano arithmetic which codes the
consistency of the theory, i.e., such that ⊢C ⊃¬T [⌜⊥⌝/y ].
Proof.
Since Peano arithmetic is consistent ̸⊢ ⊥.
Then by Theorem 29.4 ̸⊢T [⌜⊥⌝/y ]⊃⊥, i.e. ̸⊢¬T [⌜⊥⌝/y ].
If ⊢C then ⊢¬T [⌜⊥⌝/y ], obtaining a contradiction.

It is important to remark that Löb’s theorem and Gödel’s second
incompleteness theorem can be immediately extended to all the consistent
theories with a provability predicate T for which Propositions 29.1, 29.2,
and 29.3 hold.
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Mathematical meaning

The incompleteness theorems closes the quest for a universal, self-contained
foundation of Mathematics which is able to prove its own consistency. Simply,
such a system cannot exist.
Nevertheless these theorems opened the way to many developments, and to
some of the other fundamental results in XXth century:
■ the effective construction of non-computable functions
■ the idea of coding lead to reason “modulo a coding function”, which has

been influential in algebra, algebraic geometry, algebraic topology, number
theory, . . .

■ examples of independent statements arose in many fields and they shed
lights to a variety of hidden aspects of apparently clean notions, like for
example the assumptions behind cardinality in set theory.

( 589 )

Foundational consequences

Having a mathematical theory T which is powerful enough to represent Peano
arithmetic has the consequence that we cannot prove its consistency within T .
We need a theory T ′ containing T , and more powerful.
This fact led to the development of many hierarchies of formal systems to
classify the power of mathematical theories: we scratched just the surface by
showing that the consistency of Peano arithmetic can be proved in a stronger
system. But how much stronger? Since the proof of Gödel’s results much
deeper analyses have been conducted, and nowadays this part of Logic is a
complex, intricate, difficult field on its own.
In constructive mathematics the same fact led to doubt that “truth” is the
right concept to analyse, and there are approaches favouring the notion of
provability as the real foundation of Mathematics. This has a number of
consequences, which we do not want to discuss here.

( 590 )

Understanding

For a very long time mathematicians regarded the incompleteness theorems as
strange beasts: something which is important, but essentially with no
influence in the mathematical practise.
For example the textbook of Bell and Machover we referred to many times
explicitly says that the sentences which are not provable in Peano arithmetic
are not important in arithmetic because they have no “arithmetical” content,
but just a logical one. This is true for the sentence G and for most other
sentences we can construct within the logical analysis.
Unfortunately there are purely arithmetical properties of genuine interest for
mathematicians not working in logic which are independent from Peano
arithmetic.

( 591 )
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A different incompleteness result

Consider the so-called Berry’s paradox:
The smallest positive integer not definable in under sixty letters.

Fix a language, say English. The set of English sentences with length at most
59 letters is finite. Thus the sentences defining a number in less than 60
letters are finite.
The set of positive integer is infinite. Thus necessarily there is number which
cannot be defined by a short sentence. Since positive integers are
well-ordered, there is a minimal one.
Hence, the sentence of the paradox defines exactly that number, which is, by
definition undefinable.
The Chaitin’s incompleteness theorem formalises this paradox, showing that a
sentence like the one of the paradox is non provable.

( 595 )

Kolmogorov complexity

Consider all the finite strings on the {0,1} alphabet.
Fix a partial recursive function f , seen as going from {0,1}∗ to {0,1}∗.
Finally, fix a string σ ∈ {0,1}∗: we say that f generates σ if there is τ ∈ {0,1}∗

such that f (τ)=σ.

Definition 30.1 (relative Kolmogorov complexity)
The Kolmogorov complexity of σ ∈ {0,1}∗ relative to f , a partial recursive
function, is

Kf (σ)=min
©|τ| : f (τ)=σª

,

where |τ| is the length of the string τ, and Kf (σ)=∞ if σ is not in the
image of f .
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Kolmogorov complexity

If we imagine f (τ) as a description of σ through f , the Kolmogorov complexity
measures the length of the minimal description of σ which f makes available.
We would like to measure the length of the minimal string τ which could
generate σ independently of f .
Of course, this concept does not make sense, since the constant function
g(τ)=σ clearly generates σ when τ is the empty string.
But it makes sense to ask the minimal size of a pair (f ,τ) such that f (τ)=σ.

( 597 )

Kolmogorov complexity

Fix an acceptable enumeration of all the partial recursive function {φi }i∈ω
with a distinguished universal function U(i ,x)=φi (x).

Definition 30.2 (Kolmogorov complexity)
The Kolmogorov complexity of σ ∈ {0,1}∗ is

K (σ)=min
©|τ| : U(τ)=σª

.

Observe how K (σ)=KU(σ).

( 598 )

Kolmogorov complexity

Theorem 30.3 (Optimality)
For every partial recursive function f there is c ∈ω such that, for every
σ ∈ {0,1}∗, K (σ)≤Kf (σ)+c.
The proof amounts to observe that there is i ∈ω such that f =φi , so
U(i ,x)= f (x). The constant c is then constructed by choosing the i of
minimal length for which this happens.

Theorem 30.4 (Invariance)
If U1 and U2 are universal functions, there is c ∈ω such that, for every
σ ∈ {0,1}∗, |KU1(σ)−KU2(σ)|≤ c.
The proof is immediate from Theorem 30.3.
Hence, up to constants, the choice of the universal function does not matter.

( 599 )

Incompressible strings

Note that K (σ)≤ |σ|+c for some c independent from σ because the identity
function is recursive.
Observe how there are 2n strings of length n, while there are

n−1X
i=0

2i = 2n−1

strings of length less than n.
Hence, for each n ∈ω, there is at least one string σ of length n such that

K (σ)≥ |σ| .

These strings are called incompressible.
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Incompressible strings

More in general, fix k ∈ω: if σ ∈ {0,1}∗ satisfies K (σ)≥ |σ|−k, the σ string
is called k-incompressible.
Clearly, for each n ∈ω, there are at least 2n− (2n−k −1) k-incompressible
strings of length n. Therefore, at least

1− 1
2k

strings of length n are k-incompressible.
Observe how the class of k-incompressible strings of length n depends on the
particular choice of universal function in the definition of Kolmogorov
complexity.

( 601 )

Chaitin’s theorem

Let T be an effective theory of arithmetic which represents all the partial
recursive functions. Fix a universal function U. Then there is a formula ψ

such that
T ⊢ψ(⌜σ⌝,⌜τ⌝) if and only if U(σ)= τ .

Hence there is a formula φ(x ,y) such that, for any σ and n,

K (σ)≥ n if and only if φ(⌜σ⌝,n) is true on N .

A theory T as above is said to be K -sound if, for every σ and n,

T ⊢φ(⌜σ⌝,n) implies K (σ)≥ n .

Observe how Peano arithmetic is K -sound.

( 602 )

Chaitin’s theorem

Theorem 30.5 (Chaitin’s incompleteness)
Let T be an effective K -sound theory representing all the partial recursive
functions. Then, there is N ∈ω such that, for every σ ∈ {0,1}∗,

T ̸⊢φ(⌜σ⌝,N) .

Proof. (i)
By contradiction, suppose that for every N ∈ω there is σ ∈ {0,1}∗ such that

T ⊢φ(⌜σ⌝,N) .

Since T is effective, there is a recursive function e enumerating all its
theorems. And this function is representable by hypothesis.
Observe that the length of a string is a computable function, thus it is
representable by hypothesis. ,→

( 603 )

Chaitin’s theorem

,→ Proof. (ii)
Define the function f on the input τ which takes the first pair 〈σ,k〉 such that
T ⊢φ(⌜σ⌝,k) and k > 2|τ|, and output σ.
As observed, k > 2|τ| is computable, and thus enumerating all the theorems of
T by e, it suffices to find the minimal index for which T ⊢φ(⌜σ⌝,k) and
k > 2|τ|, for some 〈σ,k〉.
So, f is computable. But by the hypothesis to contradict, f is also total.
Hence, its Kolmogorov complexity is defined.
Let d ∈ω be such that, for every σ ∈ {0,1}∗,

K (σ)≤Kf (σ)+d ,

as for Theorem 30.3. ,→

( 604 )



Chaitin’s theorem

,→ Proof. (iii)
Fix δ ∈ {0,1}∗ of length d . Clearly, Kf (δ)≤ |δ| = d , by definition.
Also, let σ be such that f (δ)=σ. Thus, by definition of f , T ⊢φ(⌜σ⌝,k) for
some k > 2|δ| = 2d .
Hence, by K -soundness, K (σ)≥ k.
Putting all together,

2d < k ≤K (σ)≤Kf (σ)+d ≤ d +d = 2d ,

an evident contradiction.

( 605 )

Discussion

The Chaitin’s incompleteness theorem tells that there is barrier N such that
all the sufficiently incompressible strings, i.e., those whose Kolmogorov
complexity is at least N, cannot be proved to be so much incompressible.
The interesting aspects of the Theorem are:
■ It is based on a different paradox, which is not of a logical nature, but

rather of an information-theoretic nature.
■ Incompressible strings are random strings in a quite strict sense. This

incompleteness result tells that randomness is not a concept that can be
fully formalised.

■ There is a link between information theory, an essentially probabilistic
theory, and limiting results in Logic, a quite unexpected and surprising fact.

( 606 )
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Syllabus
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■ Incompleteness in set theory
■ Ordinal analysis
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Incompleteness and computability

The proof that there are non-computable functions, based on a counting
argument, is unsatisfactory. It is correct, but it does not show an example of
a non-computable function.
The example we want to show is the so-called halting problem: given the
code of a program and a value as an input, we ask whether we could always
establish that such a program computed on the given value terminates.
Let {φi }i∈N be a reasonable enumeration of all the partial recursive functions.
We have seen that this hypothesis is tenable.
Consider the function

h(i ,x)=
(

1 if φi (x) is defined
0 otherwise

( 610 )

Incompleteness and computability

Let f : N×N→N be a total recursive function.
Define

g(i)=
(

0 if f (i , i)= 0
⊥ otherwise

Clearly, g is partial recursive. Thus, there is an index e ∈N such that φe = g .
Consider f (e,e):
■ if f (e,e)= 0, then g(e)=φe(e)= 0, thus h(e,e)= 1;
■ if f (e,e) ̸= 0, then g(e)=φe(e)=⊥, thus h(e,e)= 0.

Observe that h is total.
Suppose h is recursive.
Hence, posing f = h, we have h(e,e)= 1 if and only if h(e,e)= 0, getting a
contradiction. Therefore h is non-computable.

( 611 )

Incompleteness and computability

Theorem 31.1 (Weak incompleteness)
There is no effective theory of arithmetic which is both consistent and
complete, i.e., able to prove all the true closed formulae in the standard
model of naturals.
Proof. (i)
Let {φi }i∈N a reasonable effective enumeration of all the partial recursive
functions. Hence, in particular, there is a formula F (i ,x ,y) representing the
relation φi (x)= y .
By contradiction, assume there an effective theory of arithmetic. Thus, the
set of all the true formulæ of arithmetic is recursive, so there is a formula
E (n) that enumerates all the true formulæ of the theory, because all the
recursive functions are representable. ,→
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Incompleteness and computability

,→ Proof. (ii)
Consider the formula ∃y .F (i ,x ,y). It is valid if and only if φi (x) is defined.
Fix i and x . Then we can compute the minimal value n such that
E (n)= ∃y .F (i ,x ,y) or E (n)=¬∃y .F (i ,x ,y) by minimalisation.
Since the theory is consistent, this computation defines a recursive function g
that, given i and x , returns the index of a formula. Inspecting this index, we
can see whether the formula is a negation. By this piece of information, we
can decide whether φi (x) is defined.
Since the theory is complete, it follows that g is total.
Therefore, g is a recursive function solving the halting problem, which is
impossible.

( 613 )

Natural incompleteness

Historically, the first theorem which states a result that is true but
non-provable in Peano arithmetic is:

Theorem 31.2 (Paris, Harrington)
For all e,r ,k ∈N there is M ∈N such that for every
f : {F ⊆ {0, . . . ,M} : |F | = e}→ {0, . . . ,r } there is H ⊆ {0, . . . ,M} such that
■ |H |≥max{k ,minH} and
■ exists v ≤ r such that for all F ⊆H with |F | = e, f (x)= v for each x ∈F .

By using the Infinite Ramsey Theorem it is not too difficult to derive a value
M ∈N which makes the statement true on naturals. This proof is carried out
either in second-order arithmetic with the full induction principle, or in a
suitable set theory, e.g., ZFC.

( 614 )

Natural incompleteness

Nevertheless, it is possible to show, within Peano arithmetic, that the
combinatorial principle in Theorem 31.2 implies the consistency of Peano
arithmetic, thus it is impossible to prove in that theory according to Gödel’s
second incompleteness theorem.
This theorem is natural in the sense that changing the first condition in
Theorem 31.2 to |H |≥ k, we get the Finite Ramsey Theorem, which is
provable inside Peano arithmetic, and which is the starting point for a large
branch of Combinatorics.

( 615 )

Natural incompleteness

Another important theorem from a different branch of combinatorics is
independent from Peano arithmetic: it holds in the standard model but we
cannot prove it in the theory. This is the famous Kruskal’s theorem on trees.
A simplified version suffices to yield the independence result.

Theorem 31.3
There is some n ∈N such that if T1, . . . ,Tn is a finite sequence of trees where
Tk has k +n vertices, then for some i < j there is an injective map f : Ti →Tj
between the vertices of the trees which preserves paths.

The independence proof for this theorem follows a different pattern: it is
possible to show that any function which provably exists in Peano arithmetic
cannot grow too fast, but the above theorem allows to construct a function
which grows even faster. And this suffices to establish the fact that the
theorem is unprovable in Peano arithmetic.
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Natural incompleteness

Definition 31.4 (Well quasi order)
A quasi order is a structure 〈O ;≤〉 such that ≤ is a reflexive and transitive
relation over O .
A well quasi order is a quasi order such that
■ every proper descending chain is finite: a proper descending chain is a

sequence {ei }i in O such that ei < ej when j < i ;
■ every antichain is finite: an antichain is a subset A⊆O such that, if

a,b ∈A and a ̸= b, then a ̸≤ b and b ̸≤ a.

( 617 )

Natural incompleteness

The Kruskal Theorem admits a simple and useful generalisation:

Theorem 31.5 (Kruskal)
The set of all finite trees with the embedding relation is a well quasi order.

The embedding relation is defined as: T ≤ S if and only if there is an injective
function f from the nodes of T to the nodes of S which preserves paths, that
is, if there is a path from a to b in T , then there is a path from f (a) to f (b)
in S.

( 618 )

Natural incompleteness

Definition 31.6 (Graph minor)
Let G and H be two finite undirected graphs. Then H is a minor of G if
and only if there is an equivalence relation ∼ on the nodes of G and an
injective function from the nodes of H to the nodes of G such that
■ if a∼ b then there is a path from a to b;
■ if (a,b) is an arc in H , then there are two nodes c and d in G such that

c ̸∼ d , f (a)∼ c , f (b)∼ d and (c ,d) is an arc in G .

The idea behind the definition is that we can partition the nodes of G in
connected subsets, and from these subsets we can construct a quotient graph
G/∼ whose nodes are the subsets, and whose arcs are the arcs between nodes
in distinct subsets. Hence, H ≤G when H is a subgraph of G/∼.

( 619 )

Natural incompleteness

Theorem 31.7 (Graph Minor)
The set of finite undirected graphs together with the graph minor relation
forms a well quasi order.

This theorem whose proof is one of the major achievements in the XXth

century Mathematics, is easily shown to be unprovable in Peano Arithmetic
since it allows to derive Kruskal’s Theorem.
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Incompleteness in set theory

We have already discussed how the Axiom of Choice, the Continuum
Hypothesis, and the Generalised Continuum Hypothesis are independent from
ZF. All these statements are “natural” as they state properties of sets which
are inherently of interest, either because of their consequences, or because
they impose a regular structure over the objects we want to study.
Indeed the independence results in set theory and in Peano arithmetic are
related. For example Theorem 31.2 is a restriction to the finite case of the
proof of independence about the existence of large cardinals.

( 621 )

Ordinal analysis

There is a branch of proof theory devoted to study the “power” of deductive
systems showing which is the minimal ordinal to which transfinite induction
can be relativised in order to prove a consistency statement.
This is a deep, delicate, difficult, and complex part of logic, still in
development: it is sometimes referred to as “reverse mathematics” when the
goal is to find the minimal theory in which a given statement can be shown to
hold.

( 622 )
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