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Introduction

Mathematical logic is a field of Mathematics which studies the deduction
process, and the foundations of the whole discipline.

This course will introduce mathematical logic from the very beginning,
assuming a minimal knowledge of elementary mathematics.

Also, the material of the course is, more or less, standard, and most
introductory textbooks will cover it. For the purposes of this course, slides
and lecture notes will be made available to students after every lesson.

The course is in English.




Program

The course takes 64 hours, and its content will be an introduction to
classical logic, with a glimpse to other logical systems.
The detailed program is

® Propositional logic: language, deduction system, semantics, soundness,
completeness;

= First-order logic: syntax, semantics, soundness, completeness;

m Set theory: fundamental axioms, ordinals, cardinals, transfinite induction,
axiom of choice, continuum hypothesis;

m Constructive mathematics: intuitionistic logic, computable functions, A
calculi, propositions as types;

m Limiting results: Peano arithmetic, Godel's incompleteness theorems,
natural incompleteness results.




Since this is the second year this course is taught, there is no textbook
available in advance. A draft of the textbook is available on the course
website and, from time to time, it will grow as the lessons will proceed.

All the slides, along with the lecture notes will become available roughly
after each lesson at the course website:

http://marcobenini.wordpress.com/lectures/mathematical-logic

Also, at the end of each lesson, references to articles, texts, and other
resources which may be of interest to those interested in learning more, will
be available. While the content of slides is mandatory, looking at references
is optional. Also, the lecture notes will provide the same material as the
slides, eventually complemented with exercises: while it is not mandatory to
study on the lecture notes, they could be a big aid.



http://marcobenini.wordpress.com/lectures/mathematical-logic

Examination

The examination will be oral. It will require to perform simple exercises, like
proving a theorem using a formal deductive system, and to state, discuss,
and prove the results explained during the course.

The examination will be, at the student’s choice, either in Italian or in
English.

Informally, a student may take the examination by fixing an appointment:
this can be done at every time, after the end of the course. Formally,
examinations can be registered only during the dates scheduled in the official
calendar: students must subscribe the date to be able to register their
marks. Students are strongly encouraged to plan when to take examinations,
and to fix an appointment in advance. Then, they can register the result
whenever they prefer, within 18 months from the beginning of the course.

As usual, independently from the results, repeating an examination cancels
the previous ones.




Examination

Although it is not mandatory, there will be four intermediate assignments
during the course.
They will take place during the lesson time, and they will cover

1. propositional logic

2. first-order logic

3. set theory and constructive mathematics
4. limiting results

Students willing to take them, can avoid the examination: each assignment
will get a mark, and the average will be the final mark. Rules for registration
are the same as for regular examinations.




The schedule of lessons is fixed, and it cannot be easily changed. In general,
a lesson will start 10 minutes after the official time, and it will finish 15
minutes before the official time, so that students can move between
classrooms.

There will be one 15 minutes pause during the lessons.




Questions

Questions are welcome. Please, do not hesitate to ask questions when you
do not understand something during a lesson.

Questions could be asked also before the start of a lesson, or after the end.

Another possibility is the ask questions by email: in case write at the address
marco.benini@uninsubria.it

specifying your name, the course, and the question. If possible, try to use
your official email from uninsubria.

There are no office hours in this course: students have to fix an
appointment. Please, do so only if you really think there is no other way to
solve your problem: although | am usually available to receive students
during the course time, when | am not teaching, it is often the case that |
am not in Italy, so, please, use this as your last resource.




| am a researcher in Mathematical Logic. This means that my main job is to
think, and, sometimes, to prove novel results in this field of Mathematics.

Teaching is part of my academic duties, but is not my first occupation.

As a logician, my interests lie in the interplay between truth and
computability. In fact, | investigate mainly constructive logical systems,
which have nice computational properties, and my favourite playground, the
‘universe’ | work within, is topos theory, a branch of category theory.

For more, please visit my web page:

http://marcobenini.wordpress.com



http://marcobenini.wordpress.com
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Mathematical logic

Mathematical logic studies the mathematical deduction process and the
notion of truth, at large.

Logic is an ancient part of Mathematics: its origins go back to Aristotle,
while its mathematical foundations can be traced in the work of Boole,
Frege, Cantor, Russell, Hilbert, Godel, ...

Since Godel Incompleteness result, the discipline underwent a huge
development, and, today, it is a very active part of contemporary
Mathematics, with application in Computer Science and Philosophy.

Since this is a first course in mathematical logic, we will stop after proving
the incompleteness results. Here and there, hints about future developments
will be given, but the course sticks on the classical track.




Logic is formal

Consider arithmetic as a guiding example. When expressing this theory in
logical terms, you will have three main levels to look at it:

= syntax

= semantics

® intended interpretation

Logic keeps the intended interpretation in the background, and it focuses on
the study of syntax and semantics.

Also, the syntax and the semantics are formal. although this could be boring,
and, in some cases, a burden to get to results, it is also the fundamental
tool of logic. If you don't like it, well, you are in the wrong place!




The syntax is the way we write down things.

For example, 1+2 is an expression, and 1+2 =5 is a formula. The language
of a theory, e.g., arithmetic, is the collection of rules allowing to write all the
possible expressions and formulae.

Also, since we are interested in proving theorems, which are formulae,
eventually depending on other formulae, the hypotheses, we need a way to
write proofs. The way to construct proofs is, again, formal, and it is
described by a deductive system, a collection of axioms and rules.

Together, the language and the deductive system form the syntax of a
theory. Syntactical reasoning is the way to think inside a logical theory, the
only one which can be studied.




Intended interpretation

The intended interpretation of a theory is the informal, intuitive way to
understand a (logical) theory.

For example, when we say that ‘arithmetic studies the properties of integer
numbers’, we should read this sentence as ‘the formal theory of arithmetic,
that is, its syntax, has the properties of integers as its intended
interpretation’, and we assume to know what does it mean to be a property,
and what is the shape of integers.

In mathematical logic, we keep the intended interpretation in the
background: we are interested in a syntax which allows to express what we
intend, e.g., by ‘property’ or by ‘integer’, and we are interested in a formal
way to say when a formula is true, which should correspond to a property
being valid in the intended interpretation.




Semantics

The semantics is the formal way to attribute a meaning to a given syntax.

We are interested in semantic systems which, in some sense, capture the
intended meaning of our theories. For example, in arithmetic, we would like
a semantics saying that 1+2 =3 is a true formula, while 1+2 =5 is a false
formula.

Usually, a semantics, defines a universe, where expressions are interpreted,
and a notion of truth and falsity, which are used to distinguish between valid
and invalid properties.

We will see many examples of semantics, in this course, and we will see that
a good agreement between the syntax and the semantics is what we will
constantly search for.




An infinite variety of logics

Surprisingly, at first, there is not just one logic.

The fundamental connectives of logic are A (and), v (or), o (if...then...),
= (not), T (true), and L (false). The fundamental quantifiers are V (for
all), and 3 (exists).

But there are interesting logics allowing for other connectives and
quantifiers: for example, modal logics have the connectives O (necessity)
and ¢ (possibility).

Temporal logics have the connectives O (true from now on) and ¢ (will
become true).

We will not study logics using other connectives than the fundamental ones
in this course.




An infinite variety of logics

A logical system may deal with expressions, like arithmetic, or it may speak
only of formulae. In the latter case, the system is said to be propositional.

On the contrary, we may imagine a system that speaks of elements of some
universe. In particular, when we allow to quantify only over elements, we will
say that the system is first-order.. ¥x.even(x)Vvodd(x) is a formula of
arithmetic.

On the contrary, when we allow to quantify over collections of elements, we
will speak of higher-order systems. For example, the formula
V¥S.3n.maxS<nAminS>-n>0€ S is a second-order formula since we
quantify over S, which stands for a set of integers.

In this course, we will study propositional and first-order systems.

A rule of thumb says that all the mathematics developed before the 20t
century could be expressed as a collection of first-order theories.




An infinite variety of logics

When we want to reason about a mathematical system, we may want to
have some aspects in the ‘structure’ of the reasoning system: if we prefer
not to have time as an explicit parameter, we can move it inside the logic.

But which time? Discrete or continuous? A linear order or a branching tree
of possible worlds? And this is just the beginning. . .in fact, all of these
‘times’ have real applications in Physics or Computer Science.

But even with the standard connectives we have choices to make. Consider
negation: what means to prove =A? Are we satisfied by saying that A is
false? Or do we pretend that a counterexample to A exists? Or, even more,
do we pretend that a counterexample to A has to be inside the proof of = A?




Classical logics

The standard connectives and quantifiers must be coupled with axioms and
rules so to deduce formulae from other formulae.

For example, Vx.x = x is an axiom stating that equality is reflexive. And

A B
AAB

is a rule saying that, from the formulae A and B, we can deduce AA B.

A logic is said to be classical when it allows to deduce Av A for any
formula A. This principle is called tertium non datur or, also, the Law of
Excluded Middle.

This principle has a number of consequences, for example, in arithmetic it
allows to define functions which are not computable. So, adopting it is a
choice, and there are systems which do not.

In this course, we will limit our study to classical systems, with one big
exception: intuitionistic logic, which is, in some sense, the logic of
computable functions.




Foundational issues

One of the big motivations for studying mathematical logic lies in the
foundational problem: is Mathematics coherent?

In fact, as we will see in the end of this course, there is no hope to answer
such a question within mathematics. But, still, relative coherence is an
important question and it can be answered: is it impossible to deduce a
statement and it negation in a given logical system, assuming that another
theory is coherent?

As we will see, this question can be addressed, and some of its consequences
are surprising: these will be presented at the end of this course.




Foundational issues

As a matter of fact, most branches of Mathematics could be developed
using set theory plus classical logic as a framework: for example, arithmetic
can be derived by identifying natural numbers with some special sets, and
arithmetical operations become specific functions.

Since we have not to add any axiom or rule, but just definitions, that is, we
add names, shorthands if you prefer, to the language, we could say that set
theory is expressive enough to model arithmetic.

The pursue for a universal theory, one allowing to model every mathematical
theory, is impossible to achieve, as we will prove in this course, but, still,
some theories, like set theory, are close enough to allow us to reason on
almost the whole Mathematics. In this course, we will discuss set theory to
some extent, although we will not study any other such ‘universal’ theory.




Soundness and completeness

The first and fundamental intent of a logical system is to derive the true
sentences. To this aim, a deductive system is provided by the syntax, and a
notion of truth is provided by the semantics.

It is worth noticing that different semantics may provide different notions of
truth, and, in fact, truth is not universal in logic: it strictly depends on the
semantics we will adopt. And yes, the same theory may have different
semantics, not necessarily compatible.

This raises two major questions:
® is it the case that every formula we may prove is true?

® is it the case that every formula which is true, admits a proof in the
deductive system?




Soundness and completeness

The first property is called soundness: we are not interested in non-sound
deductive systems. A fundamental requirement for a syntax is to forbid
deriving false consequences from true hypotheses. But we must prove that a
syntax is sound with respect to a given semantics.

The second property is completeness: a syntax is a perfect description of a
semantics when it allows to prove every true statement and to show that
every false statement has a counterexample. We will see that completeness,
as stated, is a very strong property. More, we will show that the majority of
naturally interesting theories cannot be complete in the above sense, a
shocking fact that changed the history of Mathematics.

There are many other properties of interest in logic, and, from time to time
we will mention them, as appropriate. But soundness and completeness are
the most fundamental ones, and we will focus on them in this course.




References

For those interested in the history of logic, and its relations to Mathematics,
a nice, short book is Piergiorgio Odifreddi, La matematica del
Novecento—Dagli insiemi alla complessita, Piccola Biblioteca Einaudi,
Einaudi, (2000), ISBN 88-06-15153-3.

There are many introductory textbooks of mathematical logic and a few
important reference books. | would like to mention the comprehensive guide,
Jon Barwise, Handbook of Mathematical Logic, Studies in Logic and the
Foundations of Mathematics 90, North-Holland, (1977),

ISBN 0-444-8363888-5.

| do not have a preferred textbook, but | suggest the following notes by
Prof. Helmut Schwichtenberg:

http://www.mathematik.uni-muenchen.de/~schwicht/lectures/
logic/ws03/ml.pdf
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Propositional logic

In this lesson, we want to introduce classical propositional logic.
We will start from its syntax, and its intended meaning.

The idea is that a proposition stands for a truth value, either true or false.
Composite propositions will derive their truth value from their components,
while basic propositions will have a truth value which depends on the world
where they are interpreted in.

For example, the sentence ‘Socrates is a man’ may be true or false, as
Socrates may be the ancient Greek philosopher, or a cat. On the other side,
‘If Socrates is a man then Socrates is a mortal’ is true when Socrates is both
a man and mortal, but also when Socrates is not a man, and it is false when
Socrates is an immortal man.




Let 7 be an infinite set of symbols, called variables, not containing (", ‘),
B R I VA S
Then, a formula is inductively defined as

1. a variable x € 7 is a formula;

2. T, spelt true, and L, false, are formulae;

3. if Ais a formula, so is (7A), not, negation;
4

. if A and B are formulae, so are (AA B), and, conjunction, (Av B), or,
disjunction, and (A> B), implication.

Notice how A and B above are not part of the language, but are variables in
the metalanguage—we will be mostly informal about the metalanguage, i.e.,
the language we use to describe the logical language.




Language

To simplify the notation, we use a number of abbreviations:

® outermost parentheses are not written: x Ay instead of (x Ay);

® conjunction and disjunction have a higher precedence over implication:
xAy>zVvw instead of ((xAy)> (zVvw));

® negation has a higher precedence over conjunction, disjunction, and
implication: —x A7y instead of ((—x) A (7y));

= |owercase letters, when not specified otherwise, stand for variables.

® uppercase letters, when not specified otherwise, stand for objects in the
metalanguage.

An important point to remark is that the definition of formula is by
induction. So, we can use this structure to define new notions or to prove
properties of formulae.




On induction

Induction is a powerful tool. Induction allows to define new concepts and to
prove statements about a collection of elements.

Informally, to show that a property P(x) holds for every possible value of x,
one could substitute x with any possible value. This is, generally,
impractical, and impossible when the domain is infinite. But there are many
cases when, although the domain is infinite, it can be generated by a finite
number of rules. For example, there are infinite propositional formulae, but
they are generated according to a finite grammar, the one of Definition 2.1.

In those cases, instead of proving a property for any value, we can show that
the property holds for any case of the (inductive) definition. This amounts
to show that, whatever value is generated by the rules, it will satisfy the
property. Since every value is generated, all possible cases are covered.

Definition works similarly: a concept depends on a value in a domain. Thus,
all the possible instances are generated by all the values. Or, inductively, by
generating all the instances via the grammar that generates all the values.




As an example of inductive definition, let’s define the notion of subformula:

Given a formula A on the set V of variables, B is a subformula of A if and
only if B belongs to the set S(A) inductively defined as

1. if AeV, A=T, or A= 1, then S(A) ={A};
2. ifA=BAC, A=Bv C, or A=B>C, then S(A)={AluS(B)u S(C);
3. if A=-B, then S(A)={A}uS(B).

We may equivalently say that B occurs in A, meaning that B is a
subformula of A.

In general, the symbol = in the meta-language means ‘literally equal’, i.e.,
written in exactly the same way.




Intended interpretation

Informally, a truth value is either true or false.

= A variable stands for some truth value.
= T denotes true.
1 denotes false.

AN B is true when both A and B are true, and false otherwise.

AV B is true when A is true, or B is true, or both are true, and false
when both A and B are false.

A> B is true if, when A is true, so is B, and it is true also when A is
false. It is false when A is true but B is false.

m A is true exactly when A is false.
In general, the truth value of a formula depends on the values of its variables.

Sometimes, it happens that a formula is true independently from the value
of its variables, e.g., x 2 x is true whatever truth value x may assume.

Logic is mainly concerned in the study of those formulae which are true
independently from the values of their variables.




Natural deduction

An obvious way to discover whether a formula is true, is to try all the
possible values for the variables occurring in it.

But there are three main drawbacks in this strategy:

= the strategy is exponential: if there are n distinct variables in a formula,
we have to try 2" possible assignments.

m the strategy does not scale to other logical systems. For example, take
arithmetic: it is unfeasible to show the truth of a formula trying all the
possible values for its variables, as each of them stands for a natural!

m the strategy does not provide any insight: we have no idea why the
formula holds, except that it exhaustively satisfies all the possible
assignments. In particular, we do not know which axioms in our theory
are required so to make the property true.

What we want is a notion of proof. a way to reason that, starting from some
basic accepted facts, and adopting a series of accepted rules, allows us to
conclude that the formula is true.




Natural deduction

Fixed a language, a theory T is a set of formulae, each one usually referred
to as an axiom.
When T = @, we will speak of the theory as pure logic.

Fixed a language and a theory T in it, a proof or deduction of the formula A,
the conclusion, from a set T' of formulae, the hypotheses or assumptions, is
inductively defined by a set of inference rules summarised in the next slides.
A formula A which is the conclusion of a proof with no assumptions, is
called a theorem in the theory T.




Natural deduction

The inference rules governing conjunctions are:

AnB AAB A B
IN= NEo

A
A B AnB

we have two elimination rules, and an introduction rule.
Those governing disjunctions are:
Al (8]
A B AvB C C
V|1 |2 vE
AvB

\
Av B C




Natural deduction

Implication and negation are subject to the following rules:

A
B A>B A
ol SE
Ao B B
A
1 —A A
ull -E
-A 1

They are very similar, since, as we will see in the next lesson, negation can
be defined from implication.




Natural deduction

True and false are governed by the following rules:

L
— Tl —LE
T A

If Ais an axiom of the theory T, i.e., if Ae T, we are allowed to deduce it:

ax

A
If Ais an assumption, i.e., if AeT, we can deduce it

A




Natural deduction

Finally, for every formula A, either A is true or it is false. This is expressed
by the Law of Excluded Middle:

em

|
Av-A

As we will say later in the course, the Law of Excluded Middle is delicate,
and it has a special status.

In general, whenever possible, we will try to avoid its use in a proof.




Natural deduction

A couple of comments:

= except for the Law of Excluded Middle, the rules come in pairs: any
connective is associated to one or more introduction rule, and one or
more elimination rule.

= assumptions may be free of discharged. Free assumptions are real, in the
sense that the proof depends on them; discharged assumptions are used
to get rid of a local assumption, which does not affect the whole proof.
This is best understood looking at the ‘implication introduction’ rule: to
prove A> B, we locally assume A, and we try to prove B, but the final
result does not depend anymore from A.

= discharging is optional: we must not discharge an assumption when a rule
does not allow, but we may (or we may not) discharge an assumption if
the rules allows to.

When we do not want to specify the proof, we write m: T' -1 A, meaning
that m is a proof of A from the assumptions T in the theory T. When the
proof is not relevant, we omit the 7; when the theory is understood or
empty, we omit the T; when the set of assumptions is empty, we omit the T.




Natural deduction

Example 2.5
The formula (p>g)Ap>q is a theorem in the pure logic, i.e., in the empty

theory. In fact, this is a proof:

KPDWAM*A& KP3®AM*A
po>4q p
- a
(p2q)Ap>gq

E>

SE

*

Discharged assumptions are written in square brackets and the superscripts
indicate which inference rule discharges them.
In order to say that such a formula is always true, we could write

F(p=2q)Ap>g.




Natural deduction

Example 2.6

The double negation law says that p is equivalent to = —p:

el [l

" E
[~p]" [p]' L
f—-E V—_|plem [p]i ?J_E
Al P VE?
P P s
p>-Tp “Tpop

In general, we say that two formulae A and B are equivalent when we can
deduce one from the other, or, which is the same, when A> B and B> A.




A B AnB AnB 1
Al AE1 NE2 A LE
AAB A B A
(Al [B]
A B AvB C C
vy v E E
Av B Av B C T
(4] [A]
B A>B A 1 —A A
ol oE lem il ~E
A>B B Av-A -A 1




Summary

This lesson is fundamental. You have to memorise the inference rules of the
previous slide and use them at will.

Although the intended meaning seems obvious, be sure to really understand
the way we interpret implication.

Take some time to notice the symmetries among the inference rules:

= except for the Law of Excluded Middle, there are introduction and
elimination rules for every connective;

® you cannot introduce falsity;

= you cannot eliminate truth;

= implication and negation are similar;

® conjunction and disjunction are similar.

Take your time to study the examples: at some point, you will be supposed
to be able to make proofs as the presented ones.




References

Natural deduction has, in its current format, been presented in the classical
text D. Prawitz, Natural Deduction, Almqvist & Wiksell, Stockholm, (1965).
Recently, this text has been reprinted by Dover.

We will use mainly John Bell and Moshé Machover, A Course in
Mathematical Logic, North-Holland, (1977), ISBN 0-7204-28440 in this
course as a general reference. Although it is an old book, it is still a classical
reference, and it contains a complete, formal development of all the notions.

For a comprehensive and deep treatment of natural deduction, see A.S.
Troelstra and H. Schwichtenberg, Basic Proof Theory, Cambridge Tracts in
Theoretical Computer Science 43, Cambridge: Cambridge University Press,
(1996). This book extends far over the content of our course.
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To prove a formula, we need to think backwards: so introduction rules
eliminate the main connective from a formula.

The first basic technique is to reduce the formula to prove by applying the
only introduction rule which could generate it.

Example 3.1
Prove FA> (B> A)
A
Bo A o
Ao (B2 A)




A useful way to prove a formula, is to keep track of the assumptions we
generate in the proving process.

In the last example, we started from
Ao (B2 A)
We tried to simplify the goal to prove by implication introduction rule

Bo A
Ao (B2 A)

=

and, in the meanwhile, our set of assumptions, which was initially empty,
has become {A}.

We tried to simplify the current goal, obtaining
A

BoA -

A> (B> A)

ol

and, in the meanwhile, our set of assumptions has become {A, B}.




And, now, we see that the current goal is in the set of available assumption,
so we can close the proof by discharging.

A
Bo A
Ao (B2 A)

oIt

It is worth noticing that

= we should remember which rule introduced which assumption, so that
discharging could be correctly performed;

= we may have unused assumptions, like B in the example.




When an assumption is a complex formula, it is worth dismounting it by
means of an elimination rule.

Example 3.2
Prove F(A>C)>((B2C)>(Av B> ()

[A° [A=cP (B [BoC)
[Av B]! c > c ., -
C VE
AVB>C
(BoC)>(AvB> ()
(Ao C)>((B2C)>(AvB>())

|1

4

ol

Notice how assumptions are local to a subproof. Try to redo this exercise
and to understand how assumptions are managed.




Example 3.3
Prove FAvB=BVA.

We notice that the property is auto-dual

[A)? [B)
1 V|2 V|1
[AvB]" BVA BvA
VvE2
BvA o
AvB>oBVA




Example 3.4
Prove FAAB=BAA

[AnB]! [AnB]!
B = A A
BAA
AANB>BAA

Eq

Al
|l




There could be more than one way to prove a result.

Example 3.5
Prove FAVA=A
AVA' AP (AP Al Al
vE — vl — . Vh
A 1 AV A M AV A f
AVAD A A>AVA A>AVA




Example 3.6
Prove FAANA=A
[AnAT! [AnAT! A" (A
AE1 =) Al
A A ANA

1 _ 1 —|1

— | ol o
ANAD A ANAD A ADAANA




Example 3.7
Prove FAV(AAB)=A
[An BJ? ]
[Av(AAB) [A]? A ! [A]* "
A AV (AAB) )

|1

AV(AAB)SA ASAv(AAB)

ol




Example 3.8
Prove FAA(AVB)=A
A
[An(avE)' Al Ave
A ™ An(AVEB) "

Il

AN(AVB)SA A>An(AV B)

ol




Example 3.9
Prove F(AAB)AC=AA(BAC)

[(AAB)AC]*
[(ArB)AC]* ] ANB Y (AAB)ACTH i
AnB B "7 C "
A AE1 BAC I Al
AN(BAC) i "
(ANB)ACSAA(BAC) ~
[AA(BAC) c
[AA(BAC)* BAC 7 [AA(BAC)
E——Y =T ———AE; e —— Y =Y
A B BAC
Al AE>
AAB C |
(AAB)AC "

1

ol
AN(BAC)o(AAB)AC




Falsity elimination allows to deduce any formula one needs. But falsity
always comes from a contradiction.

Example 3.10
Prove - 1A> (A> B)
SAL 2
A AR
1
— IE
B
oI?
Ao B f
—A>(A>B) :




Thinking backwards, not introduction allows to assume the conclusion
deprived of the negation.

Example 3.11
Prove FAAB> (A2 -B)

[An B]? i
[As-B]' A "' [AABP
B SE TAE2
-
-E
;_‘ll
—|(AD—|B) |2
ANB>(A>-B)




Example 3.12
Prove -(Av B)=-AA-B

[Al? | B81° |
[(AvB)]! A\/BVE1 [~(AvB)'! AvB VE2
;ﬂﬁ ';ﬂﬁ
|
—An-B M "
~(AvB)>-AAB
[~AA-B]? [~AA-B]?
2 s — Y =T 2 e — Y =)
[A] oA L [B] B
[Av B! 1 ) L )
\%2
(AL\/ B "
>3
“AA-B>a(AvB)




Example 3.13
Prove - 1(AAB)>1~AA--B

[AnB]? [An B
2 AE; 4 AE2
[~A] A [~B] B
—-E —-E
; |3 ; |5
[~(ANB)"  ~(ArB) [~(ANB)  ~(AnB)
L 1
p -12 5 -4
Al
——AA-B

|1

a(AAB)>mAA-B °




Example 3.14
Prove - =17AA-2Bo-2(AAB)

A 18P
ANB " [(AAB) ]
1 B [—|—|A/\—|—|B]4
-1 —— Ak
-A -=A .
1 ) B [—|—|A/\—|—|B]4
all /\E2
-B -8B
1 o
—_||3
—=(AAB)

|4

—|—|A/\ —|—|BD—|—|(A/\ B) >




Example 3.15
Prove - 1= (A>B)>1—A>--B

[A]' [A>B] .

B -8}
—_||2

-(A>B) [-~(A>B)]* c

J_A ot [ A]5
-E
1
g "

—:IS

—|—|(A:) B):) ——mA>--B >




Example 3.16
Prove - (7—7A>--B)>-2(A>B)

AP Al C
L. [~(A>B)' A>B
[—|—|AD—|—|B]2 -—A > 1 B
SE =15
-8B =B
1 "
— 1E
B
o3
[+(A> B)]* ASB
; |1 A
—|—|(AD B) K |2
(—|—|AD—|—|B)D—|—|(ADB)




Proofs involving the Law of Excluded Middle are more difficult. The
fundamental strategy is that an application of the principle is required when
no other strategy could be applied.

Example 3.17
Prove FA=--A

AP AP

L A AP
lem 1 —1E ————-E
Av-A [A] A 1
V= Sk
A --A
>I2 >|2
—mAS A A> 1A




Do not rely on the shape of the theorem! Small variations could be provable
without the Law of Excluded Middle!

Example 3.18
Prove F 7A=--1-A

AP A

1
1 ale 1 2
1 1
_||3 _||1
A A




You may think the Law of Excluded Middle is about negation. This is false:

there are elementary facts in which negation does not appear, which require
the Law of Excluded Middle to be proved.

Example 3.19
Prove - (A>B)v (B> A)

2 1
AP AP

1 E

— 1
ﬂ | B |2
BoA A>B

Av-A " (AsB)V(B5A) " (AsB)V(BSA)
(ASB)v (B> A) v




Example 3.20
Prove - ((A>B)>A)o A

1 3
A A
[-A]" [A] e
1
— 1E
B 3
— ]
») ) D
A5 B) o A2 A>B
lem 1 oE
Av A [A] A
A vE!L

2

((A>B)>A) oA B




Example 3.21
Prove FA>B==-B>-A

[AsB]' [A]

-E

1

—||2
-A
—3|3
“B>-A f
(Ao B)>(~B>-A)

[-B>-AP [-8]

E

-A AP

[A” .
Bv-B " [B]" B

VE!
B
>3
A>B 2
(-B>-A)>(A>B)




Example 3.22
Prove FA>B=-=(AA-B)

[AA-B]? .
[A> B! A " JAA-B)?
ok ———AE
B -B 2
1 E
- = 2
“(AA-B) I M
(A>B)>-(AA-B) >
A [-B"
An-B " [~(Ar-B)P i
————lem 1 iJ_E
Bv-B " [B] B
B VE
32
ASB
=(AA-B)>(A>B)




Example 3.23
Prove FAvB=-A>B

[A° AP

L [FA' [~A>BP
1 ——LE 5 1 SE

[Av B] B [B] [A] B
2
VE lem vy vy

B Av-A AvB AvB
—A 5 S8 AV B vE?
—A>D Vv

oIt 2

|
AvB>(17A>B) (nA>B)oAvVB
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Semantics

The intended meaning of propositional logic can be formalised. In this way,
we will get a first, very simple semantics for the syntax introduced in the
previous lessons.

Fixed a map v: V — {0,1} from the set of variables V to the truth values,
denoted by 0 and 1, the meaning [A] of a formula A is inductively defined as

follows:

= if Ae V is a variable, then [A] = v(A);
= [T]=1,

= [1]=0;




Semantics

m if A=BAC then [A] is calculated according to

[Bl [Cl|IBAC]
0 0 0
0 1 0
1 0 0
1 1 1

= if A= Bv C then [A] is calculated according to

[B] [Cl1]IBvC]
0 0 0

0 1 1
1 0 1
1 1 1




Semantics

m if A=-B then [A] is calculated according to

Bl | [mBI
0 1
1 0

= if A= B> C then [A] is calculated according to

[Bl [C]l|I[B=C]
0 0 1
0 1 1
1 0 0
1 1 1




Semantics

Example 4.2

We can show that the formula x Ay 2 x V y is true whatever values we may
assign to x and y;

IxI Iyl | IxAayl Ixvyl|IxAyoxvyl
0 0 0 0 1
0 1 0 1 1
1 0 0 1 1
1 1 1 1 1

The corresponding proofs in natural deduction are:

xAyl* xAyl*
[xAyl] - [x Ayl s
X y
V|1 V|2
XVy XVy
ol* ol*
XAYyDXVy XAYyDXVy




Applications

Truth tables are widely used in the synthesis of (logical) circuits, and many
techniques to minimise the number of electronic gates, each one
implementing a logical connective, have been implemented.

In logic, truth tables are not an effective way to check whether a formula is
true for any assignment of its variables: the number of assignment to try is
2" with n the number of variables, so it grows exponentially with respect to
the number of variables.

Anyway, in pure logic, truth tables are a very effective way to construct a
minimal set of connectives. In fact, connectives are not independent, as they
can be mutually defined.




Interdependence of connectives

Negation can be defined using implication and falsity.

Checking the truth tables, one immediately realises that = A is equivalent to
Ao L. O

The set of connectives A, v, and — suffices to define all the others.

Just checking the truth tables, one can see that

® T can be defined as =X v X, for any choice of X;

®m | can be defined as = T;

® A> B can be defined as AV B. ]




Interdependence of connectives

Conjunction can be defined from disjunction and negation. Also, disjunction
can be defined from conjunction and negation.

Checking the proof table, it is immediate to see that
® AA B is the same as 7(=Av B);
® Av B is the same as 7(7AAB). O

Usually, 7(AAB)=-Av =B and 7(Av B) =AA B are referred to as the
De Morgan’s Laws. Here, A= B between two formulae A and B means that
both Ao B and B> A hold, i.e., A and B are equivalent.




Interdependence of connectives

So, the following set of connectives are sufficient to define all the others:
{L,o}
= {7, AL

= {7,Vv}
m {1,Do}.
But, in principle, one can reduce to a single connective, although this is

impractical. Define A|B=-(AA B), which is known as Sheffer’s stroke.
Then, using the truth tables it is easy to prove

= CA=AlA;
= A>B=A|(B|B).




Soundness

We want to show that every conclusion we may derive in the proof system is
true whenever all the assumptions it depends upon are true.

Before stating the theorem and proving it, we should make one important
remark. The collection of proofs is inductively generated by the inference
rules. So, we can reason about a provable statement by saying: if A is
provable, let 7w be a proof of A. If a property holds for every proof, then it
holds for 7, too.

To prove that a property holds for every proof, we can prove that each
inference rule preserves the property, which means that, assuming the
property to hold for the proofs in the premises of the rule, we have to show
that the proof whose last rule is the inference rule under examination, has
the property, too. In the case of the Soundness Theorem, the property of
interest is ‘the conclusion is true’




Soundness

IfT is a set of formulae, and we have a proof m: T+ A in the natural
deduction system, then whenever each formula in T is true, so is A.

The main hypothesis is that, for every GeT, [G] =1. We proceed by

induction on the definition of the proof m, showing that if all the

antecedents of an inference rules satisfy the property in the statement, so

does the conclusion:

= if 7 is an instance of the assumption rule, then A€T, so [Al =1 by
hypothesis.

= if 7 is an instance of the Tl rule, then A=T, so [A] =1.




Soundness

= if 7 is an instance of the LE rule, then, by induction hypothesis, [L] =1,
but we know that [L] =0, thus 0=1. Then, since [A] € {0, 1}, it follows
that [A] =1.

m if 7 is an instance of the Law of Excluded Middle, A= Bv -B. But
[Bv-B] =1, as it is immediate to check by the truth tables.

= if 7 is an instance of -, then, by the induction hypothesis applied to
7a': TU{A}F L, we have that [A] =1 implies [L] =1. Then, the
contrapositive form of the implication says that [L] #1 implies [A] #1,
which means [L] =0 implies [A] =0. But we know that [L] =0, so
[A]l =0, that is [-A] =1.

= if 7 is an instance of —E, then, by the induction hypothesis applied twice
to both antecedents, we get that ["A] =1 and [A] =1. Thus,
0=[A]l=1. Then [L]=0=1.




Soundness

= if 7 is an instance of Al, then, A= BA C and, by the induction hypothesis
applied to both antecedents, [B] =1 and [C] =1. So, by the truth table
of conjunction, [BA C]=1.

= if 7 is an instance of AEj, then the antecedent is a proof of AA B from
I'. Applying the induction hypothesis, we get that [AA B] =1, so, by the
truth table of conjunction, we derive that [A] = 1.

= if 7 is an instance of AEj, then the antecedent is a proof of BA A from
I'. Applying the induction hypothesis, we get that [BA Al =1, so, by the
truth table of conjunction, we derive that [A] = 1.




Soundness

= if 7 is an instance of vl; then, A= Bv C and the antecedent is a proof of
B from I'. By the induction hypothesis, [B] =1, so, by the truth table of
disjunction, [Bv C] =1.

= if 7 is an instance of vly then, A= Bv C and the antecedent is a proof of

C from I'. By the induction hypothesis, [C] =1, so, by the truth table of
disjunction, [Bv C] =1.

= if 1 is an instance of VE then, applying the induction hypothesis to the
first antecedent, we get that [BVv C] =1 for appropriate B and C. Thus,
by the truth table of disjunction, [B] =1, or [C] =1. In the former case,
applying the induction hypothesis to the second antecedent, we get that
[A]l =1. In the latter case, applying the induction hypothesis to the third
antecedent, we get that [A] =1.




Soundness

= if 7 is an instance of oI, then A= B> C. If [B] =0 then, by the truth
table of implication, [B> C] =1. Otherwise, [B] =1, and we can apply
the induction hypothesis to the antecedent of the inference rule, obtaining
that [C] =1. Thus, by the truth table of implication, [B> C] =1.

= if 7 is an instance of S E, then, applying the induction hypothesis to both
antecedents, we get [Bo> Al =1 and [B] =1. Thus, by the truth table of
implication, it follows that [A] =1, too. 0




References

The truth table semantics is described in Section 2.4 of the lecture notes.

The soundness theorem is folklore. In fact, we will see soon a more
interesting and powerful version of it, which uses a more refined semantics.

The interest of the soundness theorem lies in the structure of its proof: most
soundness theorems are proved by induction on the structure of proofs,
checking that each inference rule preserves the truth of antecedents into the
consequence. It is important to become acquainted with this technique.
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A rather more interesting semantics for propositional logic comes from the

algebra of orders. In the following, we will develop what is needed to
introduce it.

An order © =(S;<) is a set S equipped with a binary relation < which is
m reflexive, i.e., for all x€ S, x<x;
® anti-symmetric, i.e., for all x,y €S, when x<y and y < x, then x=y;

m transitive, i.e., for all x,y,z€ S, if x<y and y <z, then x<z.




Fixed an order @ =(S;<) and a U< S, we call the element me S, if it exists,
the least upper bound (lub), or supremum, or join, of U whenever

m for every xe U, x <m;
= for each w € S such that, for every x € U, x < w, it holds that m=w.

Fixed an order @ =(S;<) and a U< S, we call the element me S, if it exists,
the greatest lower bound (glb), or infimum, or meet of U whenever

= for every xe U, m<x;

= for each w € S such that, for every x € U, w < x, it holds that w < m.




An order © =(S; <) is called a /lattice when, for every pair x,y € S, there
exists the join of {x,y}, denoted by x vy, and there exists the meet of
{x,y}, denoted by x A y.

Moreover, a lattice is said to be bounded when, for every finite U< S, there
is VV U, the join of U, and A U, the meet of U. Conventionally, \/ @ is
denoted by L, and A @ is denoted by T.




In a bounded lattice (S;<), every element is greater that 1 and less than T.

Since T =A@, by definition of meet, for all xe @, T <x, and, for any y€ S
such that for all x€ @, y <x, it holds that y < T. But there are no elements
in @, soy<T forany y€S.

Since L =V @, by definition of join, for all xe @, x< 1, and, for any ye S
such that for all x€ @, x <y, it holds that L <y. But there are no elements
in @, so L=y forany yeS. O




In a bounded lattice (S;<), /S=T and ANS=L1.

By definition of join, for every x€ S, x<V S, and, by Proposition 5.5, T is
such that, for all x€ S, x<T. So, T<VS and VS <T. By anti-symmetry,
VS=T.

By definition of meet, for every x€ S, AS = x, and, by Proposition 5.5, L is
such that, for all x€ S, L <x. So, L=AS and AS < L. By anti-symmetry,
ANS=L1. O




A bounded lattice @ =(S; <) is said to be complemented when, for each
element x € S, there is an element y € S such that

B xAy=1;
B xvy=T.

The element y is not necessarily unique. For example




A lattice @ =(S; <) is said to be distributive when, for every x,y,z€ S,
xA(yvz)=(xAy)V(xAz).

In every lattice, x ANy =y AXx, and XxVy =y VXx.

Immediate, by definition of meet and join. O




For each x in a bounded lattice, x=xAT and x=xVv L

Immediate, by definition of meet and join, and Proposition 5.5. O

For each x and y in a lattice, xVv (x Ay) = x

By definition of meet, x < x Vv (xAy), so it suffices to show x Vv (xAy) <x.

But x < x by reflexivity, and x Ay < x by definition of join, so x v (xAy) < x
by definition of meet. O




In any lattice, if xA(yVvz)=(xAy)V(xAz) then
xV(yAnz)=(xvy)A(xVz).

By hypothesis, (xvy)A(xvz)=((xvy)Aax)v((xVy)Az), but Ais
commutative, so we can apply the hypothesis twice inside the brackets,
obtaining (x AX)V (xAy)V(xAZ)V(yAz).

Thus (xVy)A(xVvz)=xV(xAy)V(xAz)V(yAz). Grouping the first two
element on the right-hand side, we get
(xvy)n(xvz)=(xVv(xAy))V(xAz)v(yAz).

But the first element of the right-hand side reduces to x, so
(xvy)Aa(xvz)=(xV(xAz))Vv(yAz). Reducing again the first element, it
follows that (x vy)A(xvz)=xVv(yAz). O




In any bounded distributive complemented lattice, each element x has a
unique complement, denoted by —x.

Suppose the element x has two complements y and z. Then, by definition
of complement

B xAy=1l=xAz,

B xVy=T=xVz.

Thus, y=yAT=yA(xvz)=(yAx)Vv(yrz)=Lv(yaz)=
(zAx)v(zAay)=zA(xvy)=zAT=2z. O




Boolean algebras

A Boolean algebra is a bounded distributive complemented lattice.

Example 5.15
The set {0,1}, with the ordering 0 <1, is a Boolean algebra, with T=1 and

1 =0. This is the structure supporting the truth-table semantics.




Boolean algebras

Example 5.16
Fixed a set U, the powerset p(U)={S: S < U} ordered by inclusion, is a

Boolean algebra. The complement of S is the difference U\S, while A is the
intersection, and Vv is the union.

Example 5.17
Let neN be such that it cannot be divided by the square of any other

number, e.g., 105=3-5-7. Then, the divisors of n form a Boolean algebra,
with the operations of greatest common divisor, least common multiple, and
the complement of x being n/x.




Semantics

We introduced Boolean algebra for a precise purpose: interpreting
propositional logic.

Fixed a Boolean algebra @ = (0O;<), and v: V — O mapping each variable
into an element of the algebra, the interpretation [A] of a formula A is
inductively defined as:

= if Ais a variable, [A] =v(A);

m if A=T, [Al =T, the maximum element of ©;

m if A= 1, [A]l =1, the minimum element of @;

s if A=BAC, [Al =Bl AILC], the meet of the interpretations of conjuncts;
s if A=Bv C, [Al =[B]VICl], the join of the interpretations of disjuncts;

s if A=B>C, [Al=-[B]VvICl, that is [A] = [~Bv C], interpreting
implication as a relative complement;

= if A=-B, [A] =[Bl, the complement of the interpretation of B.




Example 5.19
Let us fix the Boolean algebra given by the powerset of N, ordered by

inclusion. For simplicity, the variables have the form x,, with neN, and
v(xn) ={n}. It is immediate to check that meets are unions, and joins are
intersections. Also, 1 =@ and T =N.

Then, [x3Vvx3]1=Dx3]U(N\[x3]) = {3u(N\{3})=N.

Also, [x5 A xs] = [xs5] N (N [xs]) = 15} N (N {5}) = @.

Finally, [x3 Vv =xs] = [x3] U (N\ [xs]) = {3} U (N\ {5}) =N\ {5}

Every ‘true’ formula seems to be intepreted in the top element of the
algebra; every ‘false’ formula seems to be interpreted in the bottom element
of the algebra.

But a formula, which, according to the truth table semantics, is sometimes
‘true’ and sometimes ‘false’, depending on the values of its variables, seems
to be interpreted in a ‘truth-value' which is neither T nor L.




Soundness

A formula A is valid or true in a Boolean algebra € = (0; <) together with an
interpretation v: V — O of variables, when [A] =T.
A set of formulae is valid or true when each formula in the set is valid.

In any Boolean algebra @ = (O; <), for any interpretation v: V — O of
variables, which makes true the theory T and the assumptions in the finite
set A, if A is the conclusion of a proof m from A in T, then A is valid.




Soundness

The proof is by induction on the structure of m: we show that the
interpretation of the conclusion A is greater than Agerl[Gl, with T the finite
set of assumptions occurring in the proof of A:

m if 7 is a proof by assumption, then A€T and, by definition of A,
AGerlGl < [A].

m if 7 is a proof by axiom, then A€ T, and, by hypothesis, [A] =T, so
AcerlGl = [A] by definition of T.

m if 7 is an instance of the Law of Excluded Middle, then A= Bv B, and
[Al =[Bv-Bl=[Blv-IB]l =T by definition of complement in a
Boolean algebra. Thus AgerlGl < [Al =T by definition of T.

m if 7 is an instance of T-introduction, then A=T, so [Al=[Tl1=T. Thus
AcerlGl < [A]l =T by definition of T.




Soundness

= if 7 is an instance of L-elimination, then, by induction hypothesis,
1L <= Ager[Gl <[L]=L1. Thus, by anti-symmetry, Ager[Gl = L. So, by
definition of 1, L = AgerlGI < [AL

m if 7 is an instance of A-introduction, then A= B A C, and by induction
hypothesis twice, AgerlGl < [B] and AgerlGl < [C]. Thus, by definition
of A, AgerlGl = [BIA[CI=[BAC]=IA].

= if 7 is an instance of Aj-elimination, then, by induction hypothesis, for
some formula B, AgerlGl < [AA Bl =[AIALB]. Thus, by definition of A,
AGerlGl < [A].

m if 7 is an instance of As-elimination, then, by induction hypothesis, for
some formula B, AgerlGl < [BAA]l =Bl A[A]l. Thus, by definition of A,
AgerlGl = [A].




Soundness

= if 7 is an instance of vi-introduction, then A= Bv C and, by induction
hypothesis, Ager[G] < [B]. So, by definition of v,
NgerlGl = [Bl = [BIVvICl=[Bv C] =[Al

m if 7 is an instance of Va-introduction, then A= B v C and, by induction
hypothesis, Ager[Gl < [C]. So, by definition of v,
NGerlGl = [Cl = [BIVvICl=[Bv (] =I[Al

m if 7 is an instance of v-elimination, then, by induction hypothesis, for
some formulae B and C, AgerlGl<[Bv Cl=[B]vIC],
[BI A AgerlGl < [Al, and [C] A AgerlGl < [A]. It follows that, by
definition of v and distributing,
(IBIAAGerIGD) v (ICTA Ager[G1) = (IBIV [C1) A Ager [ Gl < [A]. But,
since Ager[Gl < [BIVICI, (IBIVICI)AAgerlGl = AgerlGl by
definition of A, so AgerlGl < [A].




Soundness

m if 7 is an instance of >-introduction, then A= B> C for some formulae B
and C. By induction hypothesis, [B] A Agerl[Gl < [Cl. So, by definition
of v, [BIAAgerlGl <~I[Bl v IC]. Evidently, =[B] < —[B] v I[C]. Thus,
by definition of v, [Al =[B> Cl=-[B]vI[C]=~[B]V ([Bl A Ager[Gl).
Distributing and by definition of complement,

Al = (=IB1V [B1) A (-IBIV Ager[G1) =T A (2Bl V Ager[G]) =

=[Bl VvV AgerlGl. By definition of v, AgerlGl < —[BlV AgerlGl < [A].
= if 7 is an instance of >-elimination, then, for some formula B, by

induction hypothesis twice, Agerl[Gl < [B> Al and AgerlGl < [B]. By

definition of A, Ager[Gl <[B> Al A[B]. But [B>A] =-[B] Vv [A]. So,

Acerl[Gl < (—[BI v [A]l) A [B]. Distributing and by definition of —,

AGerlGl < (mIBIAIBI) v (IAIALBI) = Lv ([AI A [B]) = [Al A [B] < [Al.




Soundness

m if 7 is an instance of —-introduction, then A= -B for some formula B.
So, by induction hypothesis, [B] A Ager[Gl <[Ll]= L. Thus, by
definition of L and anti-symmetry, [B] A Agerl[Gl =L. Then,
[Al = [Bl =~[Bl =~[B] vL==[B] Vv ([Bl AAgerlGl), and,
distributing, [A] = (=[B]V [BI) A (7Bl V AgerlGl) =
TA([7BIV AgerlGl) = [Al vV Ager[Gl. Thus, by definition of v,
NGer[Gl = [AlV Ager[G] = [A].

= if 7 is an instance of —-elimination, then A= L and, by induction
hypothesis twice, AgerlGl < [-B] and AgerlGl < [B]. But
[=B] =-1[B]. So, by definition of A, AgerlGl < -[BIA[B]. By
definition of complement, Agerl[Gl < -~[BIA[B] =1 =[A].

Hence, for every formula A being the conclusion of a proof from A in the
theory T, AgealGl < [Al. But, by hypothesis, for every Ge A, [G] =T, so
NAGealGl =T, thus, by definition of T, T <[A] < T, that is, by
anti-symmetry, [A]=T. O
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Two excellent references for orders, lattices, and Boolean algebras are B. A.
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proof itself is adapted from a more general result which uses the internal
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Completeness

We will show that, fixed a theory T, any formula A, which is valid in any
Boolean algebra making T true, is provable, i.e., there is a natural deduction
derivation with no assumptions that has A as its conclusion.

In fact, we will prove a stronger result: in a theory T, for any finite set T of
formulae and for any formula A, if AgerlGI < [A] in any Boolean algebra
which makes the theory T true, there is a natural deduction proof m: T' 1 A.

As a corollary, noticing that when I'=@, Ager[Gl =T, the previous result
follows by anti-symmetry.




Preliminaries

The proof is complex and subtle.

In the first place, it is worth noticing that, if #: T'-71 A, then there is a finite
A cT such that m: A7 A. In fact, since any proof is a finite object, and
any inference rule has a finite number of antecedents, only a finite number
of assumptions may be used in a proof.

In this sense, the limit of having a finite I' in the statement of the
Completeness Theorem is not committing.




Of course, the difficult aspect of the theorem lies in considering the totality
of Boolean algebras.

The strategy behind the proof is

m construct a canonical Boolean algebra B which makes the axioms of T
true, and which is ‘easy’ to manage;

= show that, for any other Boolean algebra O, there is a function e: B— O
which preserves the ordering relation;

m deduce that, up to isomorphisms, if Ager[Gl < [A] in every Boolean
algebra, then AgerlGl < [A] in B, which is obvious, and vice versa, which
is not obvious;

® prove that, for any finite set ' of formulae and for any formula A, if
Acger[Gl < [A] in B, then there exists n: '+ A.

This strategy is general: many completeness results for most logical systems,
follow this pattern. But there are exceptions. . .




Canonical model

The idea is to define a canonical Boolean algebra, in which truth and
provability are the same notion.

Let T be a theory. Then the canonical Boolean algebra B(T) on T is the
set {A: Ais a formula in the language of T}/ ~, where A~ B if and only if
A1 B and BT A, together with the order defined by [A]_ <g(1) [B].
exactly when A7 B. For the sake of simplicity, when it is clear from the
context, we omit the subscripts.

Notice how, posing A to be true exactly when [T]_ <[A]., we get that
@+ A because T=A¢.

But we have to show, first, that B(T) is a Boolean algebra.




An auxiliary result

Ift:TU{Att7 B and 8: T 1 A, then there is a proof v: T 1 B.

By induction on the structure of the proof 7.

= if 7 is an instance of the assumption rule either Be T, so v coincides with
7, which does not depend on A, or B= A, thus v=20.

= if 7 is an instance of the axiom rule, B€ T, so v =, which does not
depend on A.

m if 7 is an instance of T-introduction, B=T, so v =, which does not
depend on A.

m if 7 is an instance of L-elimination, by induction hypothesis, there is
&:Th1 L, so applying the L-elimination rule to ¢ gives the required v.




An auxiliary result

= if 7 is an instance of the Law of Excluded Middle, B=Cv ~C, so v=m,
which does not depend on A.

® if 7 is an instance of A-introduction, B= CA D, and, by induction
hypothesis, there are £: TH7 C and u: T'7 D, so the required v is
obtained by applying A-introduction to ¢ and p.

= if 7 is an instance of Aj-elimination, by induction hypothesis, there is
&:TH7 BAC, so v is obtained by applying A1-elimination to ¢.

= if 7 is an instance of As-elimination, by induction hypothesis, there is
&:TH7 CAB, so v is obtained by applying Az-elimination to ¢.




An auxiliary result

® if 7 is an instance of vi-introduction, then B= Cv D and, by induction
hypothesis, there is {: T'F7 C, so v is obtained by applying
V1i-introduction to ¢.

= if 7 is an instance of va-introduction, then B= Cv D and, by induction
hypothesis, there is {: T'7 D, so v is obtained by applying
Vo-introduction to €.

= if 7 is an instance of v-elimination, by induction hypothesis, there are
ETHTCVD, puc: Tu{Ctk7 B, and up: Tu{D} 7 B, so, applying
v-elimination to ¢, ¢, and pp the required v is constructed.




An auxiliary result

= if 7 is an instance of >-introduction, then B= C> D and, by induction
hypothesis, there is £: TU{C} 7 D, so v is obtained by applying
S-introduction to ¢.

= if 7 is an instance of >-elimination, by induction hypothesis, there are
&:THrCoBand u: TH7 C, so v is constructed applying >-elimination
to ¢ and p.

® if 7 is an instance of —-introduction, B=-C and, by induction
hypothesis, there is : TU{C} 7 L, thus v is obtained applying
—-introduction to €.

= if 7 is an instance of —-elimination, by induction hypothesis there are
&:Th7-C and u: TH1 C, so v is constructed applying —-elimination to
¢ and p. O




Properties of the canonical model

The relation ~ is an equivalence relation.

® By the assumption inference rule, AT A, so A~ A for any formula A,
i.e., ~ is reflexive.

m |If A~B, then Akt B and BT A, so B~ A, too. That is, ~ is
symmetric.

m |If A~ B and B~ C then there are 1g: AT B and m4: B-7 A, and
Oc: Bt Cand 8g: CH1 B. By Lemma 6.2, there are n: A7 C and
0: CHT1 A, that is, A~ C, which means ~ is transitive. O




Properties of the canonical model

The relation g 1) is an ordering.

m The relation [A]_ < [B]. does not depend on the choices of the
representatives in the equivalence classes on ~, in fact, if [A]. =[A']. and
[B].=[B']., then A~ A" and B~ B’. So, by definition of ~, A1 A and
BF1 B'. But, by definition of <, AF1 B, thus, by Lemma 6.2 twice,
A7 B, that is, [A]_ <[B]..

= By the assumption rule, AT A, so [A]. <[A]., i.e., < is reflexive.

w If [A]. < [B]. and [B]. <[C]., then A7 B and B+t C, so, by
Lemma 6.2, A1 C, that is, [A]. <[C]., i.e., < is transitive.

m If [A]. =[B]. and [B]. <[A]., then A7 B and B A, so, by definition
of ~, A~ B, thatis, [A]. =[B]., i.e., < is anti-symmetric. O




Properties of the canonical model

B(T) is a lattice.

m Consider [AAB].: [AAB]. <[A]. since AABFT A by Aj-elimination;
also, [AA B]. < [B]. since AA B1 B by Ap-elimination. If [C]_ <[A].
and [C]_<[B]., then Ckr Aand C+1B,so Ck-1 AAB by
A-introduction, thus [C]_ <[AA B].. So, by definition of A in an order,
[Al.A[B]l.=[AAB]..

= Consider [Av B].: [A]. <[Av B]. since A1 Av B by vi-introduction;
also, [B]. <[AvV B]. since BF-1 Av B by va-introduction. If [A]. <[C].
and [B].<[C]., then Akt C and B-7C,s0 AVBFT C by
v-elimination, thus [Av B]_ <[C].. So, by definition of v in an order,
[Al.Vv[B].=[AvB].. O




Properties of the canonical model

B(T) is a bounded lattice.

= For each formula A, A7 T by T-introduction, so [A]_ <[T].. Thus, by
definition of T in a lattice, T =[T]..

= For each formula A, L7 A by L-elimination, so [1]_ <[A].. Thus, by
definition of L in a lattice, L =[1]_. O




Properties of the canonical model

B(T) is a distributive lattice.

For any A, B, and C, [A]V ([B]A[C]) = [A]V[BAC]=[AV(BAC)] and
(Al vIBD) A([AlvC]) =[Av B]A[Av C]=[(AvB)A(Av C)].

But AV(BAC)FT (AvB)A(Av C) since

[BAC] c [BAC]

E
A" A" B ¢ ™
avB " ave™ Tave ® Ave "
| |
AV(BAC) (AVB)A(AVC) " (AVB)A(AVC)

VE*

(AvB)A(Av ()




Properties of the canonical model

Also (AvB)A(Av C)F1 Av(BAC) since

[B]"
(AvB)A(Av C) [A]* :
AvB " TAv(EAO) " Av(BAC)
Av(BAC) v
where the third antecedent is
B [C]f
(AvB)A(Av C) Al BrC
AEp vl vl
Av C Av(BAC) Av(BAC) .
Av(BAC) vE

Thus, (AvB)A(Av C)~Av(BAC), and the conclusion follows. O




Properties of the canonical model

B(T) is a complemented lattice.

Consider, for any formula A, [7A]: [A]A[-A]=[AA-A]=[L] =1, since
1 +7AA—A by L-elimination, and
AA-A AA-A
AE1 AE2

A -A
1

-E

Also, [A]v[~A]=[AVv-A]=[T]=T, since Av AT T by T-introduction,
and T 7 Av —A by the Law of Excluded Middle. O

B(T) is a Boolean algebra.




Classifying models

Fixed a theory T, let O be any Boolean algebra and let v: V — O be any
assignment of variables on it such that [Al =T for any Ae T. If
[B]~ <B(T) [C]N, then [Blo <o [Clo.

If [B]. <g(7)[C]., then there is m: Bi-7 C by definition of <g (7).
Thus, by the proof of the Soundness Theorem 5.21, applied in the O
Boolean algebra with the v assignment, [Blg <¢ [Clo- ]




Classifying models

Fixed a theory T, let O be any Boolean algebra and let v: V — O be any
assignment of variables on it such that [A] =T for any A€ T. Then, the
map ég: B— O, defined by [B].— [Blo, is the canonical map to O.

This definition does not depend on the choice of the representatives in B. In
fact, if [A] =[A'], then, [A] =[A'] and [A] = [A'], so, by Proposition 6.10,
[A] < [A'] and [A'] <[A] in O, thus, by anti-symmetry, [A] = [A'].

Moreover, the canonical map, preserves the ordering of B.




Completeness

Fixed a theory T, for any finite set ' of formulae and for any formula A, if
NGerlGl < [Al in any Boolean algebra and any assignment of variables which
makes the theory T true, then there is a natural deduction proof m: T 1 A.

If Ager[Gl = [Al, then [Ager GI = [A].

Since this fact holds in any Boolean algebra, it holds also in B(T), the
canonical Boolean algebra on T. And, because of the way interpretation is
defined in B(T), [Ager G] =[A].

So, by definition of < in B(T), there is 7: Ager G 1 A. Noticing that
I'F7 Ager G by iterating the A-introduction rule, by Proposition 6.2 it
follows I' - A. O




Completeness

If [Al =T in every Boolean algebra and with any assignment of variables
making the theory T true, then there is a proof m: 1 A.

If [Al=T, then T =[T] < [A], being < reflexive. By the Completeness
Theorem, the result follows immediately. O




Classifying models

In fact, we have another result for free: any model for a theory T, i.e., any
Boolean algebra O together with an assignment of variables, is described by
its canonical map ¢g.

In a sense, all the models of a theory T can be synthesised from the
canonical model applying a canonical map. It is tempting to identify the
models with the class of canonical maps...

... but this is another story which leads very far. And we will not pursue it
during this course.




References

The proof has been adapted from the one in topos theory, which is
illustrated in Section D of Peter Johnstone, Sketches of an Elephant: A
Topos Theory Compendium, Oxford Logic Guides 43, Oxford University
Press, (2003), ISBN 978-0198524960.

The notion of classifying model is central in the topos-theoretic approach,
and, in some way, it goes back to Grothendieck's work. Again, Johnstone's
book is a good starting point.
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First-order logic

Propositional logic is a toy system. A very useful one, indeed, but, still, it
has not enough expressive power to allow us to describe any useful
mathematical theory, e.g., arithmetic or set theory.

Although propositional theories are very well-behaved, as we have seen, we
want to use logic as a tool to do real mathematics. And, to achieve this
objective, we need to speak about objects.

The main novelty in first-order logic is that the language is able to identify
objects, and to write formulae on them. As already said, we allow
quantification to freely range over objects, but not over sets of objects, or
other collections/structures of objects.

Although outside the scope of the present course, higher-order logics, which
allow extended quantification, cannot be complete. And first-order logic is,
in a way, at the borderline for completeness, as we will illustrate in due time.




A signature £=(S; F; R) is composed by
® a set S of symbols for sorts.

® 3 set F of symbols for functions. Each symbol f € F is uniquely
associated with a type s x -+ x s, — s, with s;€ S for each 0<i<n.
When n=0, we say that f is a constant of type sp.

® a set R of symbols for relations. Each symbol r € R is uniquely associated
with a type sy x-+-x s, with s;€ S for each 1<i<n. When n=0, we say
that r is a propositional constant.

The notation f: sy x---xs,—>sg€ F and r: sy x---xs, € R means that f is a
function symbol whose type is s; x --- x s, — 50, and r is a relation symbol
whose type is s1 x .-+ x s, respectively. Also, we require that S, F, and R do
not contain the logical connectives and quantifiers.

A signature describes a first-order language: sorts stands for collection of
elements, functions are used to denote elements, while relations are used to
form basic formulae.




Example 7.2

The signature
A =N} 0 N,S:N—=N;+: NxN—=N,-: NxN—N};{=: NxN})

specifies the basic language for arithmetic. There is one sort, which, in the
intended interpretation, stands for the collection of natural numbers. There
is constant, 0, denoting the zero natural number, there is a function S,
which stands for ‘successor’, denoting the next natural number, so that, in
the intended interpretation, S(5) =6, while the functions + and - denote
addition and multiplication.

There is only one relation symbol, denoting equality.

Of course, the theory of arithmetic should be devised in such a way that, as
far as possible, the formal behaviour, that is, what we can prove, conforms
to the intended interpretation.




Example 7.3
The signature ¢ = ({G};{l: G,-:GxG— G,_‘l: G— G};{:: G x G})

describes the language of the theory of groups.

Example 7.4
The signature € = ({0}; @;{<: O x O}) describes the language of the theory

of orders.

Example 7.5
The signature & = ({E, L};{nil: L,cons: ExL— L};{=g: ExE,=;: LxL})

defines the language of the theory of lists. A computer scientist would say it
defines the data type of lists.




Terms

The first-order language has two-purposes: to provide a syntax to denote
elements in the universe, i.e., in the collections denoted by the sorts, and to
provide a syntax to denote properties of those elements.

The first issue is addressed by terms.

Let X =(S;F;R) be a signature, and let V be an infinite set of symbols,
called variables, such that Vn(SUFUR)=¢@. Also, assume that each
variable x € V has a uniquely associated type s€ S, denoted by x: s. We
require that there is an infinite amount of variables for each type s€ S.
A term, along with the set of its free variables, is inductively defined as:

= if x: s€ V, then x is a term of type s, and FV(x) = {x};

miff:syx---xs,—sp€F and ti,...,t, are terms of type si,...,5n,
respectively, then f(t1,...,t,) is a term of type sp, and
FV(f(ty,...,tn)) =UL, FV(t;).

We use the notation t: s to say that the term t has type s.




Terms

Example 7.7
Using the signature A of arithmetic, 0, S(0), 5(5(0)), ... are terms of type

N. Also +(x,0) and -(x,+(5(0),5(5(0)))) are terms of type N. Notice how
x+0 and x(1+2) are not terms.

To cope with the problem of expressing the standard notation of
mathematics within the rigid syntax of logical terms, we will formally
introduce definitions later.




Formulae

As terms are used to denote elements, formulae are used to denote
properties of elements. The syntax is similar to propositional logic, with two
important differences: we have atomic formulae instead of propositional
variables, and we have quantifiers.

Fixed a signature £=(S; F;R) and a set of variables as for terms, a
formula, along with the set of its free variables, is inductively defined as

= T and L are formulae, and FV(T) =FV(1) = g.

mif r:s;x---xs,€ R is a relation symbol, and t: s1,...,ty: s, are terms,
then r(ty,...,t,) is an atomic formula, and FV (r(ty,...,tn)) =UL; FV(t;).

m if A and B are formulae, so are 7A, AAB, Av B, and A> B, and
FV(=A)=FV(A), FV(AAB)=FV(Av B)=FV(A> B)=FV(A)UFV(B).

m if x: s is a variable and A is a formula, so are Vx: s.A and 3x: s. A, and
FV(Vx:s.A)=FV(3x: s.A) =FV(A)\ {x}.




Formulae

There are two main differences between first-order formulae and
propositional ones:

m instead of propositional variables, we have atomic formulae, which link
the formulae with terms by means of a relation;

= there are quantified formulae, where the variable is not free. We say that
quantified variables are bounded.

The notion of bounded variable is not new: for example, the expression
fabf(x)dx does not really depend on the variable x. In fact, the x is a
placeholder, to give some name to the argument of the f function. A
bounded variable does not denote a value, but rather it acts as a placeholder
which allows to write a formula or a term. Its meaning is controlled by the
quantifier, and not by the way variables are interpreted, as in the integral,
the x does not denote a real or complex number, but rather what is allowed
to vary in the function.




Substitution

Variables are subject to a fundamental operation: substitution. In fact, from
a formula A where the variable x appears free, we may obtain another
formula, A[t/x], where the term t is substituted for x. For example, in the
language of arithmetic, x can be substituted in x+0=x to obtain 2+0=2.

Substitution is fundamental in describing the inference rules governing
quantifiers. And bounded variables make substitution not immediately
intuitive.

There are many equivalent ways to describe the substitution operation: we
will use a method which is not the most immediate, but it will become very
handy later in the course.




Substitution

Fixed a signature and a term t on it, the substitution of the variable x: s
with the term r: s, yielding t[r/x], is defined by induction on the structure
of the term t:

m if t=x, then t[r/x]=r;

m if ¢ is a variable, but t £ x, t[r/x]=t;

wif t=f(t1,...,tn), then t[r/x] =f(t1[r/x],..., talr/x]).

Notice that the substitution operation is defined only when t and x share
the same type.




Substitution

Fixed a signature and a formula A on it, the substitution of the variable x: s
with the term t: s, yielding A[t/x], is defined by induction on the structure
of the formula A:

if A=T or A= 1, then A[t/x] = A;

if A=r(t1,...,tn), then A[t/x]=r(t1[t/x],..., talt/X]);

if A= B, then A[t/x]=-BJ[t/x];

if A=BAC, A=Bv C, or A=B>C, then A[t/x] = B[t/x] A C[t/x],
Alt/x] = BJ[t/x]v C[t/x], or A[t/x]= B[t/x]> C[t/x], respectively;
if A=Vy:r.B,or A=3y: r.B, and y: r=x: s, then A[t/x] = A;

if A=Vy:r.B,or A=3dy:r.B, and y: r#x: s, then

Alt/x]=Vz: r.(Blz/y])[t/x], or Alt/x]=3z: r.(B[z/y])[t/x],
respectively, where z: r g FV(B)UFV(t).




Substitution

The first clauses in the definition are obvious: we substitute the variable x
with the term t where it appears.

The last but one clause means that a bounded variable cannot be
substituted: this is simple to understand, as it does not make sense to
substitute x with 5 in the formula 3x: N.x2 = x3. In fact, the formula is
true, because 12=1=13, but, evidently, it happens just for some values of
x, which the existential quantifier is meant to single out.

The last clause is a bit cryptic. It says that, before performing the
substitution of x with t on the quantified formula B, we should rename the
quantified variable y with a new variable, which does not appear in B and t.

An example may clarify why this must be done: let A=3x: N.x+y =2y,
and let t =2x. If we do not rename variables, A[t/y] would give

3x: N.x +2x =2(2x), that is, 3x: N.3x =4x. We notice the A holds
whenever x =y, but A[t/y] does not. The problem is that the x in ¢ and the
one in A should be kept distinct—and we do this by renaming before
performing the substitution.




Definitions

The language of first-order logic is cumbersome. Despite the fact that we
already use a simplified notation, avoiding unneeded parentheses and hiding
what can be immediately inferred from the context, the formal nature of the
language is far distant from the reality of the mathematical practice.

On the contrary, the formal nature of the language is what allows it to be
analysed: we constantly use induction on the structure of the language
(terms, formulae, proofs) as our main proving instrument.

There is a way in between: we can construct a reasonable formal language
by taking a basic formal language, and enriching it with syntactical sugar.
This does not change the formal nature of the language, but allows to make
the language much closer to the standard practice.

This practise takes place by allowing syntactical construction which are not
part of the formal language, but, still, can be directly translated into the
formal language. This construction is called definition, and it has to follow a
few, precise rules.




Fixed a first-order language with equality, let f be a new symbol. Whenever
it holds that Vxq: s1....¥xp: sp.3y: so. FAVz: so. F[z/y] 2 z=y, with
FV(F)<{xi,...,xn,y}, then f: sy x---x s, — 50 can be used as an additional
function symbol, since it can be removed from the language by the rule

Alf(t1,...,tn) /2] =3z: so. AN(F[z/y))[t1/x1,-- > tn/Xn] A
AVYw: so.(Flw/y)[t1/x1,-.., th/xn] 2z2=w
for any formula A, and with the obvious extensions to the definition of

substitution. As far as a different syntax is non-ambiguous, we allow it in
place of the standard functional syntax.




Fixed a first-order language, let r be a new symbol. Then r: sy x---x s, can
be used as an additional relation symbol standing for the formula R
whenever FV(R) ={xi,..., xp}, since it can be removed by substituting
R(t1,...,tn) whenever r(ty,...,t,) occurs in any formula A. Again, as far as
the syntax is non-ambiguous, we allow fancy syntactical constructions.

Notice that there is no way to define new sorts. This happens because
defining new sorts require sophisticated rules which cannot be easily
managed by translating into the original language.




Example 7.13
Consider the language generated by the signature:

({N};{0: N,succ: N— N,add: NxN— N, times: NxN— N}; {eq: NxN})

Then, the syntax x +y stands for add(x,y), xy stands for times(x,y), and
x =y stands for eq(x,y). The last definition is a relation symbol definition,
while the first two definitions are function symbol definitions, corresponding
to the formulae

Vx: N.Yy: N.3z: N.eq(add(x,y),z) AVw: N.eq(add(x,y),w) 2> eq(z, w)
and
Vx:N.VYy:N.3z: N.eq(times(x,y),z) AVw: N.eq(times(x,y), w) 2> eq(z, w)

that we must prove.




Example 7.14

Consider any first-order language with equality. Then we may add a new
family of relation symbols 3!x: s. A with x: s a variable and A a formula,
which stands for 3x: s.AAVz: s.A[z/x] 2 z=x, with z: s¢ FV(A).
Syntactically, this appears as a new form of quantification, which is read as

‘uniquely exists'.




Natural deduction

Fixed any first-order language, the definition of theory follows the one
already given in the propositional case.

The same holds for the definition of proof and the other related terms,
except that the collection of inference rules contains four new rules, to deal
with quantifiers. They are illustrated in the next slides.

When the language contains equality, we require the presence of other
inference rules, detailed in the next slides.

The modular composition of inference rules in natural deduction explains
why we chose this deduction system instead of one of the many others in
literature: all the deduction systems in this course are obtained by adding or
deleting a few rules from the propositional or the first-order case.




Natural deduction

Following the previous notation, the rules for universal quantification are

A Vx:s. A
Vi VE
Vx:s. A Alt/x]

provided that
® in VE, tis a term of type s;

® in V/, the variable x: s does not occur free in the proof of the antecedent,
which means that, for every assumption G, x: s¢ FV(G). This condition
is, sometimes, referred to by saying that x: s is an eigenvariable.

Notice the similarity between the rules for V and for A.




Natural deduction

Similarly, the rules for existential quantification are

18]

Alt/x] | Ix:s.B A
3
Ix:s.A A

3E

provided that
= in 3/, t is a term of type s;

m in JE, the variable x: s does not occur free in the proof of the second
antecedent, that is, for every assumption G in the second subproof,
except for B, x: s¢ FV(G). Again, x: s is said to be an eigenvariable.
Notice how this inference rule discharges the assumption B.

Notice the similarity between the rules for 3 and for v.




Natural deduction

Equality is a special relation, and this is captured in a series of ad-hoc
inference rules. When the language has an equality relation for some sort s,
it is subject to the following rules:

refl sym
Vx:s.Xx=x Vx:sVy:s.x=yDy=x
trans
Vx:sVy:sVz:s.x=yAy=z>Dx=2z
Alt/x] t=r
At/ t=r
Alr/x]

fun

Vx1:S1....Y%p: sp.31z: sp.z=f(x1,...,Xn)

where, t and r are terms of type s, and f: sy x--- x s, — 50 is a function
symbol of the language.




Example 7.15
[P
———1 5
Ix:s.P [-3x: 5. P] .
J_ —
-t
-P
—— VI
Vx:s.P

>I?

(m3x:s.P)>Vx:s.2P

By applying the double-negation law (A =--A), and taking P = A, we get
that (-3x: s.7A) o Vx: s.A.




Example 7.16
[Vx:s.~P]?
, —————VE
[P] -P .
[3x:s.P]* 1 )
n 3E2
—_||1
—-3x:s.P

3

ol

(Vx:s.mP)>=3x:s.P

Putting P =-A and applying the double negation law, one gets that
Vx:s.A=-3x:s.0A




Example 7.17
[Vx: s.P]?
[3x: s.2P] 1 )
El =
;_‘IZ
aVx:s. P

(3x: s.aP)>Vx: s.P




Example 7.18
[~3x: 5.~ P]*
Vx:s.P [~Vx: 5. P]? .
[ = E ﬂ
_—1
(3Ix: s.7P)v(3x: s.7P) o [3x: s.7P) 3x: s.mP o
\%

Ix:s.2P
(7Vx:s.P)o3x:s.mP

2

ol




Example 7.19

To show that the restrictions on variables in the introduction rule of the
universal quantifier is essential, consider the following counterexample. Let
x: seFV(P).
1
[P]
Vx:s.P
- DO
Povx:s.P |
v
Vx:s.(P>Vx:s.P)

Vi
|1

The instance of the V/ rule on the top is invalid, since x: s appear in the
assumptions which are undischarged in that moment of the proof.

In arithmetic, if P stands for ‘x is even’, the conclusion allows to prove that,
since P[0/x] is true, every natural number is even!




Example 7.20

Another counterexample, showing why the restriction on variables is
essential in the elimination rule for the existential quantifier, is the following.

Again, let x: se FV(P).

[P>@? [PP

[3x: s. P]* Q

e

(3x:s5.P)2Q N
(Po2Q)>((3x:s.P)2 Q)

Vx:s.((P>2Q)>((3x: s.P)>Q))

SE
3E3

2

Vi

Inside arithmetic, let @ = L1, so the conclusion reduces to
Vx:s.(mP>-3x: s.P). If P stands for ‘x is even’, since P[1/x] is false, the
conclusion allows to deduce that there is no even natural number!




R nces

Usually, first-order logic is presented in a simplified way, by avoiding the
multi-sorted language, and by using a reduced number of connectives.
Although this approach simplifies the initial presentation, it makes difficult
to pass to other logical system, e.g., intuitionistic logic, and to deal with real
mathematical theories, where multiple sorts are often present.

A good text which introduces the first-order language in a formal way is John
Bell and Moshé Machover, A Course in Mathematical Logic, North-Holland,
(1977), ISBN 0-7204-28440, which covers our treatment of definitions, too.

Natural deduction is described in many textbooks. This lesson follows A.S.
Troelstra and H. Schwichtenberg, Basic Proof Theory, Cambridge Tracts in
Theoretical Computer Science 43, Cambridge: Cambridge University Press,
(1996). The counterexamples have been taken from that text.

© @ @ Marco Benini 2016
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= |[nformal meaning
= Semantics

= Examples

= Soundness




Informal meaning

Fixed a signature (S; F; R), the intended interpretation of a sort se S is a
specific set; the intended interpretation of a function symbol is a function;
and the intended interpretation of a relation symbol is a relation.

The intended meaning of equality, =: s x s, when present in the language, is
the identity of its arguments.

Thus, the intended meaning of a term is an element, which is identified via
the interpretation of functions and the evaluation of variables, in the
universe, the collection of all the sets denoted by sorts.




Informal meaning

In turn, formulae stands for a truth value, either true or false, as in the
propositional case. And connectives have the intended propositional
meaning, we already illustrated.

Atomic formulae, r(ti,...,t,), are true when the argument (ty,...,t,) is in
the relation denoted by r.

A formula is universally valid, that is, Vx: s.A holds, when A is true in
whatever way we interpret x as an element of the set denoted by s.

Symmetrically, a formula is existentially valid, that is, 3x: s. A holds, when
there is an element e in the set denoted by s such that interpreting x as e
makes A true.




Semantics

The standard semantics for first-order logic, due to Alfred Tarski, directly
formalises the intended interpretation.

Let X =(S;F,R) be a first-order signature.
Then, a Z-structure M =(U; F,R) is composed by

m 3 collection U = {us}ses of non-empty sets, called the universe,

m 3 collection of functions over the universe
F ={gf: us x - xus, — Usy | {1 51 %+~ x5, —>50€F},
m 3 collection of relations over the universe
R={pr:us x---xus | r:spx-xs,€R}.




Semantics

To make clear the relation between a signature and a Z-structure, we use
the following notation:

m for each s€ S, [s] = us;
m for each f: sy x--xs,—speF, [f] =gf;
m for each r: sy x---xspeR, [r] = py.

This is called the interpretation of the signature in the X-structure.




Semantics

Let X =(S;F,R) be a signature, and let .4 be a Z-structure, with the
notation as before. Also, let v ={vs}ses be a collection of functions

vs: {v: v:se V}— [s], mapping the variables of type s into the
corresponding set [s].

Then, a term t is interpreted according to the following inductive definition

on its structure:
= if te V is a variable of type s, then [t] = vs(t);
w if t=F(t1,...,tn), then [¢] = [F1([t1], ..., [ta]).




Semantics

Let £=(S;F,R) be a signature, let .4 be a Z-structure, and let v be an
evaluation of variables, with the notation as before.

Then, a formula A is interpreted according to the following inductive
definition on its structure:

ifA=T, [Al=1;
if A=1, [A]l=0;
if A=r(t1,...,tn), [Al=1if ([t1],...,[ts]) € [r], and [A] =0 otherwise;

if A=-B, A=BAC, A=Bv (C, A=B>C, then [A] is defined as in the
truth-table semantics;

if A=Vx:s.Bor A=3x: s.B, let £ ={{s}scs be an evaluation of
variables such that, &y =V, for each a #s, and &s(v) = vs(v) for each
v#x. Then, [Vx: s.B] =1 if, for all the possible &, [B] =1, and

[Vx: s.B] =0 otherwise. Also, [3x: s.B] =1 if, there is a & such that
[B]l =1, and [3x: s. B] =0 otherwise.




Semantics

We stipulate that, when equality is in the language, [t; = to] =1 exactly
when [t1] = [t2].

If one prefers, [=g], the equality on the sort s, represents the diagonal
relation {(x,x): x € [s]}.

It is worth remarking that equality is always typed: t; = t» is a valid formula
if and only if t; and to are terms of the same sort s, and the relation =
should be read as a shorthand for =5, which stands for the diagonal relation
on the set denoted by the sort s.




Example 8.4

Fix the signature of arithmetic, and consider the standard model of natural
numbers. Then, the formula S0+ S0 =550 is interpreted in
[SO+ S0 =550] =1 since

1. [S0+S0] =[+]([S01,1S01) =+ (IS1(I01),1S1(01))=+(1+0,1+0) =
1+1=2;

2. [SS01 = [SI([SO1)=[SI(ISI(I01))=1+(1+0)=1+1=2;

3. [SO0+50=550]=1 if and only if [SO+ 50] = [SSO0], that is, if and only if
2=2.




Example 8.5

Fix the signature of arithmetic, and consider the standard model of natural
numbers. Let consider [x = (550)y]. Applying the definition of semantics,
[x =(5S50)yl =1 if and only if [x] =2[y], that is, if and only if x is
interpreted in a number which is two times the value y is interpreted in.

So, if x is interpreted in 6 and y in 3, the formula is true, while if x is
interpreted in 6, but y in 5, the formula is false.




Example 8.6

Fix the signature of arithmetic, and consider the standard model of natural
numbers. Consider [Ix.x = (550)x]. Applying the definition of semantics,
[3x.x = (550)x] =1 if and only if there is an assignment ¢ of variables,
identical to the one fixed in the model except for the value it assigns to x,
such that [x = (550)x] = 1. But, whenever ¢(x) =0, [x =(550)x] =1 since
both sides evaluate to 0, so the initial formula is true.

Consider [Vx.x =(550)x]. Applying the definition of semantics,

[Vx.x =(550)x] =1 if and only if for each assignment ¢ of variables,
identical to the one fixed in the model except for the value it assigns to x, it
holds that [x = (550)x] =1. But, when é(x) =1, [x =(550)x] =0 since the
left side evaluates to 1 and the right side to 2.




Example 8.7

Fix the signature of arithmetic, and consider the standard model of natural
numbers. Consider [Vx.3y.x = (550)yl. Applying the definition of
semantics, the formula holds if, for each assignment ¢ of variables, identical
to the one fixed in the model except for the value of x, it holds that

[3y.x =(550)yl =1. In turn, this happens when there is an assignment ¢’,
identical to ¢ except for the value of y, such that [x = (550)y] =1.

For each ¢ as above, fix &'(y) = x/2, the integer division of x by 2.
Whenever x is even, it is immediate to check that [x =(550)y] =1 holds.
On the contrary, when x is odd [x =(550)y] =0 as the left side differs from
the right.

It is evident that there is no possibility to find an assignment &’ as above for
every possible choice of ¢, so the initial formula is false.




Soundness

A formula A is valid or true in a Z-structure .# together with an
interpretation v of variables, when [A] = 1.
A set of formulae is valid or true when each formula in the set is valid.

In any Z-structure 4, for any interpretation v of variables, which makes
true the theory T and the assumptions in the finite set A, if A is the
conclusion of a proof m from A in T, then A is valid.




Soundness

First, we observe that, by Definition 8.3, the connectives act in the Boolean
algebra on {0,1} with 0 <1, so the A, v, =1 operations are defined as in the
truth-table semantics.

The proof is by induction on the structure of the proof m: we prove that the
interpretation of the conclusion A is 1 when the interpretation of each G in
the finite set of assumption I is 1:

if 7 is a proof by assumption, then AeT and, by hypothesis [A] = 1.

if  is a proof by axiom, then A€ T, and, by hypothesis, [A] =1.

if 7 is an instance of the Law of Excluded Middle, then A= Bv B, and
[Al=[Bv Bl =[Blv-[B]l =1 by definition of complement.

if 7 is an instance of T-introduction, then A=T, so [A] =1.

if 7 is an instance of refl, then A=Vx: s.x=x, so [A] =1 when

[x =x] =1 for each possible evaluation of the variable x in [s]. So, if x
gets mapped to e€ [s], (e,e)€{(z,2): z€ [s]}, so [x=x] =1 for any e.




Soundness

= if 7 is an instance of sym, then A=Vx:s.Vy:s.x=yoy=x,so [Al=1
when [x =y 2>y =x] =1 for each possible evaluation of the variables x
and y in [s]. So, if x gets mapped to e, € [s], and y to e, € [s], if
(ex,ey) €{(z,2): z€[s]}, then e, =ey, thus (ey,ex) € {(2,2): z€ [s]},
thatis, [x=y>y=x]=1.

= if 7 is an instance of trans, then
A=Vx:sVy:sVz:s.x=yAy=z>x=2z, s0 [A]l =1 when
[x=yAy=z>x=2z]=1 for each possible evaluation of the variables x,
y, and z in [s]. So, if x gets mapped to ex € [s], y to e, € [s], and z in
ez €lsl, if (ex,ey) €{(z,2): ze[sl} and (ey,e;) €{(z,2): z€ [s]}, then
ex = e, =&, and thus (ex,e;) €{(z,2): z€ [sl}, that is,
[x=yAy=zox=2z]=1.




Soundness

= if 7 is an instance of fun, then
A=Vx1:s1....Y%: 5p.32: sp.2 = f(x1,...,Xxn), so [Al =1 exactly when z
can be uniquely mapped into a value e, in [sp] so that
(ex, [f1(ex,--- €x,)) €{(2,2): z€ [s]}, which is evidently true for
ez =[f1(ex--rEx,)-

= if 7 is an instance of subst, then, by induction hypothesis, [[A[t/x]]] =1
and [t=r] =1, that is [t] = [r]. The conclusion follows by an easy
induction on the structure of the formula A.

= if 7 is an instance of L-elimination, then, by induction hypothesis,
0=[L]=1. Thus, [Al =1 since interpretation is a total function.




Soundness

= if 7 is an instance of A-introduction, then A= B A C, and by induction
hypothesis twice, [B]l =1 and [C]=1. Thus, 1=[B] A[C] = [A].

= if 7 is an instance of Aj-elimination, then, by induction hypothesis, for
some formula B, [AAB] = [AIA[B]l =1. Thus, by definition of A, [A] = 1.

= if 7 is an instance of Aj-elimination, then, by induction hypothesis, for
some formula B, [BAA] = [BIA[A]l =1. Thus, by definition of A, [A] = 1.

m if 7 is an instance of vi-introduction, then A= Bv C and, by induction
hypothesis, [B] =1. So, by definition of v, 1=[B] Vv [C] = [A].

= if 7 is an instance of vs-introduction, then A= Bv C and, by induction
hypothesis, [C] =1. So, by definition of v, 1=[B] v [C] = [AI.

m if 7 is an instance of v-elimination, then, by induction hypothesis, for
some formulae B and C, [BvC]=[B]lVvI[Cl=1, if [Bl=1 then [A] =1,
and if [C] =1 then [A] =1. By definition of v, either [B] =1, thus
[Al =1, or [C] =1, thus [A] =1.




Soundness

m if 7 is an instance of >-introduction, then A= B> C for some formulae B
and C. By induction hypothesis, if [B] =1 then [C] =1. So, by definition
of o, [Al =1.

® if 7 is an instance of >-elimination, then, for some formula B, by
induction hypothesis twice, [B> Al =1 and [B] = 1. By definition of >,
[A] =1.

m if 7 is an instance of —-introduction, then A= B for some formula B.
So, by induction hypothesis, if [B] =1 then 0=[L1]=1. Thus, [7B] =1
as, either [B] =0, or 0=1.

m if 7 is an instance of —-elimination, then A= 1 and, by induction

hypothesis twice, [7B] =1 and [B] =1. So, by definition of complement,
0=1. Thus, 0=[A]=1.




Soundness

m if 7 is an instance of V-introduction, then A=Vx: s.B, and, by induction
hypothesis, [B] =1 for every evaluation of variables which makes the
assumptions true. But, since x: s does not appear free in any
assumption, [B] =1 for any way we may evaluate x in [s], that is [A] =1.

= if 7 is an instance of V-elimination, then A= BJ[t/x], and, by induction

hypothesis, [Vx: s.B] =1. So, in particular, when x evaluates to [t],
[Al =[B[t/x]1 =1.




Soundness

m if 7 is an instance of F-introduction, then A=3x: s.B, and, by induction
hypothesis, [B[t/x]] =1. So, the evaluation of variable &5 which is the
same as vs except for £5(x) = [t] makes A valid.

m if 7 is an instance of 3-elimination, then, by induction hypothesis,
[3x:s.Bl=1 and, if [B] =1, then A is valid. But, [3x: s.B] =1 means
that there is way to evaluate x in [s] which makes B valid. Applying this
evaluation of variables to the second induction hypothesis, we get that A
is valid. ]




References

The interpretation of formulae, as illustrated in this lesson, has been
formalised first by Alfred Tarski. This is a classical definition, and it can be
found in most textbooks.

The notion of model, that is, a Z-structure which satisfies all the axioms in a
theory, is analysed in depth in the branch of Logic called model theory. A
standard reference is C.C. Chang and H.J. Keisler, Model Theory, Studies in
Logic and the Foundations of Mathematics, 3" edition, Elsevier, (1990),
ISBN 008088007X. Nevertheless, this text is quite dated, and an
introduction to the basics of contemporary model theory can be found in

W. Hodges, A Shorter Model Theory, Cambridge University Press, (1997),
ISBN 0-521-58713-1.

The soundness theorem is a classical result and its proof can be found in
most textbooks. Our treatment follows the already cited John Bell and
Moshé Machover, A Course in Mathematical Logic, North-Holland, (1977),
ISBN 0-7204-28440. It is worth comparing the proof in this lesson with the
propositional proof using the truth-tables semantics.
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First order logic:

= Completeness




The completeness theorem is difficult, both technically and conceptually.
The strategy to prove it is indirect:
m Suppose A is true in any model satisfying I'. Then TU{=A} has no model.

= We will show that any set of formulae A which is consistent, i.e., non
allowing to derive a contradiction, has a model. This is proved by
constructing a sufficiently big set ® containing A which has enough
information to synthesise a model for itself.

m So, TU{—A} must be non consistent. Which means that T' - A.
We need to prove each step. And we will start from the end.




Fixed a first-order signature, a set of formulae I" on it is consistent when it
does not happen that '~ A and T'+ = A for any formula A in the language.

Fixed a first-order signature, a set of formulae T on it is maximal consistent
when it is consistent and for any other set A on the same language such that
T'c A, A is not consistent.

It should be stressed that being maximal consistent is a property which is
not invariant with respect to the language.




For any set of formulae T' and any formula A,
m TU{=A} is not consistent if and only if T+ A;
= T'U{A} is not consistent if and only if T -A.

If TU{—A} is non consistent, then TU{— A} B and T'U{-A} B for some
B. So, by implication introduction, ' =A> B and I'-2A> B. Since
F(7A>B)A(7A>-B)> A can be easily proved using the double negation
law, see Example 2.6, it follows that T'+ A.

Conversely, Tu{=A} - A by hypothesis, and T'U{=A} - = A by the assumption
rule, so T'U{—A} is not consistent.

By the double negation law, I'U{A} is non consistent if and only if Tu{-—=A}
is non consistent, thus the second part follows from the first one. O




The completeness theorem says that: if a formula A is true in every model
of the theory T', then there is a proof of A from T.

Now, by Proposition 9.3, it suffices to prove that: if a formula A is true in
every model of the theory I', then T'U{—=A} is not consistent.

We notice that any super set of a set of non consistent formulae is non
consistent, too. The idea we want to pursue is to construct a sufficiently
rich super set of any consistent set that allows to build a model.




A set T' is maximal consistent if and only if it is consistent and, for every
formula A, either AeT or ~A€T.

Suppose T' is maximal consistent. Then it is consistent by definition. Also,
suppose there is A such that A¢T and =A¢T, then TU{A} and Tu{—-A}
must be both non consistent by definition. Thus, by Proposition 9.3, T+ -A
and I'+ A, making T non consistent, which is a contradiction.

Conversely, suppose I' © A. Then, there is A€ A such that A¢T. So, by
hypothesis, "AeT' cA. Thus, AF- A and AF = A by assumption. O

If T is maximal consistent and T - A then A€T.

Otherwise 7"A€T, thus '~ =A, making T’ non consistent. ]




Closure of maximal consistent sets

Let T' be a maximal consistent set. Then the following facts hold:

Tel, LgT;

if A= r(ty,...,t,) then either AT or "A€T;

if " A€T then AeT;

if ANBeT then AeT and BeT,; if 7/(AAB) el then ~A€l or "Bel;
if AvBET then AeT or BeT; if 7((Av B) €T then ~A€eT and "BeT;
if ADBEeT then "AeT or BeT, if 7(A>B)eT then AeT and "BeT;
if¥x:s.A€T then A[t/x] €T for each term t: s;

if 7(3x: s.A) €T then —A[t/x] €T for each term t: s.

0N OO DD

Since T+ T by truth introduction, T € T. Hence, since =T is equivalent to L,
L ¢T. The condition on atomic formulae follows from Proposition 9.4.




Closure of maximal consistent sets

If AABEeT then, by conjunction elimination, '+ A and T'+ B. So, by
Corollary 9.5, AeT and BeT. Moreover, by the De Morgan's Laws,

=(Av B) is equivalent to "AA 1B, so the required result follows. Also, since
=(A> B) is equivalent to AA B, the required result follows.

If AvBeTl and A¢T, it must be "A€T. So it is immediate to see that

't B, i.e., BeT. Moreover, by the De Morgan's Laws, 7(AA B) is
equivalent to =Av =B, so the required result follows.

If ADBeT and 7A¢T, it must be AeT'. So it is immediate to see that

'+ B, i.e., Bel. Also, by the double negation law, I'—==A> A, so, if
—-A€eTl, AeT, too.

If Vx:s.A€eT, by the forall elimination rule, I' = A[t/x] for any term t: s.
Thus, A[t/x]€l. Also, since 73x: s.A is equivalent to Vx: s.71A, the
required result follows. ]




Closure of maximal consistent sets

Let T' be a maximal consistent set in a language with equality. Then the
following facts hold:

1. t=teT for all terms t;

2. ift=reT, then alsor=teT;

3. ift=reTl and r=u€T, then also t=u€eT;

4. ifti=riel foreach1<i<n, then f(t1,...,tn)=f(r1,...,m) €T for every
f:s1%x--xs,— 59 in the language;

5. ifti=ri€T for each 1<i<n, then p(t1,...,tn) 2 p(ri,...,rn) €T for every
p: Sy X+ xS, in the language.

Since all these equalities can be deduced from T applying the inference rules
in an elementary way, by Corollary 9.5 the results follow. O




Closure of maximal consistent sets

Two evident conditions are lacking from Proposition 9.6:
m if Ix: s.A€eT then A[t/x] €T for some term t: s;
m if 7(Vx:s.A) el then =A[t/x] €T for some term t: s.

In fact, the second condition is equivalent to the first one, since =(Vx: s.A)
is equivalent to Ix: s.7A.

The first condition is lacking simply because it does not hold for any
maximal consistent set. Take the language with just equality, and let

U ={u,v}. Consider the variable evaluation o which maps every variable x in
u. Take ¥ as the collection of true formulae on the model U under the
evaluation o. Evidently, ¥ is consistent, since it has a model. Moreover, for
any formula A, either it is true or false in that particular model, so either
AeVY¥ or "Ae V.

But 3x.7x =y, with x and y distinct variables, is true, while (=x = y)[t/x]
is false for any term t because the only terms are variables and all of them
are interpreted into the same element u.




A set of formulae T in a language is a Henkin set when T is maximal
consistent in that language and

w if 3x: s. A€l then A[t/x] €T for some term t: s;
m if 7(Vx:s.A) el then =A[t/x] €T for some term t: s.

Thus, Henkin sets form a proper subclass of maximal consistent sets, and
they are the right objects to look at, as they contain enough information to
construct a model for themselves.




Canonical model

IfT is a Henkin set, then there is a Z-structure M together with an
evaluation of variables 0 which makes T’ true.

Let T be the set of terms in the language. Define t ~r when t: s,r:se T
and t =reTl. By the properties of a Henkin set, see Proposition 9.7, ~ is an
equivalence relation. So, it induces a partition on T. Thus, we define
U={{[t]-: t: se T}} s, grouping partitions by sort.

For each function symbol f: s; x-+-xs, = sg in Z,

IF1([t1]~,-- - [ta]~) = [F(t1,--- th)]~ -

Notice how this definition is legitimate, since the class [f(t1,...,t,)]~ does
not depend on the choice of the representatives [t1]~, ..., [tn]~, by a direct
application of Proposition 9.7.




Canonical model

For each relation symbol p: sy x---sp, in Z,

Ipl ={([t1]~,...,[tn]~) : P(t1,...,tn) €T} .
Again, this definition is legitimate since it does not depend on the choice of
the representatives [t1]~, ..., [tn]~ by Proposition 9.7.

So, let ./ be the Z-structure having U as its universe, and interpreting
function symbols and relation symbols as above.

Define o, the evaluation of variables, as o(x: s) = [x]~.
By induction on the structure of terms, we show that [t] = [t]~:
m if t=x:sis a variable, [t] =o(x: s) =[t]~;

w if t=f(t1,...,tn), [t] = [F1([t1],-.., [ts]), and, by induction hypothesis,
[tl = 1F1([t1]~,-- > [ta]~) = [F(t1,-. -, tn)]~ = [t]~.




Canonical model

By induction on the structure of formulae, we show that, when A€T,

[Al =1, and when ~A€T, [A] =0.

m if A=T, then A€T and, by definition, [A]l =1.

m if A= 1, then =A€T and, by definition, [A] =0.

= if A=p(ty,...,tn), [Al=1if and only if ([t1],...[t]) € [pl, that is,
([t1]~»---»[tn]~) € [p], and, by definition of the model, this happens
exactly when p(ty,...,ty) €T, i.e.,, when AeT. When "A€T, being T
maximal consistent, A¢T, so [A] =0.

s if A=t=r, [Al =1 exactly when [t] = [r], which is equivalent to
[t]~ =[r]~, and by definition of the model, t=reT. Again, if 7t=reT,
being I' maximal consistent, t=r ¢TI, and [A] =0.

= if A=-B, [A] =1 exactly when [B] =0, and, by induction hypothesis,
this happens exactly when B¢T'. Conversely, if A¢T, then BT, being T
maximal consistent, so, by induction hypothesis, [B] =1, i.e., [A]l =0.




Canonical model

s if A=BAC, [Al=1if and only if [B]l =1 and [C] =1, but, by induction
hypothesis, this happens exactly when BeT and CeI. So, when A€T,
by Proposition 9.6, B€T and CeT, thus [A]l =1. On the contrary, when
-A€T, by Proposition 9.6, "B€T or ~C €T, and, being I' maximal
consistent, either B¢ T or C¢T. In both cases, [A] #1, so [A] =0.

s if A=Bv C, [Al=1if and only if [B] =1 or [C] =1, but, by induction
hypothesis, this happens exactly when BeT or CeT. So, when A€T, by
Proposition 9.6, BeT or C€T, thus [A] =1. On the contrary, when
—A€T, by Proposition 9.6, "B€T and = CeT, and, being I' maximal
consistent, B¢gT and C¢T. In both cases, [A] #1, so [A] =0.

m if A=B>C, [Al=1if and only if [B] =0 or [C] =1, but, by induction
hypothesis, this happens exactly when =BeT or CeT. So, when A€T,
by Proposition 9.6, "B€T or C€T, thus [A] =1. On the contrary, when
—A€T, by Proposition 9.6, BeT and =C €T, and, being I' maximal
consistent, BeT and C¢T. In both cases, [A] #1, so [A] =0.




Canonical model

= if A=Vx: s.B, [A] =1 exactly when, in whatever way x: s is interpreted
in U, [Bl=1. Since U is composed by equivalence classes of terms, x: s
is interpreted in [t]~ for any term t: s. This means that [B[t/x]] =1 in
the ¢ evaluation of variables. By Proposition 9.6, when AeT, B[t/x]eTl
for every term t: s, so, by induction hypothesis, [B[t/x]] =1 for any term
t: s, thus [A] = 1. Furthermore, when =A€T, being T a Henkin set,
there is a term t: s such that = B[t/x] €T, so, by induction hypothesis,
[B[t/x]1 =0, thus [A] =0.

= if A=3x:s.B, [Al =1 exactly when, there is a way to interpret x: s in U
such that [B] =1. By definition of U, x: s is interpreted in [t]~ for some
term t: s. This means that [B[t/x]] =1 in the ¢ evaluation of variables.
Being ' a Henkin set, when AeT, B[t/x] €T for some term t: s, so, by
induction hypothesis, [B[t/x]|] =1, thus [A]l =1. Also, when =A€T, by
Proposition 9.6, there is a term t: s such that - B[t/x] €T, so, by
induction hypothesis, [B[t/x]] =0, thus [A] =0.




Canonical model

Summarising, we have constructed a Z-structure .# and an evaluation of
variables o such that each formula A€T is true in .4 under the o
evaluation. O

The 4 model has a universe which does not exceed the size of the
collection of all terms.




Existence of Henkin sets

Let T be a consistent set of formulae on the signature . Then, there is a
set of formulae A on a signature ¥, extending T with constants, such that A
is a Henkin set and T € A.

Warning: we anticipate some set theory here!
Let A be the cardinality of the collection of terms on X. Let

C=U{c:sli<A}

seS

be a collection of symbols for constants, such that no ¢7: s appears in X.
Let X' be X extended with the set of constants in C.

The collection of all formulae over X' is a set with cardinality A, as it is easy
to verify by cardinal arithmetic. So, it can be well-ordered in the sequence
S =1{S;: i <A} by means of an equivalent of the Axiom of Choice.




Existence of Henkin sets

By transfinite induction on A, we define for every i < A a set I'; of formulae
such that

1. T; T for every j<1i;
2. T is consistent;

3. no more that / constant in C occur in T';.

We pose I'g =T'. Condition (1) holds vacuously; (2) holds by hypothesis; (3)
holds since no constant in C appears in I' by definition.

If i<Ais a limit infinite ordinal, we put T; =Uj<iTj. By definition, condition
(1) holds. If Tj+ A and Tj = A, then each proof uses only a finite subset of
assumptions, 1“;.4 and F,T‘A. But every finite subset of T'; is contained in some
I'j, with j </, so there is m<i such that 1“;.4 cI'), and F,T‘Agl“m, thus

I'mbE A and I'yy - —A, contradicting the inductive assumption that Ty, is
consistent. So I'; must be consistent, proving (2). Finally, since (3) holds for
any j <i, because of (1), it must hold also for i, proving (3)




Existence of Henkin sets

If i <A is a successor ordinal, say i = k+1, we distinguish three cases:

m |f Ty U{Sk} is non consistent, then T'; =Ty, and the three conditions
clearly hold by inductive hypothesis.

m |If I'y U{S} is consistent and Sy is not of the form 3x: s.A or °Vx: s. A,
then T'; =T, U{Sk}. Evidently, the three conditions hold by inductive
hypothesis and by construction of T;.

m |f T) U{Sk} is consistent and Sy has the form 3x: s.A or =Vx: s. A, then,
by (3), there is c: s in C not occurring in Ty and S.
So, T =T, U{Sk, Blc/x]} with B=A when S, =3x:s.A, and B=-A
when Sy =-Vx: s.A. Clearly, (1) and (3) hold for T';.
Suppose T; to be non consistent. Then, Ty U{Sk}F —B[c/x]. Since c is
new, it could be regarded as a variable free in the assumptions, so
TrU{SkEVx:s.mB. If S,=3x:s.A B=A, thus T, U{S,}+ L by
exists-elimination. If Sy =Vx:s.A, B=-A, thus 'y U{S,}F L since 7B
is equivalent to A. In both cases, I'y U{S} is non consistent,
contradicting the assumption. Thus, I'; must be consistent.




Existence of Henkin sets

Let A=T,. By (1), [=TgcA, and, by (2), A is consistent.

Let A be a formula on X' such that A¢ A. Since A= S for some k<A, T'j41
must not contain A, which means, by construction of the sequence of T';’s,
that 'y U {A} is non consistent, thus also AU {A} is non consistent.
Therefore, A is maximal consistent.

If 3x: s.A€ A then 3x: s. A= S for some k <A, so T'x41 contains Alc/x] for
some new constant c¢: s. Similarly, if 7Vx: s.A€ A then =Vx:s.A= Sy for

some k <A, so T'x,1 contains 7A[c/x] for some new constant c: s. Thus, A
is a Henkin set. ]




Completeness

If T is a consistent set of formulae on a signature X, then T is true on a
model whose universe has a cardinality less or equal than the cardinality of
the formulae in the language on X.

By Proposition 9.11, T can be extended to a Henkin set A. By Lemma 9.9,
A, and thus T', has a model satisfying the cardinality constraints. O

If every model of T makes A true, then T+ A.

Clearly, if every model of I' makes A true, then I'u{=A} has no model.
Thus, by Theorem 9.12, T U {—A} is non consistent.
Then, by Proposition 9.3, T+ A. O




References

The first completeness proof for first-order logic has been given by Kurt
Godel. The proof presented in this lesson follows the techniques introduced
by Leon Henkin.

Our treatment follows John Bell and Moshé Machover, A Course in
Mathematical Logic, North-Holland, (1977), ISBN 0-7204-28440.

Godel's proof was his doctoral dissertation, and it is based on a obscure
formalism. Henkin's proof is a substantial reorganisation of Gédel's proof,
emphasising that it involves the construction of a model.
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Syllabus

First-order logic
= Compactness
m | dwenheim-Skolem Theorems

= A discussion on completeness




For any set of formulae T, if every finite subset of ' has a model, then T has
a model too.

By hypothesis, applying the Soundness Theorem 8.9, every finite subset of T
is consistent.

Suppose T to be non consistent: then T'HA and T’ =A. Since a finite
number of assumptions occur in each proof, there are two finite subsets such
that T1 + A and T2 - —A. Consider T,y =T1 UT2. It is evidently finite and
non consistent, leading to a contradiction. Thus, I' must be consistent.

So, by Theorem 9.12, T has a model. O




Fix a language with a single sort. If a set of sentences S has arbitrarily large
finite models, then it has an infinite model.

Define T, =3x1,...,Xp. A1<icj<nXi Z Xj. Clearly, T, holds in any model whose
universe has at least n distinct elements.

Consider any finite subset FSSu{r,: neN}. Let K=Fn{r,: neN}. Since
F is finite, K is finite too, so m=max{n: 7, € K} is defined. Thus, since S
has arbitrarily large finite models by hypothesis, F must have a finite model
larger than m.

Thus, by Theorem 10.1, Su{r,: ne N} has a model .4 . Since T, must hold

for every ne N, .4 must have more than n distinct elements in its universe,
for every ne N, thus it must be infinite. ]




Léwenheim-Skolem

A classical result in Model Theory is

Let T be a theory on the signature X with just one sort. If T has an infinite
model of cardinality a = |T]|, then T has a model of any cardinality B such
that max(|Z|,Rg) < B <a.

We are not going to prove it, since we do not want to develop the concept
of ‘being elementary equivalent’ for models.

Here Xg = N, the cardinality of natural numbers.




Léwenheim-Skolem

Any consistent theory T (on a single sort) such that | T| <R, has a model
whose universe has cardinality at most Rg.

Being consistent, T has a model. Either T has an infinite model or it does
not. In the latter case, the result is obtained.

In the former case, by Theorem 10.3 taking 8 =Xp, the result follows. O

Notice how the Completeness Theorem 9.12 allows to prove a similar, but
weaker result, since the model has the cardinality of the formulae on the
language.




Léwenheim-Skolem

Let T be a theory on the signature X with just one sort. If T has a model of
cardinality @ = Ro, then T has a model of any cardinality f = max(a,|Z|).

Fix any f=max(a,|T|), and extend the signature X by adding § new
constants kj, i< f. Let T'=Tu{k;#kj: i <j<p}. Clearly, T' is a theory
on the extended signature.

Let F< T’ be any finite subset of T’. Since it contains only a finite number
of axioms of the form k; # k;, F has a model, because the model for T,
being infinite, allows to interpret those axioms, and makes true the other
axioms in F.

Thus, by compactness, T’ has a model .# and it must contain at least 8

distinct elements. But, by Theorem 10.3, there is model having exactly 8
cardinality, by using the cardinality of . as an upper bound. O




Léwenheim-Skolem

Let T be a theory on the signature X with just one sort. If T has a model of
cardinality @ = Rg, then T has a model of each cardinality = max(|Z|,Ro).

Immediate, by combining the upward and downward Léwenheim-Skolem
theorems. O

If T is a consistent theory on the signature T with just one sort, then either
T has a finite model, or it has a model for any cardinality greater than
max(|Z[,Rp).




Discussion

The Compactness Theorem 10.1 is a consequence of the completeness
result. One of its consequences is Proposition 10.2.

Thus, it is impossible to write a first-order theory which captures the notion
of having finite models only. In fact, any theory T, either has finite models
with a limit on their cardinality, or it has at least an infinite model.

Hence, the compactness result reveals a first, intrinsic limit to what can be
expressed in the first-order language.




Discussion

The Léwenheim-Skolem Theorems provide other limitations to what can be
expressed in a first-order theory.

For example, Corollary 10.4 says that every ‘effective’ and consistent theory
has a model whose cardinality is either finite or Xg. Here, by ‘effective’ we
mean really writable, thus, at least, with a finite or denumerable number of
symbols.

As a concrete instance, we get that the theory of real numbers, as developed
in any textbook of mathematical analysis, which can be formally rendered as
a first-order theory, has a countable model, which is much smaller than R.

Saying the same thing in another, provocative way, Mathematical Analysis
does not speak about real (or complex) numbers. It speaks about an infinite
set which is much smaller than R or C. So small that it disregards most of
the reals (or complex numbers), which play no role in Analysis.

[Analysts are greatly disturbed by this sentence, but, nevertheless it is true,
when we regard Mathematical Analysis as a formal theory!]




Discussion

Of course, we are investigating formal first-order theories. In this respect,
the Loéwenheim-Skolem Theorems say that not only every ‘effective’ theory
has a finite or countable model, but if it has an infinite model, it has a
model of any infinite cardinality.

This has a deep impact. Consider, for example, a formal and effective theory
of arithmetic. Natural numbers form an obvious model, and the theory is
intuitively consistent. So, by Corollary 10.7, it has models of any infinite
cardinality.

In other words, without even writing the formal theory, as far as we
require it to be effective, we know that it does not capture only the model of
natural numbers. It must have models for each cardinal above Rg.




Compactness, again

In topology, compactness is the property of a topological space ¥ which
says that every open covering A of & contains a finite sub-collection C that

covers &.
The Compactness Theorem can be stated in topological terms, which make

evident why the term ‘compactness’ is appropriate, but obscuring the logical
meaning, and the use we could make of that result to construct models.




Compactness, again

Fix a signature 2. Let . be the class of all the Z-structures, that is, of all
the possible models.

For any formula ¢ and for any theory T define
Mod(¢) = {M €.#: I makes true ¢} ,

Mod(T)={9e.#: Mis a model for T} .

Clearly, for any Mt e ., there is a formula ¥ such that 20t makes it true: any
formula with no free variables is either true or false, so one of them satisfies
the requirement. Thus, 9t e Mod(vy).

Suppose Mod(¢) nMod(v) is not empty. Then, since every Z-structure in
the intersection necessarily validates ¢ Ay, Mod(¢ Ay) < Mod(¢p) nMod(y).




Compactness, again

In topological terms, the class ¥ can be equipped with a topology 7,
whose basis is the collection {Mod(¢): ¢ is a formula on Z}.

Being elements in the basis of I, the Mod(¢) are open subsets.

But the complement of Mod(¢) is Mod(—¢) since the logic is classical, and
each formula is either true or false in a model. So, topologically, Mod(¢) is
also a closed subset.

Now, Mod(T) =NgeT Mod(¢), since each 2t € Mod(T) has to validate
every formula ¢p€ T.

Hence, {Mod(T): T is a consistent theory on X} is the family of all closed
subset of .#.




Compactness, again

In general, let A={A;};c; be a family of subsets of X, for some set X. Then
A has the finite intersection property, if every finite sub-collection J </ has
non-empty intersection N;c A;.

A standard result of general topology says

A space X is compact if and only if any collection of closed subsets of X
with the finite intersection property has non-empty intersection.

The Compactness Theorem says that, if every finite subset of a theory T has
a model, then T has a model, and vice versa.

In the topological language, it means that Mod(T) = Nge7 Mod(¢) is
non-empty exactly when, for each finite 7' T, Mod(T") = Nge7-Mod(¢) is
non-empty. Equivalently, posing A= {MOd((p)}d)eT' if A has the finite
intersection property, then A has non-empty intersection.

Hence, the Compactness Theorem says that the space Mod(T) equipped
with the 9~ topology is compact.




Comparing models

Let X be a signature with just one sort, and let T be a theory.
We have seen that T may have more than one model.

This means that we have a way to distinguish models. From the outside of a
theory, this is obvious. But, from the inside?

If 9t and N are both models for T, and they are distinct, we would like to
find a formula & in the language on X which holds in 91 but is false in 1.

The question is: can we always find such a formula?




Comparing models

Completeness is a property of a formal system which says that whatever is
true in any model, it can be derived.

But there is an alternative notion of completeness which says

A theory T on the signature X is complete if, for every sentence ¢ on the
same language, either ¢ is true in any model of T, or =¢ is true in any
model of T.

Here, by ‘sentence’ we mean a first-order formula with no free variables.
Hence, it does not depend on the interpretation of variables, which simplifies
the analysis.

Also, we will write T ¢ to say, that every model of T makes ¢ true.

So, we have another question: are the two notions of completeness
equivalent?




Comparing models

Example 10.10
The simplest example of complete theory is Th(901) = {¢p: ¢ is true in M}
with 2T any model on the signature X.

The key in the example is that, since we are working in classical logic, every
sentence is either true or false in a model. So, given two models 9t and 1,
we can compare the models by comparing Th(9t) and Th(91). When these
theories are different, we know the models are different, too. And there is at
least one sentence & ¢ Th(9) nTh(D1), which can be used to distinguish the
models.

But, when they are equal?




Comparing models

Actually, the answer is simple: if a model 91 is infinite, then the theory
Th(91) must have models of any infinite cardinality beyond the size of the
language, by Theorem 10.5.

If we take one of those models, call it 91, whose size is greater than the
cardinality of 9%, we know that these models are distinct.

Consider Th(M): since N validates each formula in M1, it makes true
Th(91), that is, for every ¢ € Th(9M), it holds that ¢ € Th(DN).

Since every sentence ¢ in the language on X is either in Th(90), or

¢ € Th(MN), then Th(M) = Th(N).

So, we may have different models which are indistinguishable by what we
can express in the language.

Our counterexample shows that the models are distinguishable because they
have different cardinality.




Comparing models

The way we obtained this negative result, shows that the two notions of
completeness are not equivalent. We may write a theory T which is not
complete, e.g., consider the theory of orders and the formula saying that the
order has a global minimum.

Then, the collection of formulae which are true in any model of T is not a
complete theory. In the counterexample of orders, the formula Im.Vx.m < x
is true on the model of natural numbers, while it is false in the model of
integer numbers.

As a remark, which concludes this part of the course, the complex
construction behind the completeness theorem is unavoidable: the deep
reason is that, whatever proving strategy we may want to pursue, we have to
construct a complete model, in the sense introduced in this lesson, in which
truth coincides with provability. And we are really forced to ‘saturate’ the
theory to obtain such a model, otherwise the counterexamples we have just
shown, could not be constructed.




References

The notion of compactness is fundamental in model theory, since it allows to
construct models of an infinite theory by considering only finite subsets of
formulae. This fact turns out to be critical in many situations. A good
starting reference is W. Hodges, A Shorter Model Theory, Cambridge
University Press, (1997), ISBN 0-521-58713-1.

The exposition of Léwenheim-Skolem theorems follows John Bell and Moshé
Machover, A Course in Mathematical Logic, North-Holland, (1977),

ISBN 0-7204-28440, omitting the parts on elementary equivalence of
models. The same holds for the link between the logical Compactness
Theorem and topology.

A comprehensive text on model theory which is approachable, but contains
many examples of the application of logic to other fields, is David Marker,
Model Theory: An Introduction, Graduate Texts in Mathematics 217,
Springer (2002), ISBN 0-387-98760-6.
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Syllabus

Set theory:
= Language
Classes and sets

Paradoxes

= Comparing sets

= Axioms




The language of the theory of sets is the usual first order language with
equality plus one additional symbol: €. The corresponding signature is

{S};@;{=: SxS5,€: SxSh

Since there is a unique sort, we omit sort specifications from the syntax.

The intended meaning is that S stands for the collection of all possible sets,
while € denotes membership. Notice how there are no objects apart sets in
the universe.




It is important to distinguish between formal set theory, which is the first
order theory we are going to introduce, and informal set theory which is used
to describe the formal theory.

Although the former intends to model the latter, the latter is assumed in the
definition of the former. With this distinction in mind, we cannot say that
set theory is constructed out of itself.

As we have already seen, set theory admits a countable model, so the
collection of all sets, seen ‘from the outside’ has the same cardinality as the
natural numbers. But looking ‘from the inside’, the collection of all sets is
much bigger.

This is just one of the various phenomena we should expect when dealing
with the formal theory.




The basic language of set theory is very poor, so it is enriched via a number
of definitions, which are universally quantified:

= x not equal to y, x #y abbreviates . x =y;

®m x notin y, x ¢y abbreviates = x € y;

® x is a subset of y, x Cy abbreviates Vz.zex>zey;

m there is x in y such that A, Ix € y. A abbreviates Ix.x € y A A;

for all xin y, A, Vx€y.A abbreviates Vx.x €y D A;
= for some subset x of y, A, Ix S y.A abbreviates Ix.x Sy A A;

for every subset x of y, A, Vx < y.A abbreviates Vx.x Sy 2 A;

m there is at most one x such that A, 3*x. A abbreviates
Vx.Vy.AANAly/x] 2 x =y where y ¢ FV(A).




Classes and sets

Informally, a set is a collection of elements. Although this is very intuitive
and helpful, the structure of a set is much more subtle and delicate.

We stipulate that collections of elements are called classes. This is part of
the intended meaning of set theory. Sets, in the intended meaning, are
classes which behave in a regular way.

As we will see, there are classes which cannot be sets, while all sets are also
classes, in the intended meaning. Each formal set has an extension, which is
the class representing the collection of its element in the intended model of
the theory. But, a set is not its extension, although we would like to say the
converse, that is, to every extension corresponds a unique set.

As we will see, sets will have properties not shared by classes, e.g., sets have
a cardinality, while proper classes have not. These properties are what
identify the structure of sets, and they are what we are allowed to use when
proving properties of sets, or when using sets in our proofs.




Paradoxes

A very simple theorem we will be able to derive in set theory will be: for any
formula A such that x ¢ FV(A),

(Ix.Vy.(vex)=A) > (Ix.Vy.(yex)=A) .

It means that, when there is a set x whose members are exactly those
making the formula A true, then the set x is uniquely defined. In other
words, the property A defines the set x.

It is tempting to carry on this result by thinking that any formula A defines
a set. This amounts to assume

Ix.Vy.(yex)=A

as an axiom schema. This schema is usually called the unrestricted
Comprehension Axiom and it has been used to define sets by Gottlob Frege.




Paradoxes

Unfortunately, the unrestricted Comprehension Axiom is untenable, as shown
by Russell’s paradox: take A=y ¢ y. Then, by the axiom, we have
Ax.Vy.yex=y ¢y, and, specialising, we obtain Ix.x € x = x ¢ x, allowing to
derive L, i.e., showing that set theory is non consistent.

There are many variants of this paradox: we are presenting its formal
version. It is important to understand the key point: the collection of sets
making A true is a class. To be a set, it has to show a ‘reasonable’
behaviour. In logical terms, a minimal reasonable behaviour is not to allow
to derive a contradiction.

Thus, what the Russell's paradox tells is
m there are classes which are not sets;

= every formula uniquely identifies a class: the elements which make it
true. This class may be proper, that is, not a set.




Paradoxes

Sets are a delicate concept. When we fix a universe which is a set, and we
do mathematics within that universe, we do not see the problems sets pose.
But when we consider the totality of sets, things change.

Consider the following reasoning:

1.

6.

Let X={x: xex> Y}

2. Assume x =X, then (xexoY)=(XeX>Y)
3.
4. So, an immediate deduction yields X € X > Y because this is equivalent

Thus, X € X is equivalent to Xe X2 Y

to XeX>(XeX2Y)

the other way around, (X € X> Y)>Xe€ X, so, by the previous step, we
can deduce X e X

Therefore, Y holds

Since Y can be any formula, fix Y =L and set theory becomes
non-consistent. This is known as Curry’s paradox, and step 3 is the wrong
part, since it assumes X to be a set.




Paradoxes

Also, reasoning with arbitrary sets can be counter-intuitive. The Sorites’
paradox can be adapted to provide an example:

Let S be a set

If S=9, stop

Otherwise, pick some element x € S, and eliminate it,
obtaining a new S equal to S\ {x}

ok~ w0

then iterate

The question is ‘does the above procedure stop?’. The non-obvious answer is
‘it depends’.

If we allow just a finite time, it does not. But if we allow a sufficiently large

infinite time, which is linear and with an end-point, and we assume that
picking an element can be done, then it stops.

But both assumptions are not immediate. In fact, we can drop them, and
still we have a notion which behaves like a set. Or, conversely, we can
assume them, and show that we must admit very bizarre entities as sets.

What is in the background here, is the Axiom of Choice.




Paradoxes

Sets and properties, as already seen, are linked, but different. Consider, for
example, the hyper-game paradox. Let G be the collection of all games
which can be played by two players by making successive alternate moves. A
game in G is said to be finite if, in whatever way the players move, the game
terminates after a finite number of steps. When a game is not finite, it is
said to be infinite.

Take tic-tac-toe: it must end at most after 9 moves, so it is a finite game.

Define the super-game as the game in which the first player chooses a game
g € G, and then the second player starts playing g.

Is the super-game finite?




Paradoxes

Since the first player may choose an infinite game, the super-game is clearly
infinite. So, define a variant: the hyper-game is played like the super-game,
but the first player must choose a finite game.

Since the first player chooses a finite game g, then the hyper-game cannot
take more than one move more than the moves to conclude g. But the
moves to conclude g are always finite, so the hyper-game is finite.

Hence, the first player may choose the hyper-game as the game to play, and
the second player may do the same. Forever. So the hyper-game is infinite.

Thus, the first player cannot choose the hyper-game, being infinite, and thus
the hyper-game always terminate in a finite number of steps.

The problem here is that the collection of all finite games is a class, and we
define the hyper-game as a particular element which depends on the whole
class. This is something we want to do, but, as the paradox shows, it cannot
be freely done with classes: a certain amount of ‘regularity’ in the class is
needed to define an element which depends on it.




Comparing sets

Although many other paradoxes can be formed on sets, most of them
require some knowledge that we have not yet explained.

A few facts, which seem to be paradoxical at the first sight, are of common
use. And they are unavoidable.

Comparing two sets means to establish a correspondence between them. A

function, mapping all the elements of one set in the element of another does
not say much. But, when the function is bijective, we may think that the two
sets are equal except for a renaming of the elements in their extensions. We
write A= B to indicate that there is bijective map between the sets A and B.

Intuitively, a set A is smaller than a set B when it can be embedded into B
modulo a renaming: formally, this intuition is modelled by the existence of
an injective function A— B. Symmetrically, A is greater than B when there
is a surjective function A— B.




Comparing sets

This way of comparing sets is the standard, and it works as one expects
when dealing with finite sets. But, on infinite sets, it reveals that sets are far
more complex objects than we may imagine at a first sight.

If f: A— B is injective and g: B— A is injective then A= B.

Let Co =A\g(A) and, by induction, Cy+1={g(x): x € Dy} and
D, ={f(x): x € Cp}. Define

h(x) = f(_);) if xe (.t,, for some n
g (x) otherwise

This definition makes sense, as g~%(x) is defined on g(A).




Comparing sets

Let x,y € A. Suppose h(x) = h(y): if xe Cy, and y € Cy for some m and k,
then f(x)=f(y), so x =y being f injective; if x¢ C, and y ¢ C,, for any n,
then g71(x) =g (y), so x = y being g injective; if x € C, for some m and
y & Cp, for any n, f(x)=g71(y), so (gof)(x) =y, that is, y € Cps1, which is
impossible. Thus h is injective.

We must show that h(A) = B. Firstly, for any n and any z€ D,, z=f(x) for
some x € Cp, so, by definition, z= h(x). Then, let ze B\U, D,. Evidently,
by induction on n, g(z) & C, for any n, thus h(g(z)) =g *(g(z))=z. So h
is surjective. ]

It is surprising how difficult is to prove this result, which is completely
elementary in the finite case.




Comparing sets

Example 11.2
Let P=1{2n: neN}. Since f: P — N such that f(x) = x is injective, and

g: N — P such that g(x)=2x is injective, by Theorem 11.1 we conclude
that P=N.

In general, an infinite set A is such that it is possible to find a proper subset
B c A such that A= B. We can even use this property as a definition of
being infinite.




Comparing sets

Example 11.3

NxN=N

Evidently, the function f: N— N x N mapping x — (x,x) is injective.
Oppositely, the function g: Nx N — N defined as
g(x,y)=(x+y)(x+y+1)/2+y is injective, as it is easy to prove. Informally,
it counts the pairs using diagonals which justifies the claim of being
injective: the formal proof is just arithmetic.

Thus, by Theorem 11.1 the result follows.

This result can be generalised to arbitrary infinite sets, although the proof
requires some technicalities.

A simpler result, which is immediately obtained by induction, is that NK =N
for any k> 0.




Comparing sets

Example 11.4

The collection of finite sequences of naturals N* =N

Obviously, the function f: N— N* mapping x — {x} is injective.

Oppositely, calling g,: N — N the bijection from the Cartesian product of
n=1 copies of N to N, we may define a function h: N* - NxN by
h({xit1<i<n) = (n,&n(x1,...,xn)). For n=0, let h(@) =(0,0).

Evidently, h is injective since g, is, for each n=1. So, the composition gro h
is injective, and the result follows by Theorem 11.1.

Again, the result can be generalised to arbitrary infinite sets, essentially by
the same proof.




Comparing sets

An application of what has been obtained till now to logic is immediate: let
> be a signature with a finite number of symbols. Since the variables of sort
s are in a bijective correspondence with N, the collection of all variables is in
bijection with N.

Then, the sequences of symbols given by the function symbols, the
parentheses, the commas, and the variables is in bijection with N. So, the
collection of all terms on X, being an infinite subset of that set, is in
bijection with N, too.

Analogously, the collection of all formulae on X, being an infinite subset of
the collection of sequences of symbols of X plus a finite set of logical
symbols, is in bijection with N.

All these result can be easily extended to arbitrary signatures, using the
generalised versions of the previous examples.




Comparing sets

Example 11.5
p(N) ZN.

This result, which specialises a famous Theorem by Cantor, says that the
collection of subsets of N is not in bijection with N. The proof is a classical
masterpiece that introduces a technique called diagonalisation.

We can identify each subset A< N with its characteristic function

xa: N—{0,1}. Suppose that all these functions are in bijection with N:
then, there is a bijective function e which enumerates them. So, we have a
sequence p(N) = {ya,} .. such that the i-th function is given by e(i).
Define a function A: N—{0,1} as A(x) =1-yxa,(x). Thus A must appear
somewhere in the sequence, i.e.,, A=y4, for some keN. Which is
impossible since ya, (k) =A(k)=1-xa4,(k) and ya, €{0,1}. Hence, the
characteristic functions are not in bijection with N, that is, p(N) Z N.
Again, this result can be generalised to any infinite set. As a side effect,
since the functions N — {0,1} are in evident bijection with the real interval
[0,1], we get that R> N strictly. In other words, infinity is not unique!




Axioms: extensionality

Informally, a set is uniquely determined by its extension. This fact is
captured by the following axiom:

Vx.Vy.((zex)=(zey))ox=y.

If x¢ FV(A), then - (3Ix.Vy.(yex)=A) o (Ix.Vy.(y e x) = A).

The formal proof is easy, but long to write down. Essentially, if z is another
set satisfying Vy.(y € z) = A, it must be that x = z by extensionality. O

The content of the proposition is that, whenever the collection of the y's
satisfying a formula corresponds to the extension of a set, it identifies a
unique set.




Axioms: empty set

Ix.Vy.y gx.

Since, by Proposition 11.6, the set x is unique, we will denote it by @, as
usual. This axiom establishes that there is at least one set, the empty set.




Axioms: pairs

Vx.Vy.3z.Vu.(uez)=(u=xvu=y).

This axiom says that, given two elements x and y, we can form the set z
whose extension contain exactly x and y. Again, we adopt the standard
notation {x, y}, since, by extensionality, a pair set is uniquely identified.

Notice that, when x =y, we have singletons, {x}.




Axioms: union

Vx.Jy.Vz.(zey)=(Juex.zeu).

The axiom says that, given a set x, we can form another set y whose
extension is the collection of elements in the members of x. Since, as usual,
the set y is unique by extensionality, we adopt the standard notation Ux for
it, or also, we write {z: Jue x.z € u}, or also Uyex u. When x is a pair {A, B},
we write AU B for y.




Axioms: infinity

IxX.gexAVy.yexdyUiylex.

In general, we will write Succ(x) for x U {x}, and we will call it the successor
of x. The axiom says that there is at least one set which is non empty,
containing the empty set, and which is closed under the successor operation.

Not immediately, but it is possible to formally prove that there is a unique
set that satisfies the axiom minimally, that is, its extension is minimal
among all the collections containing the empty set and closed under the
successor operation. This set is in biijection with the set of natural numbers.
We will denote this minimal set as w.




Axioms: power set

Vx.3y.Vz.(zey)=(z<x).

The power set of x has as extension the collection of all the subsets of x.
We will denote it as p(x), or also {z: z< x}.

Working formally, by extensionality we get that, if g(x)=x, then

Vy e p(x).y €x, but x € p(x), so x€ x. Thus, as this behaviour is
something we want to ban from our set theory, we want to introduce an
axiom which prevents this phenomenon to happen. The consequence will be
that g(x) # x for every set x, thus proving the Cantor's Theorem.




Axioms: regularity

VX.x#@>DAyex.ndz.zexNzEYy.

Similarly to extensionality, and differently from the preceding axioms,
regularity states a property of all non empty sets, instead of providing a way
to construct new sets. Precisely, it says that each non empty set x contains
an element y which is disjoint from x.

It is a bit technical to show, and beyond the aims of this course, but the
axioms prevents the construction of circular chains of membership, banning
the existence of a set x satisfying xex, or xeyex, ...

Thus, paradoxes like the hyper-game and Russell's cannot be constructed in
the framework of formal set theory.




Axioms: separation

Let P be a formula such that FV(P) ={u}, then
Vx.3y.Vz.(zey)=(zexAP[z/u]).

Properly speaking, separation provides an axiom schema, i.e., a family of
axioms, one for each possible instance of P.

It says that, given a set x, the collection of elements in x satisfying P is the
extension of a set y.

An immediate application is the construction of intersection: An B is defined
as the set formed by separation from A applying the property P(u)=ue B.

Another immediate application is the construction of subsets: {x € A: P} is
exactly the result of applying separation to A with the property P.




Axioms: replacement

Let P be a formula such that FV(P) ={x,y}, then
(Vx.3ly.P)>Vz.3u.Vy.(yeu)=(Ixez.P).

It says that, whenever P behaves like a function mapping x to y, the image
of any set x through P is a set.

Again, replacement is an axiom schema, whose instance are defined as soon
as P is given.




Further definitions

With these fundamental definitions, together with their justifying axioms, we
can easily define the usual operations on sets, like difference, Cartesian
product, sequence, ...

The set theory developed so far is interesting by itself: it is called ZF, for
Zermelo-Fraenkel, its creators.

Although set theory is an important branch of mathematical logic, its
development is far beyond the aim of this course, and involves some of the
most stunning results of XXt century.

As a matter of fact, the collection of axioms we have shown is enough to
develop most of elementary mathematics, although, in the following we will
introduce another couple of axioms. In particular, the so-called Axiom of
Choice has a special role, as it allows to prove some fundamental results in
algebra, although it is also responsible for a few theorems which are really
counter-intuitive, like the Tarski-Banach Theorem.
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Well orders

An order (A;<) is total when, for each pair x,y € A, either x<y or y < x.

An order (A;<) is a well order when every non empty subset SS A has a
minimum, i.e., there is me S such that, for every xe S, m<x.

Fixed a set A, it is always possible to add a relation to it so to make it an
order, e.g., take < to be equality. Also, it is immediate to define an order
relation on A which makes it a total order, e.g., take < to be the set Ax A.
But it is not clear whether it is possible to define an order relation which
makes it a well order.

However, a well order, as we will see soon, allows for an induction principle
that is a very powerful instrument to reason about the set and its properties.




A set S is an ordinal if and only if (S;eu=) is a total well order and, for
each xe€ S, xcS.

This definition is significant because it allows to prove

Each ordinal S is totally well ordered by inclusion.

Consider the structure (S;<). Clearly, € forms an ordering relation. Also,
being S an ordinal, for each A,Be S, A= B, or A€ B, which implies, for all
x € A, x € B by transitivity, i.e., A< B, or Be A, which implies, by the same
argument, B<S A. So, the structure is totally ordered.

Moreover, being S an ordinal, for each non empty A< S, there is me A such
that, for all x € A, either m=x or me x, that is, m< x. So, A is well ordered
by inclusion, too. 0




If S is an ordinal and x€ S, then x is an ordinal.

Immediate, since x € S implies x € S, being S an ordinal. O

If U is a set of ordinals, then U is well ordered by inclusion.

Consider the structure (U;<). It is evident that it forms an order. If Sc U is
non empty, consider NS ={x: VyeS.xey}. SoNScy, forall yeS. Thus
NS is totally well ordered by € U= and, for each xe NS, x<y, that is, for
all zex, zey, so Vzex.zeNS, i.e., x€NS. Thus, NS is an ordinal.
Suppose NS¢ S. Then, NSey for all ye S since NS Sy and both are
ordinals. Thus NS lies in the intersection of all y, in symbols, N1SeNS,
contradicting the axiom of regularity. Thus NSeS. O




For each ordinal x, x =Uyexy.

Immediate by Proposition 12.5. O

The collection of all ordinals is not a set.

Suppose Ord = {x: x is an ordinal} is a set. Then it is immediate to check
that Ord must be an ordinal. So Ord € Ord, contradicting regularity. O

Admitting Ord to be a set generates a contradiction. This argument is called
the Burali-Forti paradox.




Transfinite induction

Proposition 12.7 intuitively justifies

If P is a property, and, assuming that P holds for every ordinal less than a,
we can prove that P holds for a, then P holds for any ordinal.

This principle can be relativised to all the ordinals less then some fixed
ordinal B, leading to

If P is a property, and, assuming that P holds for every ordinal less than
a < B3, we can prove that P holds for a, then P holds for any ordinal less
than B.




Transfinite induction

We have to prove that transfinite induction is a sound principle, that is, it
does not allow to derive false consequences from true statements.

If P is a property, and, assuming that P holds for every ordinal less than a,
we can prove that P holds for a, then P holds for any ordinal.

Assume that, if P(x) is true for every ordinal x € a, then P(a) holds. And,
by contradiction, assume there is an ordinal § for which P(g) is false.

Since B is an ordinal, it is well-ordered. Then, there exists the minimal
ordinal y < B such that P(y) is false.

Being v minimal, for every x €y, P(x) is true. So, by hypothesis, P(y)
holds, which contradicts the existence of y, and thus, the existence of 8. [

The relativised principle is an immediate corollary, by considering the
property < xV P(x).




Transfinite induction

Since @ is an ordinal, and whenever x is an ordinal, its successor x U {x} is an

ordinal too, we can classify ordinals in three classes:

= the empty ordinal @;

m the successor ordinals x, such that there is an ordinal y for which
x=yuiyh

= the /imit ordinals x, which are those ones not falling in the previous
classes. These are characterised by x =U,<x Y.

It is worth remarking that the set of natural numbers is in bijection with w,
the ordinal containing @ and closed under the successor operation.




Transfinite induction

If P is a property and

m jf P holds for @;

® supposing P holds for an ordinal x, then P holds for the successor of x;

® supposing P holds for any ordinal y < x with x a limit ordinal, then P
holds also for x;

we can conclude that P holds for any ordinal. Of course, as before, the
principle can be relativised to the ordinals less than .

Transfinite induction is a powerful instrument to reason about infinite sets:
we already used it to prove the completeness theorem for first order logic.

Also, notice how the usual induction principle on natural numbers is
equivalent to the transfinite induction principle relativised to w.




Transfinite induction

If « and B are ordinals, and a = B, then a = f.

Let f: a — B be a bijection between the ordinals.
Consider the property P(x)=VueOrd.xZuox=u.

By transfinite induction on a, we have to show P(a) from the hypothesis
that P(x) holds for every x € a.

If x € a, then f(x) € B, but also x € a since a is an ordinal. The restriction
of the bijection f to x is a bijection, so f(x) = x, and by induction
hypothesis, f(x) = x, thus x € 8. Hence, a < .

By transfinite induction on f, we have to show P(f) from the hypothesis
that P(y) holds for every y € B.

If y € B, then f~1(y) € a, but also y < 8 since B is an ordinal. The restriction
of the bijection f~! to y is a bijection, so f~1(y) =y, and by induction
hypothesis, f~1(y) =y, thus y € a. Hence, fca. O




Transfinite induction

If (A;<a) is a well-ordering, then there is a unique ordinal a such that
(Ai=a) Ea.

Uniqueness follows by the previous proposition.

Let pred4(a) be the initial segment of A up to a, that is, the well-order

({x € A: x =4 a}; <) with the ordering restricted to the universe.

Define B={a€ A: 3x € Ord.pred4(a) = x}. Consider the formula

¢(a,x) = (predy(a) = x). Then, by the axiom of replacement and
comprehension one forms C = {x: 3a€ B.¢(a,x)}. Thus, by comprehension
we can form f, the function with domain B mapping a to x, the ordinal such
that pred,(a) = x.

Now, C is an ordinal, since, for every x € C, and for every y € x, y € C, that
is, C=Uxecx. Also, f is a bijection, which preserves the order. So either

B =pred,(b) for some be A, thus be B causing a contradiction, or B=A,
in which case we have shown the result, with a = C. O




Transfinite induction

What we have achieved is that any set which can be equipped with a
well-order relation is isomorphic to an ordinal. Here, isomorphic has a double
meaning:

m there is a bijection between the set and the ordinal;

= there is an invertible monotone function from the ordinal to the set.

Suppose that every set could be well-ordered. Then, the first sentence
means that, up to renaming, all sets can be described as ordinals.

The second sentence says that transfinite induction can be applied to any
set, modulo the monotone function, which is just a bijection, when we forget
about the order.




Ordinal arithmetic

Let a and B be ordinals, then a + f is the unique ordinal such that there is
h: S — a+ B biijective and monotone, i.e., such that x<y in S implies

h(x) < h(y) in a+ B, where S =(Au B; <), the disjoint union of a and B, and
x <y if and only if x and y are both in @ orin 8, or xea and y € .

On finite ordinals, i.e., on natural numbers, it is just arithmetical addition.
But, on infinite ordinals, it is not commutative. For example, 1+w = w but
w+1#w since, w+1 has a maximum, while w has not.

The intuition one should keep in mind is that a + 8 is a followed by S.




Ordinal arithmetic

Let a, B, and y be ordinals. Then

1. a+(B+y)=(a+p)+y,

a+0=aqa;

a+1=Succ(a);

@+ Succ(B) = Succ(a + B);

if B is a limit ordinal, then a+ f=Us<p(a+¢).

AR

Reminding Proposition 12.13, it suffices to show that there is a bijective
correspondence between the ordinals, to show their equality.

a+(f+y)=au(f+y)=au(fuy)=(aup)uy=(a+p)uy=(a+p)+y,
by applying the definitions of + and L. Notice how all the bijections preserve
the order.

a+0Zaug=a.




Ordinal arithmetic

a+1Zau{a} =Succ(a).

a+Succ(f) = auSucc(f) =au(Bu{p})=(aup)uif=(a+p)uip} =
(a+B)ufa+ B} =Succ(a+ p).

a+p=a+Uspé = aulspé =Uscp(au). Notice how this bijection holds
only when B is an infinite ordinal. Thus a+f=Usp(@ &) =Uecp(a+¢).
Again, an essential part of the proof is that all the bijections preserve the
order. O




Ordinal arithmetic

Let a and B be ordinals, then apf is the unique ordinal such that there is
h: S — af biijective and monotone, where S = (| ljcpa;<) with x<y in §
when either i<j, i,je B and x€a;, y€a;, or x,y € a; for some j€ § and
X<yina.

On finite ordinals, it is just arithmetical multiplication, but on infinite
ordinals it is not commutative. For example, 2w is the total order formed by
w copies of 0<1. So, 2w = w by choosing h(x) =2i+x when x €2;. On the
contrary, w2 =w+ w # w since there is a limit ordinal, w, inside w + w, while
there is none in w.

The intuition behind ordinal multiplication is that @ is the ordinal
consisting of the sequence composed by § copies of a.




Ordinal arithmetic

In general, it is immediate to show that af = Ueepa; =) with
(x,€1) <. (y,&2) if and only if {3 <éx<PBorép =&z and x<4y.

Let a, B, and y be ordinals. Then

= a(fy)=(aB)y;
= a0=0;

= gl=a.

Reminding Proposition 12.13, it suffices to show that there is a bijective
correspondence between the ordinals, to show their equality.

a(Py) = Ue<py @i =) = Useltye, & =) = Uee((pr): vey} @i <) =
(I_léey Uveﬁ a,=)= (U{ey(aﬁ); =)= (a’ﬁ))’

a0= (| geq 8;<) =0.
al = Ueealoh<) =2{(8,¢): ¢cal = a. 0




Ordinal arithmetic

We state, without proving

Let a, B, and y be ordinals. Then

m aSucc(f)=af+a;

= If B is a limit ordinal, af =Ugep(ag);

= a(f+y)=af+ay.

Notice how most of these properties do not commute when ordinals are

infinite. For example, it is possible that (8+7v)a # Ba+vya, in fact,
(1+lw=2v=0w#lo+lo=0+w.
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Well orders, again

In an order (E;<), SC E is a segment in E when, for every x€ S and ye E
such that y<x, yeS.

Let (E;<) be an order, and let A and B be two segments of E. Then, AnB,
AU B and every segment S of A or B are also segments of E. Finally, E
itself and @ are segments of E.

Immediate, by unfolding definitions. O




Well orders, again

In a well ordering {E; <), any segment S of E such that S # E has the form
S=S.={x€E: x<e} for some ec E.

Consider a segment S of E with S# E. Then E\S is not empty, thus it has
a least element e. So, for every x = e, x ¢ S, otherwise it would be that

e€ S, which is impossible. Hence, E\S={x€ E: x = ¢}, that is,

S={xeE: x<el. O

Notice how, if S is not empty, it has a least element m, so
S={xeE: m=sx<e}.




Well orders, again

Let (E;<) be a well ordering. Then E*, the set of segments of E, is well
ordered by inclusion. In particular, the mapping x — Sy from E to E*\{E} is
bijective, monotone and with a monotone inverse.

Clearly, if x,y € E and x <y, then 5,<S,, with 5, =5, if and only if x=y.
Therefore, the mapping in the statement is an isomorphisms of orders, by
Proposition 13.3. Thus, (E*;<) is a well order, obtained by adding to
E*\{E} a maximal element. O




Transfinite induction, again

Let (E;<) be a well ordering, and let &# be a set of segments of E with the
following properties:

1. every union of segments belonging to # belongs to ¥,
2. if 5, €. then 5, U{x}e.¥.
Then, every segment of E belongs to .

Suppose there are segments of E not belonging to #. Then E*\.% is not
empty, and by Proposition 13.4, there is a minimal with respect to inclusion
segment S of E such that S¢ ..

If S does not have a greatest element then S is the union of the segments S’
of S distinct from S. But these segments, by Proposition 13.2, are also
segments of E, thus, by definition of S, they belong to .#. Thus, by the first
property in the hypotheses of the theorem, S €.%, a contradiction.




Transfinite induction, again

If S has a maximal element m, then S$=S,,u{m}. But S, is a segment of S
and S;, #S, so, by Proposition 13.2, S, is a segment of E, thus, by
definition of S, S, € . Thus, by the second property in the assumptions of
the theorem, S €., which is another contradiction.

So, E*\% =@, thatis, S=E*. O

Suppose (E; <) is a well ordering and let P be a property: if, for all x,y € E
such that y <x, P(y) holds, then Vx.P(x) holds.

Let .# be the set of segments S of E such that Vx e S.P(x). Clearly, every
union of segments belonging to .% belongs to . If Sy €., then P(x)
holds by hypothesis. Thus Sy U {x} € &#. By Proposition 13.5, &# = E*, so

E € %, which proves the statement. L]




Comparing sets, again

For any pair of sets A and B, A=< B if and only if there is an injective
function A— B. Also, we write A=~ B when there is a bijective function
A— B. Finally A< B when A< B but BZA.

The relation < is reflexive and transitive, while = is an equivalence relation.

Since the identity function is bijective, x <x and x = x. Since the
composition of injective (bijective) functions is injective (bijective), < (=) is

transitive. Finally, since the inverse of a bijective function is bijective, = is

symmetric. ]

If A<B and B=< A, then A= B.




If {(E; <) is a well ordering, then there is a unique ordinal @ such that
(E;<)=a. The notation = means that there is a bijective and monotone
function with a monotone inverse between the left and the right hands of
the relation.

By Proposition 13.4, (E;<) Z(E*\{E};<), and (E*;<) is a well ordering.

Take S € E*\{E}, and proceed by transfinite induction:

m if S=¢@, then (5;<) is the ordinal O;

= if S has a maximal element m, S=5,,u{m}, and, by induction
hypothesis, (Sm;S) = am. Thus, (S;<) = (Succ(am); S) in the obvious
way. Uniqueness is evident.




= if S has no maximum, S =Ugeg+ sics S’ and, by inductive hypothesis, for
each §'e E* with §'c S, (§';2) =(ag;<S). Thus as=Usee* scsas is
an ordinal by applying the definition. Furthermore, there is a function f
from S to as that maps x€ S to as, . The function f is obviously
injective, and it is surjective by Proposition 13.3. If x<y, 5,< 5, and
as, Sas,, so f is monotone and its inverse is monotone, too. Thus,
(5;S) Z{as;<S). Uniqueness is immediate, being f bijective.

Thus, by transfinite induction, (E* \{E}; <) = a for some ordinal a which is
unique. L]




If the set A can be well ordered, |Al, the cardinality of A is the least ordinal
a such that A= a.

By Theorem 13.10, if A can be well ordered, it holds that A= a for some
ordinal @ which depends on the well ordering. Forming the set of ordinals
{a: A= a}, it has a minimum, so the definition of cardinality is well-founded.

An ordinal a is a cardinal if and only if a=|a].
Equivalently, the ordinal « is a cardinal whenever, for all Bea, B # a.




Let a and B be ordinals. If |a| < B < a then |al=|p].

Since fca, f=a and a=|a|< B, so a<B. Then a =B by Theorem 13.9.
Thus |al=a= B =|pl. O
If new then n# n+1 and, for every ordinal a, if @ = n, then a = n.

By induction on n it follows immediately that n# n+1. The second part is
an instance of Proposition 13.13 by noticing that |n| = n. O




Each ne w is a cardinal and w is a cardinal.

A set Ais finite if and only if |A| <w; A is countable if and only if |A| < w.
Infinite means not finite, and uncountable means not countable.

Notice that, if A=~ n€ w, then A can be well ordered, so |A| is defined. This
is a general fact: when A= a, with a an ordinal, then A can be well ordered

by the relation which is the image of € through the bijection a — A. Hence,
|A| is defined.

If A cannot be well ordered, which is possible in the framework described so
far, A is both infinite and uncountable.




Cardinal arithmetic

Let @ and B be cardinals. Then a®f=|aup| and a® B =|a x BI.

Notice how cardinal addition and cardinal product are different from ordinal
addition and product.

Cardinal addition and product are associative and commutative operations
with units.

Since auf=Pua and a x f=f=a, commutativity follows. Also,
associativity derives from the corresponding property of U and x, up to =. It
is immediate to check that 0 and 1 are the units of addition and
multiplication, respectively. O




Cardinal arithmetic

Let a and B be cardinals. Then
1. la+Bl=p+al=aepf;
2. lapl=1Bal=a®p.

Immediate, unfolding the definitions. O

Fornnmew, nem=n+m and n® m=nm.

By induction on me w. O




Cardinal arithmetic

Every infinite cardinal is a limit ordinal.

If a is an infinite cardinal and @ =B +1, since 1+ =4,
a=lal=|f+1=|1+p|=1Bl, a contradiction. O

If @ is an infinite cardinal, a® a = «.

By transfinite induction on a. Assume the property holds for smaller
cardinals. Then, for B<a, |Bx Bl =1B8l®|B| < a, applying Proposition 13.20
when B is finite. Define a well ordering <ton a x a by (f,7)<(d,¢) if and
only if max{B,y} < max{d, e}, or max{B,y} = max{d,e} and B <3, or

max{f,y} = max{6,e} and =6 and y <e. Each (B,y) € a x @ has no more
than [(max{B,y}+1) x x(max{B,y} +1)| < a predecessors in <, so the ordinal
¢ such that ¢ = (a x a; <) by Theorem 13.10 is such that ¢ < @&, whence

la x al<a. Clearly, a = |axa|, so a=|axal. O




Cardinal arithmetic

Let @ and B be infinite cardinals. Then a & f=a® = max{a, f}.

For any set A, A< p(A).

Clearly, A= gp(A) by the mapping x € A— {x}. Suppose there is a bijective
map f: A— p(A), and define B={x e A: x ¢ f(x)}, which is a set by the
Comprehension Axiom. Since B< A, Be @(A), thus there is a y € A such
that f(y) = B, being f surjective. Now, if y € B then y € f(y) = B, which is
impossible. Conversely, if y ¢ B=1f(y), then y € B by the definition of B,
another contradiction. Thus, f cannot be surjective. O




Cardinal arithmetic

For every cardinal a, there is cardinal B such that a < B strictly.

If a is finite, this is obvious: take f=a+1. If a is infinite, w < a. Let
W={rcaxa: risa well order relation on a} .
Since a is an ordinal W #@. Let
S={¢ ordinal: ¢ =(a;r) with re W} .

The set S exists by the Axiom of Replacement since ¢ is unique. Thus
B=US is an ordinal which is strictly greater than any ordinal in it. In other
words, B is a cardinal. Since ¢ € S, a <. O




Hierarchy of cardinals

For any cardinal a, a™ is the least cardinal strictly greater than a. We say
that the cardinal § is a successor cardinal when = a™ for some cardinal a.
We say that the cardinal B is a limit cardinal when f>w and B is not a
successor cardinal.

By transfinite induction, we define the map R from ordinals to cardinals:
= Ro =w;

= Rgr1=(Ra)™;

= for y a limit ordinal, Ry = Ug<y Rq.

By transfinite induction on the ordinal a one shows
Each R, is a cardinal, and every infinite cardinal equals X, for some a. Also,

the map R is monotone, Ry is a limit cardinal if and only if a is a limit
ordinal, and R, is a successor cardinal exactly when « is a successor ordinal.




Hierarchy of cardinals

N1 < p(Ro).

By Proposition 13.28, Rg <X;. By Theorem 13.24, Xo < 9(Ro). By
definition, X1 is the least cardinal greater than Rg, so X1 < p(Ro). O

This result can be easily extended to any ordinal a.

Since, although we are not going to prove this fact, the collection of
functions from the cardinal a to 2, the finite cardinal composed by two
distinct elements, has the same cardinality as g(a), the notation 2% = p(a)
is common.




Axiom of Choice

We have mentioned the Axiom of Choice many times. In most cases, we
said that this principle allows to say that any set can be well ordered, or,
equivalently, that any set is in bijection with a cardinal.

For any non empty family {Xi};e; of non empty sets such that X;n X; =@ for
any i,jel, i #j, there exists a function f: | —U;je; X; such that f(i) € X; for
every i€l

The meaning is that, whenever we are given such a family, we have the
ability to make a choice that simultaneously pick an element from each set.

Although this principle seems very natural, it cannot be derived from the ZF
set theory. So, when we adopt this axiom, we will speak of ZFC, the
Zermelo-Fraenkel set theory with the Axiom of Choice.




Axiom of Choice

As a matter of fact, when /, the index set of the family, is finite, the Axiom
of Choice can be derived from ZF. But, when / is infinite, this is not
possible.

Some important results in Mathematics require the Axiom of Choice to be
proved: as a small collection of examples, take

® every non empty vector space has a base;

= every field has an algebraic closure, which is unique modulo isomorphisms;
= the notion of adjunction in category theory;

= the compactness theorem in first order logic.




Axiom of Choice

But, the Axiom of Choice allows to prove critical results, like the the
Tarski-Banach theorem.

Its geometric form is: given a sphere S in the usual Euclidean space, it is
possible to divide it into a finite set of pieces, so to obtain, using only
rotations and translations, a reassembling of those pieces in two spheres
both identical to S.

Of course, this seems to be impossible, since we consider pieces which are
measurable, or, if you prefer, they possess a volume. On the other hand, if
we take pieces, i.e., subspaces of the sphere for which the notion of volume
is meaningless, the above composition becomes possible. In the proof, the
pieces are constructed using the Axiom of Choice.




Axiom of Choice

There a number of equivalent formulation of the Axiom of Choice: the most
common and useful ones are

u the Well Ordering Theorem
® the Zorn Lemma
= the Hartog's Theorem

= the Cartesian product of a family {Xj};c; of non empty sets, is non empty.




Well ordering theorem

For any set X, X =|X]|.

By the Axiom of Choice, there is function c: p(X)\ {8} —Up(X) = X, such
that, for every non empty S< X, ¢(S)€S.

By transfinite induction we define a bijection s between X and some ordinal
a: assuming s(pB) has been defined for all fea, if X\{s(B): fea}#a,
then s(a)=c(X\{s(B): fea}). We note that the construction must
eventually stop, otherwise X would be in bijection with a proper class, the
collection of all ordinals. And, moreover, s is a bijection, as it is immediate
to see. By definition, |X] is the least ordinal which is in bijection with X,
and we know that there is one, a. O




Well ordering theorem

Assuming the Well Ordering Theorem as an axiom, we can prove the Axiom
of Choice: let & be a non empty family of non empty, pairwise disjoint sets.
Consider Uxeg X: by the Well Ordering Theorem, for each X e &, X = Ix
for some ordinal /x, that is, there is gx: Ix — X bijective.

Then, we can define a choice function f: & — Uceg X as f(X) = gx(2).




Zorn lemma

If {(X;<) is a non empty order such that every proper ordered subset has an
upper bound, then (X;<) contains a maximal element, i.e., an element
which is not smaller than any other element in X.

If X and Y are two sets, it holds that either |A| < |B| or |B| < |A].

Although we are not going to prove these results, they shed some light to
the meaning of the Axiom of Choice: in fact, they say that the notion of
cardinality takes the usual, intuitive meaning, only when we assume that

principle to hold.

For this reason, when no set theory is specified, usually ZFC is intended.




Continuum Hypothesis

Another axiom which is commonly considered in the theory of sets is the
so-called Continuum Hypothesis:

Ry =280,

It admits an obvious generalisation:

Riy1 =28 for every ordinal i.

Although the generalised Continuum Hypothesis implies the plain version,
the converse does not hold. And, both the versions are independent from
ZFC, that is, they cannot be proved from the axioms of ZFC nor it can be
proved them to be false.




Continuum Hypothesis

While the Axiom of Choice justifies the intuitive notion of cardinality, the
(generalised) Continuum Hypothesis is more technical and not easy to
accept.

In fact, assuming the Continuum Hyothesis, the collection of all sets
becomes a quite regular structure. On the contrary, assuming the Continuum
Hypothesis to be false, the collection of all sets provides a very rich universe.

Intuition does not help: the effects of the Continuum Hypothesis are sensible
for large sets, and the trade between regularity and wealth becomes difficult.
In the common practice of higher set theory, which is far beyond the scope
of this course, the Continuum Hypothesis is, generally, assumed not to hold,
although some weaker regularity conditions may be considered.




What is a set?

As we said in the beginning, the notion of set is not simple.

The intuitive notion of a set as a collection of elements does not work,
because of Russell's paradox. So, formal theories, like ZFC, have been
introduced.

In those theories, a large number of principles, like the Axiom of Choice or
the Continuum Hypothesis, are admissible but not provable: they are
consistent with the theory, but also their negation is consistent with it.

So, at least from the formal point of view, we do not know exactly what is a
set. We have a variety of structures (theories, if you prefer) that provide a
reasonable notion of set. In some of these structures, we are able to prove
results which are difficult to accept, like the Tarski-Banach Theorem. But,
avoiding the principles underlying these structures, like the Axiom of Choice,
we loose some basic, intuitive notion, like the cardinality of a set.




References

A nice reference to elementary set theory, which explains the nature of the
Axiom of Choice with some detail is P. Suppes, Axiomatic Set Theory,
Dover Publishing, (1972), ISBN 0-486-61630-4.

The classical text Kenneth Kunen, Set Theory: An Introduction to
Independence Proofs, Studies in Logic and the Foundations of Mathematics
102, Elsevier, (1980) provides a more in-depth discussion, extending far
beyond the limits of this course.

Another reference of interest is N. Bourbaki, Elements of Mathematics:
Theory of Sets, Springer, (1968), ISBN 978-3-540-22525-6.

The continuum hypothesis is the main subject of the essays in Paul

J. Cohen, Set Theory and the Continuum Hypothesis, Dover Publishing,
(2008), ISBN 0-486-46921-2. This text contains the proof that the
continuum hypothesis is independent from the other axioms of ZFC.
Students should be warned that its content is advanced material.

©@ @ @ Marco Benini 2016




Mathematical Logic

Lecture 14

Dr Marco Benini

marco.benini@uninsubria.it

Dipartimento di Scienza e Alta Tecnologia
Universita degli Studi dell'Insubria

a.a. 2016/17


marco.benini@uninsubria.it

Syllabus

Computability:
= Motivation
= Recursive functions

= Main properties




Motivation

Computability theory is the branch of logic which studies the notion of
‘computation’. Generally, it is considered in the borderline between
mathematics and theoretical computer science, but, at least historically, it
has been the part of logic from which computer science was born.

From a mathematical point of view, describing what can be really computed
is an essential part of the XXt century’s mathematics. Consider the notion
of algorithm and how fundamental it revealed in many fields.

For logicians, computability theory is an essential ingredient to understand
the reasons behind constructive mathematics. But it is also the fundamental
tool to prove the results about the limit of formal reasoning.




Computable functions

Computability theory aims at describing the functions N — N which can be
effectively calculated.

We notice how the vast majority of functions from naturals to naturals

cannot be calculated. In fact, if we think that calculation is a process which

mechanically transforms the argument of a function in its result, we have to

pose a few limits on this process:

® it must take a finite amount of time;

= it must operate on a finitely generated formal language;

= it must rely on a finite description of the process which precisely
describes the steps to be performed.

At least, we have a language on a finite alphabet, which is used to describe

the process. No matter how we interpret the language, we know that the set

of all the possible procedures is contained in the collection of finite

sequences of symbols in the alphabet. So, the cardinality of the language is

at most Rg, since the alphabet is finite. It is evident that it is at least Xg as

we may write an infinite amount of procedures. But the cardinality of the

set of functions from N to N is 2N =280 which is strictly greater than Rg.

So, most functions are not computable.




Computable functions

There are many ways to describe computations. For our purposes, which are
not aimed at studying computations, but rather using the computable
functions to reason about what can be effectively proved inside a formal
system, we will use partial recursive functions.

In fact, we admit a computation may not terminate, hence partial functions,
in which non termination is modelled as the function being undefined for the
non terminating input.

Instead of using some abstract machine which ‘performs’ the computation,
we will directly define computable functions as the class of functions that
can be written in a special form. Although it is not immediately clear that
this class contains all the computable functions, it is best suited to
application in logic.




Primitive recursive functions

A function f: NK — N is primitive recursive when

1. f is the zero function 0(n) =0 for all neN;

2. f is the successor function succ(n)=n+1 for all neN;

3. f is a projection function U,.k(nl,...,nk) =n; with k=1, 1<i<k;

4. f is obtained by substitution: if g, hg,..., hy, are primitive recursive
functions, f(n1,...,nk) =g (ho(n,...,nk),--c, Am(n1,..., nk));

5. f is obtained by primitive recursion: if g and h are primitive recursive

functions, f(ny,...,nk,0)=g(n1,...,nx) and
f(ni,....ng,m+1)=h(n,...,n, m f(n1,...,nk,m)).

It is clear that primitive recursive functions are computable. It is also evident
that there are computable functions which are not primitive recursive: for
example, the function undefined everywhere.




Primitive recursive functions

Example 14.2

The identity function id(x) = x is primitive recursive: id = Ull.

Example 14.3

The constant function k(x) = k is primitive recursive. In fact, by induction
on k, if k=0, 0 is primitive recursive by definition; if k=k"+1, k=succok’
by substitution, and k' is primitive recursive by induction hypothesis.

Example 14.4

Addition, multiplication and exponentiation are primitive recursive.

n+0=n n-0=0

n+(m+1)=succ(U§(n,m,n+m)) n-(m+1)=m+0(n)+m-n

n°=1(n)

nm+l :n'l(m)‘nm

Notice how 0% = 1, which sounds odd.




Primitive recursive functions

Example 14.5

The predecessor function, defined by

red(n) = n—1 when n>0
P o otherwise

is primitive recursive: pred(0)=0(0), and pred(n+1) = U?(n,pred(n)).

Example 14.6

The recursive difference, defined by

) m-n ifm=n
m=n= )
0 otherwise

is primitive recursive: m=0=m and m=(n+1)=pred(m=n).




Primitive recursive functions

Example 14.7

The absolute difference |m— n| is primitive recursive:
Im—n|=(m=n)+(n=m) .

Example 14.8
The sign function, defined by

sg(n) 0 ifn=0
n)=
& 1 otherwise

is primitive recursive: sg(0) =0(0), and sg(n+1) = U (n,1(n)).

Similarly, integer division, the remainder function, integer logarithm are
primitive recursive.




Primitive recursive functions

There are functions which are computable but not primitive recursive.

The Ackermann’s function A is defined as

To give an impression: A(0,0)=1, A(1,1) =3, A(2,2)=7, A(3,3) =61, but

65536
=2

A(4,4)

The function N— N given by n— A(n,n) can be shown to grow faster than
any primitive recursive function, so it is not primitive recursive.




Partial recursive functions

A partial function f: NK — N is recursive when

1.
2. f is the successor function succ(n)=n+1 for all neN;

3.

4. f is obtained by substitution: if g, hg,..., hy are partial recursive

f is the zero function 0(n) =0 for all neN;
f is a projection function Ul.k(nl,...,nk) =n; with k=1, 1<i<k;

functions, f(n1,...,nk) =g (ho(n1,..., Nk )s-eos hm(n1,...,nk));

f is obtained by primitive recursion: if g and h are partial recursive
functions, f(ni,...,n,0)=g(n1,...,nx) and
f(ni,...,nge,m+1)=h(ny,...,ne, m f(n1,..., 0k, m));

f is obtained by minimalisation: if g is a partial recursive function, then
f(n,...,ng) =pum.(g(n,...,nk,m)=0), with um.P(m) = mg if and only
if P(mg) holds, and, for all m< mg, P(m) does not.

We will speak of recursive functions when we will consider only computable
total functions.




Partial recursive functions

Let S be a set and R a relation. The characteristic functions of S and R are
given by
1 ifxeS

XS(X)Z{O ifx¢S

1 if(x1,..,xn)€ER
0 otherwise

)(R(Xl,...,Xn)={

We say that S or R is recursive when ys or yr are total recursive functions.
We say they are primitive recursive when the corresponding characteristic
functions are.

Example 14.12

The relation < =N x N is primitive recursive: y<(n,m)=sg(n=m).




Partial recursive functions

Example 14.13

If P and Q are (primitive) recursive relations on Nk then so are 7P, PAQ,
and Pv Q.

X-P(X1-- o xk) =1 xp(x1,..., Xk)
XPAQ(X1y-w o Xk) = X (X1, Xk) X Q(X1, -y Xk)
xPvQ(Xt, o xk) =sg (xp (X1, k) + X Q(X1,-. ., Xk)) -

Example 14.14

Every finite set is primitive recursive.

Example 14.15
If R and S are primitive recursive subsets of N, so are N\ R, RnS, and RuS.




Partial recursive functions

If R(m,...,nk,m) is a recursive relation, then f: NK — N defined by
f(ni,...,ng)=pm.R(ny,..., Nk, m)

i.e., the least m such that R(ny,...,ng, m) holds, is partial recursive.

Immediate by noticing that f(n1,...,nx) = um. (x-r(n1,...,nk,m)=0). O

A function f: NK — N is computable exactly when f is partial recursive.




Universal function

There is a partial recursive function e(x,y) that enumerates all the partial
recursive functions, that is, defining ¢x(y) =e(x,y), {(px}xeN is the
collection of all the partial recursive functions.

In the first place, we notice that, since, for any k€N, NK =N and the
bijection is computable, we may safely reduce to enumerate the computable
functions N — N.

Partial recursive functions can be coded as naturals:
= [0]=2;

" [succ]=3

» [UK]=5-17k.19;

m substitution:

[g(ho(m,..crni)seenr hn(n1,..., ni))] = 7- 17161 . 190Ro] ... Py, ith
{pi} ;e the sequence of prime numbers;




Universal function

= primitive recursion: [f]=11-17lel.19lA];

= minimalisation: [f]=13-17ll.

The coding is injective, so invertible, thanks to the unique factorisation in
primes of any natural number. Moreover, it is computable, and the inverse is

computable, too. Precisely, the coding is primitive recursive, as it is
immediate to check.

Defining L as the partial function which is everywhere undefined, we can
invert the [_] coding:

. f if there is f such that[f]=n
" 1 otherwise

Since L(x)=pm.(1(x)=0), the decoding is computable.

Then, e(x,y) =¢x(y). It enjoys the enumeration property by
construction. O




Universal function

There is no {fy}nen Of all total computable functions which admits an
enumeration function e(x,z) = f(z).

Consider the function h(x) = f(x)+1. It is total, since each £ is.
Assume there is a recursive function e enumerating {fi},en. Then,
h(x)=e(x,x)+1, so h is recursive.

But h also occurs in {fi},en, SO there is k € N such that fi = h.
Thus, h(k)=e(k k)+1=1f(k)+1=h(k)+1, hence 0=1, a
contradiction.




Universal function

Let m,n=1. Then, there is a computable function S]7": N™1 N such that

fa(Xl’--"Xm’yl»---!)/n) = fS,T(a,xl,A..,xm)(YIr---’yn) .

Although we will not prove the theorem, we want to remark its meaning: it
shows that considering some arguments as parameters is an admissible
operation in the computational world.

We can start the study of computable functions by considering an
enumeration of them, which has a couple of properties: being computable,
and satisfying the S theorem. Then

There is a computable partial function U: N?> — N such that f,(x) = U(n,x).

Such a function is called universal, and it is the first computer. But this is
another story. . .




If f is a computable partial function, then exists k €N for which ¢f () = i
in any good enumeration of the partial recursive functions.

Let h(x) = ¢x(x). This partial function is computable because it can be
written as h(x) = U(x,x). Then, foh is computable, too. So, foh= ¢, for
some eeN.

Therefore, Pr(p(e)) = Ppo(e) = Pn(e)- Thus k= h(e) is the sought fixed

point. ]




References

Computability theory, also known as recursion theory is a major branch of
mathematical logic. A very nice introductory text is Barry Cooper,
Computability Theory, Chapman & Hall/CRC Mathematics, (2004),
ISBN 1-58488-237-9.

This lecture is mainly based on that text.
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Consider the following

There are a and b irrational numbers such that a® is rational.

Let a=b=+2. Then aP = \/5\/§ is either rational or irrational. In the former
case, the statement is proved, otherwise take a= \/5\/§ and b=+2. Then

V2
abz(\/ﬁﬁ) _VF -2 0
This proof is correct, but still unsatisfactory: at the end, we don't know a

pair of irrationals with the stated property. We have a choice between two
candidate pairs but no way to decide which pair satisfies our requirement.




On the contrary the following proof is different:

Let a=v?2 and b= log,9. It is well known that a is irrational, but also b is.
In fact, if log,9=m/n for some m,neN, then, by the properties of
logarithm, 2™ =9" which is impossible, since the left-hand of the equality is
even, while the right-hand is odd. But

ab = /219829 _ p(log29)/2 — plogy3 — 3. O

Here, the statement says that there are two irrationals a and b such that a?
is rational, and the proof provides an evidence for this exhibiting such a pair.




In general, we would like that any time we have to prove a statement of the
form Av B or 3x. P, we are able to indicate which disjunct hold between A
and B, or a value for x. And, we would like that these pieces of information
lie in the proof.

More precisely, we would like to say that a proof for statements of this form
would consist of an algorithm that indicate the true disjunct or constructs a
value for x.

This attitude is perfectly reasonable, but comes with a price: we cannot use
anymore axioms that directly violate the requirement. In particular, there is
an axiom in the classical system that evidently violates the requirement.

In fact, the Law of Excluded Middle says that Av —A for any formula A, but
it provides no way to decide which of these mutually exclusive facts holds.
So, the Law of Excluded Middle must be rejected if we adopt a notion of
proof as the one above.




The Law of the Excluded Middle is essential in the first proof of

Proposition 15.1: it avoids the need to decide whether \/5\/§ is rational or
not (in fact, it is not).

But rejecting the Law of Excluded Middle is not sufficient. There are a
number of principles which pose problems.

For example, the Axiom of Choice. In one of its consequences, the already
cited Tarski-Banach theorem, we can cut a sphere into a finite number of
pieces so that we can reassembly two spheres identical to the original one.
The proof ‘constructs’ the pieces using the Axiom of Choice. But any
non-mathematician would call that result a miracle unless you show how to
cut the original sphere and how to reassemble the pieces! And any
mathematician would notice that the proof does not provide an effective
way to calculate the shape of the pieces.




Motivation

In fact, what we would like to have is a logical system which allows to
calculate the objects or the choices we have to make. In a sense, we are
interested in systems where proofs are a sort of algorithm to construct the
results implicit in their statements.

This attitude toward Mathematics is called constructivism and it produced a
different kind of logical systems. In these systems, principles, like the Law of
Excluded Middle, are rejected or accepted on the basis that they permit or
deny the possibility to ‘construct’ the objects their statement imply to exists,
or the possibility to make the choices required in the proofs.

There are many constructive systems, and many variations on the theme.
Different philosophical foundations have been proposed to support the
constructive approaches, and there are degrees of constructiveness in the
logical system which claim themselves to adhere to these approaches.

An indisputable fact is that constructive mathematics had, have and,
probably, will have a deep impact in the study of computability.




Intuitionistic logic

Among the many constructive system, intuitionistic logic has a special place.
Historically, it has been the first formal attempt to capture in a formal
system the original idea of a constructive approach to Mathematics.
Practically, it is the simplest, most studied, and, in some sense, best
understood system in this line of thought.

In the following we will introduce intuitionistic first-order logic, showing
some of its main features. Differently from the study we pursued of classical
systems, we will not prove every result and we will easily skip over some
important parts: the field of constructive mathematics is wide, deep, and
complex, and our objective is to show how and why a non-classical system
could be of interest.




Syntactically, intuitionistic logic is very similar to classical logic. In the
propositional case, formulae are formed in exactly the same way. In the
first-order case, terms and formulae are constructed identically.

The difference lie in the construction of proofs: the valid intuitionistic proofs
are the classical proofs in natural deductions where the Law of Excluded
Middle does not appear. In other words, the propositional calculus and the
first-order calculus are identical to the corresponding classical calculi except
that the Law of Excluded Middle is dropped.




Expressive power

Evidently, by definition, every proof n: I' -1 A performed in the intuitionistic
logic, i.e., without the Law of Excluded Middle, is also a valid classical proof.

So, we may think that intuitionistic logic is less expressive than classical
logic: possibly, there are statement which are provable in the classical
system, which cannot be proved in the intuitionistic system, because they
use the Law of Excluded Middle in an essential way. On the contrary, every
result which can be proved in an intuitionistic system is also valid in a
classical system, because each intuitionistic proof is also a classical proof
where there is no application of the Law of Excluded Middle.

In a sense, the above remark is correct. But, in another sense, it is not. ..




Expressive power

...since the ability to prove more, having an additional inference rule, may
lead to prove more theories to be non consistent.

For example, Church Thesis in computability theory says that a function

N — N is computable if and only if there is Turing machine computing it. If
we say that every function we can write in arithmetic is computable, we get
the so-called formal Church Thesis. It turns out that the formal theory of
arithmetic plus formal Church thesis is a perfectly reasonable intuitionistic
theory, which can be proved to be consistent with respect to (classical)
arithmetic. On the contrary, the very same theory in classical logic turns out
to be inconsistent.

The reason is simple: in classical logic it is possible to prove that a function
exists which is not computable, by showing that it is impossible that it is
computable. So, the formal Church thesis, which asserts that every function
is computable, leads to a contradiction. In intuitionistic the proof of that
function to be not computable cannot be carried on.




Expressive power

From another point of view, in a sense, every theorem in classical logic can
be proved in intuitionistic logic, modulo a translation. The precise statement
is as follows:

The Gédel-Gentzen translation is a map of formulae to formulae inductively
defined as:

- (=T W)=

= for any A atomic, (A)N =--A;
= (AnB)Y = (AN A (B)Y;

= (AvB)V == (~(A)" A= (B)Y);
= (A>B)N=(A)" > (B)";

s (Vx: s AV =vx: s (AN

s (3x: s. AN =vx: s (AN




Expressive power

In classical logic, for any formula A, there is a proof m: A= (A)N.

By induction on the formula A:

m A=1,T: F1>1 and FT>T by implication introduction so -1 = 1
and FT=T.

® A is atomic:

AP A

A" [-AP 1
= ——tem —1E
1 2 Av-A [A] A o
- \
- A
—Ajll —D|2
Ao A —mAD A




Expressive power

= A= BAC: by induction hypothesis there are - B=(B)N and + C = (C)V,
and (AN = (BN A(C)V, so

BaCl' (BACT o (BVAOM 1BV AN

B ¢ G
" (" 5 c
(B A" BAC ,All

BAC>(B)NA(C)N (BYNA(C)N>BAC




Expressive power

= A=Bv C: by induction hypothesis there are - B=(B)N and - C = (C)V,
and (A)N == (=(B)N A=(C)N), so

(B AN B
~(B)" 1 ~(O)" 2
L - 1 -c
[Bv (] 1 1 JE?
1
S~ A~
Bv C-(~(B)Y A-(C)Y) "

for the implicit proofs, see the = case.




Expressive power

[-B]"  [~CP

(B (O
BV AA(C)V [~ ((B)V A (C)V))?

-E
[cP 1
1 lem Vi 1E
[B] Cv-C BvC BvC
lem vl vE2
Bv-B BvC BvC
vE!
Bv C 8
=(~(B)V A=(C)) 5BV C

for the implicit proofs, see the = case.




Expressive power

= A= B> C: by induction hypothesis there are - B = (B)N and
FC=(C)N, and (AN =(B)N>(C)V, so

[(B:)’V] (8]
eed B (B =@M B
: (ah
@ 3
((B)Y>(c)") BoC




Expressive power

= A=-B: by induction hypothesis there is - B = (B)N, so

(B (87
LB B ®M B
1
-(B)N " —llB o
“B>-(B)N ” ~(B)VN>-B h




Expressive power

= A=Vx.B: by induction hypothesis there is - B=(B)", and
(AN =vx.(B)N so

vx.B]" [vx.(B)N]! .
5 (B)"
(8" 5
vx.(B)N . Vx.B v i
(Vx.B)> (VX.(B)N) (VX.(B)N) > (Vx.B)




Expressive power

= A=3x.B: by induction hypothesis there is - B=(B)", and
(AN = =vx.~(B)N so

[B]?
A N
CUEC
[3x. B 1 o
n 3E2
avx. —l(B)N K




Expressive power

(B
5
[=(3x. B)l1 Ix.B iIE
Vx.=(B)N [=(vx.=(B)V)]? e
L
(3x.B) v (3x.B) e [3x. B! Ix.B l;

Ix.B
- (vx.m(B)V) 53x.B

3

ol




Expressive power

If m: T+ A in classical logic, then there is 7': {(y)N (Y€ F} H(AWY in
intuitionistic logic.

We will not prove this theorem: who is interested can inspect it having a
look at the references at the end of this lesson.

The proposition has a number of consequences: the relevant ones to us are

® each classical theory and, thus, each classical proof can be translated into
intuitionistic logic, yielding a classically equivalent result. So, classical
logic is not really more expressive than intuitionistic logic.

= [ntuitionistic logic is more expressive than classical logic since it allows to
distinguish formulae which are classically equivalent.




References

A good introduction to the constructive way of reasoning can be found in
A.S. Troelstra and D. van Dalen, Constructivism in Mathematics, volume |,
Studies in Logic and the Foundations of Mathematics 121, Elsevier, (1988),
ISBN 0-444-70506-6.

There are many ways to translate intuitionistic logic into classical logic. A
survey can be found in A.S. Troelstra and H. Schwichtenberg, Basic Proof
Theory, Cambridge Tracts in Theoretical Computer Science 43, Cambridge:
Cambridge University Press, (1996).
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Heyting algebra

A Heyting algebra # = (H;<) is a bounded lattice such that, for every
X,y € H, there is c € H, the relative pseudo-complement of x with respect to
y, notation x 2y, such that

1. xAcs=sy;
2. for every z€ H such that xAz<y, z<c.

The relative pseudo-complement of x € H with respect to L is called the
pseudo-complement of x and it is denoted by —x.




Heyting algebra

Examples:
= Every Boolean algebra is also a Heyting algebra.

= Every totally ordered set forming a bounded lattice is a Heyting algebra.
In particular, x>y =y when y <x, and x>y =T otherwise.

= The lattice of open sets in any topology is a Heyting algebra. In
particular, A> B is the interior of AU B.

The last example shows that a Heyting algebra is not always a Boolean
algebra, since the interior of AU B is usually different from AU B, or, in
logical terms, Ao B#-Av B.




Heyting algebra

In any Heyting algebra, for each element x, x A—ix = L.

By definition of bottom and pseudo-complement, L <xA-x< 1. O

In any Heyting algebra, for all elements x and y, x <y if and only if
xoy=T.

Since x=xAT, if x<y, x2y =T being T the maximal element z such that
xAz<y. Conversely, if xoy=T, then xA(xDy)=xAT=x<y by
definition of pseudo-complement. O




Heyting algebra

There is a Heyting algebra such that, for some element x, xV - x #T.

Consider the total order 0<1/2<1. It is immediate to check that it is a
Heyting algebra. But 1/2v-1/2=1/2v0=1/2#1=T. O

Every Heyting algebra is a distributive lattice.

It suffices to prove xA(yvz)=(xAy)V(xAz). By definition of v, y<yvz
and z<yV z, thus, by definition of A, xAy<x and xAy<y<yVvz so
XAy <xA(yVvz). Symmetrically, it holds that x Az<xA(y Vv z). Then, by
definition of v, (xAy)Vv(xAz)sxA(yvVz).

Conversely, x Ay <(xAy)v(xAz)and xAz<(xAy)V(xAz) by definition
of v. So, y=(xo(xAy)v(xaz))and z< (x> (xAy)Vv(xAz)) by
definition of o, thus, by definition of v, yvz<(x>(xAy)V(xAZz)). Then,
by definition of o, xA(yvz)<(xAy)V(xAz). O




Propositional semantics

For the sake of simplicity, we will consider just the pure logic instead of a
generic theory in the following. The results can be naturally generalised.

Fixed a Heyting algebra # = (H;<) and a map v: V — H, evaluating each
variable in some element of A, the meaning [A] of a propositional formula
Ais a map from the set of formulae to H, inductively defined as

1. if A=x, a variable, [A]l = v(x);
2. [T]1=T and [1] =1;
3. [BACI=[BIAIC], [BvCl=I[BIvIC], [B>Cl=[B]l>ICl, and
[-B] =-l[Bl.
We say that a formula A is valid or true in the model (#,v) when [A] =T.




Soundness

If m: T+ A is a proof in the intuitionistic natural deduction calculus, then, in
every model (#€,v) such that each GeT is valid, A is true.

Fixed a generic model, by induction on the structure of a proof 7: A+ B,

with A a finite set of assumptions, we prove that ApealD] < [B]:

= if 7 is a proof by assumption, B€ A, so ApealD] < [B] by definition of A.

m if 7 is an instance of T-introduction, B=T, thus, by definition of T,
ApealDl =T =[B].

® if 7 is an instance of L-elimination, by induction hypothesis and by
definition of L, ApealDl <[L] =1 <[B].

m if 7 is an instance of A-introduction, B = Bj A By and, by induction
hypothesis, ApealDl < [B1] and ApealD] < [B2], so, by definition of A,
ApealDl = [B1l A [B2] = [B1 A Bl = [B].




Soundness

= if 7 is an instance of Ai-elimination or As-elimination, then, by induction
hypothesis, ApealD] = [BA B1] =[BI A [Bi1] or ApealDl <[B1AB]=
=[B1l A [BI, respectively. Thus, by definition of A, ApealDl < [B] in
both cases.

= if 7 is an instance of vi-introduction or vy-introduction, then
B = B; v B> and, by induction hypothesis, ApealDl < [B1] or
ADealD] < [Ba], respectively. Thus, by definition of v,
ApealDl < [B1l v [Bl =By Vv B2l =[B] in both cases.

= if 7 is an instance of v-elimination, by induction hypothesis,
[CiIAADpealD] < [B] and [Col A ApealD] < [BI, so, by definition of o,
[C1] = Apeal D12 [B] and [Co] < ApealD1 2 [B], thus
[GIVIGI=1C v Gl < ApealDl > [B]. Hence, by definition of >,
[Civ Gl AApeal Dl = [B].
Since, by induction hypothesis, ApealDl < [C1 v Col, by definition of A,
[C v Gl AApeal Dl = Apeal D1 < [BI.




Soundness

m if 7 is an instance of >-introduction, B = By > B and, by induction
hypothesis, [B1] A ApealD] < [Bo]. So, by definition of o,
ApealDl < [B1] 2 [Bo] = [B1 > B2l = [B].

= if 7 is an instance of >-elimination, by induction hypothesis,
ADealD] < [C > Bl =[C] > [B] thus, by definition of >,
[CI A ApealD] < [B]. Since, by induction hypothesis, ApealD] < [C], by
definition of A, [CI A ApealDl = ApealDl < [BI.

= if 7 is an instance of —-introduction, B=-C and, by induction
hypothesis, [C] A ApealDl <[L] = L. So, by definition of —,
ApealDl = ~[Cl=[~C] = [BI.

= if 77 is an instance of —-elimination, by induction hypothesis,
ApealDl < [~ C] = —[C] thus, by definition of =, [C] A ApealD] < [L].
Since, by induction hypothesis, ApealD] < [Cl, by definition of A,
[C1 A ApealDl = ApealDl < [L] = L < [BI, by definition of L.




Soundness

Now, consider : I' A as in the statement of the theorem: since the proof
7 uses just a finite number of assumptions I'g €T, by the induction above,
AGery[G] = [A]l. But, for each GeT, [G] =T by hypothesis, thus

AGeroIGl =T < [A] =T, by definition of T. So, by anti-symmetry of <,
[A]l=T. ]




Completeness

We will show a simplified completeness result. A more general result can be
easily obtained by extending the presented core along the guidelines we
followed in the classical case.

If the propositional formula A is valid in any Heyting model (#;v), then A
is provable in the propositional natural deduction calculus for intuitionistic
logic.

Let F be the collection of all formulae. We define A~ B if and only - A= B.
Evidently, ~ is an equivalence relation over F:

8 A~Asince FADA;
m if A~Bthen+FA>Band FB> A, so B~ A;

m if A~Band B~CthenA>B and - B> C, thus H A> C, but also
FCoBand B> A, so-CoA, thus A~ C.




Completeness

Let H=F/~ and let [A]. <[B]~ exactly when A+ B. Then (H;<) is an
order since

m [A]. = [A]~ because A+ A;

u if [A]l~ =[B]-~ and [B]~ <[A]~, then A-B and B+ A, so - A= B, that is
A~B, ie., [Al~.=[B]-;

m if [A]l~ =[B]-~ and [B]~ <[C]~, then AFB and B+ C, so A C, that is,
[Al- =[C]-~.

Also, (H:; <) is bounded:

® 1 =[1]., in fact, L+ A for any formula A by L-elimination, so
[L]- <[A]-;

® T=[T]., in fact, AL T for any formula A by T-introduction, so
[Al~ =[T]-~.




Completeness

Moreover, (H; <) is a lattice:

u [Al-A[B]~-=[AAB]., in fact, AABF A and AA B+ B by A-elimination,
so [AA B]~ =[A]~ and [AA B]. < [B]~; if [C]~ = [A]~ and [C]~ = [B]-,
then CHA and CF B, so C+ AA B by A-introduction, that is,
[C]~-=[AAB]-;

® [Al-V[B]. =[AVB]., in fact, A Av B and BF Av B by
v-introduction, so [A]~ =[AV B]. and [B]. <[Av B].; if [A]~ =[C]~ and
[B]~ =[C]~, then AFC and B+ C, so Av B C by v-elimination, that
is, [Av B]~ =[C]-.

Finally, (H;<) is a Heyting algebra: [A]. > [B]. =[A> B]., in fact,
ANA(A> B)+ B by >-elimination, so [AA(A> B)]~. =[A]~-A[A> B]. <[B]~;
when [A]l- A[C]~. =[AAC]. <[B]., ANCFB, so C-A>B by
S-introduction , that is [C]. <[A> B].. It is worth noticing that

—[A]~ =[7A]~ since F 1A= (A> 1).




Completeness

Let v: V — H be v(x) = [x]~ for any variable x.

By induction on the structure of A, we prove that [A] = [A]- in ((H;<),v):

= if A=x, a variable, by definition [A] = v(x) =[x]~ =[A]~;

" if A=T, [Al=T=[T].;

wif A= 1, [Al=L=[1];

= if A= BAC, by induction hypothesis,
[Al=[BIAIC]I = [B]~-A[C]~ =[BAC]. =[A]~;

= if A= Bv C, by induction hypothesis,
[Al=[BIvICl=[B]-Vv[C]~=[BvC(].=[A]-;

= if A= B> C, by induction hypothesis,
[Al=[Bl>[Cl=[B]~>[C]-=[B>(C].=[A]-;

= if A=-B, by induction hypothesis, [A] = 2[B] = ~[B]~ =[B]~ =[A]-.




Completeness

By hypothesis of the theorem, A is valid in any model, that is [A] =T in any
model, so, in particular [Al =T in ((H;<),v). Butin ((H;<),v),

[Al- =[Al=T=[T]~, thus A~T, thatis A>T and - T>A. By
T-introduction and - T 2 A, we get that - A. ]




Variations on the theme

The algebraic semantics based on Heyting algebras can be generalised to
provide a meaning to first-order intuitionistic logic.

There are many ways to achieve this result, obtaining a soundness and
completeness theorem:

= Heyting categories;
= Kripke semantics;

m |ogical categories.




Variations on the theme

Heyting categories are categories with a somewhat involved structure such
that the class of sub-objects of any object form a Heyting category, ordered
by the factorisation of morphisms.

Although it is beyond the scope of these lessons to provide a formal account,
the idea is that quantifiers get a meaning by considering the maximal and
the minimal element in a Heyting algebra which is related to the algebra
used to interpret the quantified formula, so that these extreme elements are
generated by the relation of algebras, which models the elimination of the
quantified variable.




Variations on the theme

Since any topos is also a Heyting category, one can limit the class of models
to toposes. It turns out that it suffices to prove a completeness result.

Moreover, a further limitation to Grothendieck toposes suffices, too. This
becomes interesting because a topos of sheaves, the prototypical
Grotendieck topos, provides a model which is composed by a collection of
almost classical models, a la Tarski, but in the internal set theory of the
topos, linked together by a relation modelling the growth of knowledge
implicit in the constructive nature of intuitionistic first-order logic.

These models suffice to prove a completeness result, and their classical
set-theoretic version is known as Kripke semantics, and it is usually built up
from the usual set theory.




Variations on the theme

On a different line, by using categories naturally equipped with a Heyting
algebra and a sort of topological structure, modelling the link between a
quantified formula and its instances through the introduction and elimination
inference rules, one obtains another sound and complete semantics.

These categories are known as logical categories.

All these semantics are strictly related one to the other, emphasising some
aspects of the deep nature of constructive logical systems, and this is the
reason why all of them have been developed.
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A-calculus

The A-calculus is a family of formal systems, based on Alonzo Church's work
in the 1930s. These systems are deputed to describe computable functions
using the simplest syntax. Surprisingly, not only they describe computable
functions, but, when equipped with types, they show a hidden link between
logic and computability.

In this lecture, we want to introduce the A-calculus and its simplest typed
version. Our aim is to illustrate the general aspects of the theory and to
derive a few results, the one we will use in the following lessons.

In many cases, we will avoid proving the results we will introduce. This is
done on purpose: the simplicity of the formal system has as a natural
counterpart a deep and complex technical development. Although this
technical part has many pearls, which shed light to some important aspects
of computability, it lies beyond the aims of this course.




A-calculus

Fixed a set V of variables, which is both infinite and recursive, a A-term is
inductively defined as:

= any x€ V is a A-term, and FV(x) = {x};

m if M and N are A-terms, so is (M- N), called application, and
FV(MN) = FV(M) UFV(N);

m if xe V and M is a A-term, so is (Ax. M), called abstraction, and
FV(Ax. M) = FV(M)\ {x}.

The set FV(M) is called the set of free variables in M, and the variables in

M not occurring in FV(M) are said to be bound.

Example 17.2

(Ax.x) is a A-term with no free variables, representing the identity function.




A-calculus

As usual, to simplify notation, we introduce a number of conventions:

= outermost parentheses are not written: Ax.x instead of (Ax.x);

= a sequence of consecutive abstraction is grouped: Ax,y.x-y instead of
Ax.(Ay.x-y);

= we treat application as a product, omitting the dot: xy instead of x-y;

= we assume application associates to the left: xyz instead of (xy)z.

Also, we use the term combinator to denote a A-term having no free

variables.

Example 17.3

The following are combinators
m [=Ax.x;

s K=Ax,y.x;

® S=Ax,y,z.(xy)(xz);

B Q= (Ax.xx)(Ax. xx).




A-calculus

For any M, N A-terms, and x variable, M[N/x] is the substitution of x with
N in M, defined by induction on M as:

= x[N/x]= N,

m y[N/x]=y, when x £ y;

= (PQ)IN/x] = (PIN/x])(QIN/x]):;

® (Ax.P)[N/x]=Ax.P;

® (Ay.P)[N/x]=Ay.P[N/x], when x#y and y ¢ FV(N);

® (Ay.P)[N/x]=Az.(P[z/y])[N/x], when x # y and y € FV(N) and
zgFV(P)UFV(N).

In the last clause, the z variable is said to be new, and it is always possible

to choose a z which satisfies the constraint.

The purpose of the last clause is to prevent variable capturing.




A-calculus

The A-terms M and N are a-equivalent, M =, N, when
s M=N:

s M=PQ, N=P'Q', and P=4 P and Q=4 Q’;

s M=Ax.P, N=Ax.P', and P=4 P’;

= M=Ax.P and N=Ay.Ply/x]

So, two A-terms are a-equivalent when they differ for the names of bound
variables only.

It is immediate to see that a-equivalence is an equivalence relation, but it is
also a congruence with respect to substitution:

If M=o M" and N=4 N', then M[N/x] =4 M'[N'/x].




A-calculus

The binary relation between A-terms M1 g N, M f-reduces to N in one
step, holds if and only if M= M'[(Ax.P)-Q/z] and N = N'[(P[Q/x])/z].
We say that M f-reduces to N, Mg N, when there is a finite sequence
Pi,...,P, such that M=P;, N=P, and, for each 1<i<n, Pit1Pi+1.

In the A-calculus, computation is performed by f-reduction.

A term N is said to be in B-normal form when it does not contain any
subterm of the form (Ax.P)Q.

With respect to computations, A-terms in f-normal form represent the
values.




A-calculus

If M>g P and M>g Q, then there is a A-term R such that P>g R and
Ql>ﬁ R.

If M>g N and N is a f-normal form, then N is unique up to a-equivalence.

The Church-Rosser Theorem and its corollary say that, although the
computation in A-calculus is non-deterministic, the result, when it exists, is
uniquely determined.

We say that P is f-equivalent to Q, P =g Q, when there is a finite sequence
R1,...,Rn such that P=R;, @=R,, and, for all 1<i<n, Ri>1pRi41, or
Riv1>1Ri, or Ri=q Ri+1.




A-calculus

There is a combinator Y such that Yx =g x(Yx).

Let U= Au,x.x(uux), and let Y=UU. Then
Yx = (Au,x.x(uux)) Uxe> g (Ax. x(UUx))x>p x(UUx) = x(Y ). O

The proof of the fixed point theorem as above, is due to Alan Turing.

The fixed point theorem says that, every A-term, when thought of as a
function, has a fixed point which is calculated by the Y combinator. This is
an important property which suggests that each function which can be
represented as a A-term, has to be continuous.




Representable functions

For every neN, the Church numeral n is a A-term inductively defined as:
= 0=Ax,y.y;
= n+1=2Ax,y.x(nxy).

Let 7: N¥ — N be a partial function. A A-term F is said to represent the
function f when

m for all ny,...,ng €N, if f(n1,...,ng) =m, then Fny,..., n =m;

m for all ny,...,nk €N, if f(n1,...,nx) is undefined, then Fny,..., g has no
B-normal form.

Every partial recursive function can be represented in the A-calculus.




Representable functions

The proof of the theorem is difficult beyond the aim of this course. But we
will show a few examples to justify it.

Example 17.16

The successor function is represented by Ax,s,z.s(xsz).
Addition is represented by Ax,y,s,z.xs(ysz).
Multiplication is represented by Ax,y,s.x(ys).
Exponentiation is represented by Ax,y.yx

Example 17.17

The Boolean values T and L are represented as Ax,y.y and Ax,y.x,
respectively.

Then, ‘if x then y else z' is represented by Ax,y,z.xzy.

In fact, if L then A else B=(Ax,y,z.xzy)(Ax,y.x)AB =p
(Ay,z.(Ax,y.x)zy)AB =g (Ay,z.z)AB =4 B, while if T then A else B=
(Ax,y,z.xzy)(Ax,y.y)AB =g (Ay,z.(Ax,y.y)zy)AB =g (Ay,z.y)AB =g A.




Representable functions

To get a clue why these representations work, we could read them as
computations over logical structures. For example, natural numbers are
inductively defined from 0 and the successor. Hence, a model for the
naturals is specified when we provide a set together with a way to interpret 0
as some specific element, and the successor as an injective function which
transforms an element into another.

Consider 0= Ax, y.y: this is a function from the model which provides an
element of the model. The model is specified by providing the specification
of the successor and the specification of zero. The result is the specification
of 0.

Consider n+1 = Ax,y.x(nxy): since n transforms a model into a number,
the term Tixy evaluates to n in the model (x,y). But x stands for the
successor function, so we are taking the successor of n in the model.

Thus, x +y is calculated by interpreting x in a model where the successor
function is given, but the zero element is ysz, i.e., the number which stands
for y in the model.

Similarly, xy is calculated by interpreting x in a model where the successor
function moves by y steps at once.




Simple theory of types

Fixed a denumerable set V1 of type variables, a type is inductively defined
as follows:

m xe€ V71 is a type;

= 0 and 1 are types;

= if @ and B are types, so are (a x f), (a+ ), and (a — B).

As usual, we omit parentheses when they are not strictly needed: x binds
stronger that +, and + binds stronger than —, so
axf+y—(a+y)x(B+y) stands for ((a x B)+7y) — ((a+7) x (B+7Y)).

A type is used to constrain the main entity of interest in the theory of types,
the term.




Simple theory of types

Fixed a family {V,}, of variables, indexed by the collection of types, such
that, for each a, V, is denumerable and distinct from the set of type
variables, and such that VN Vg =@ whenever a# , a term t: a of type a,
along with the set of its free variables, is inductively defined as:

m if x € V,, for some type a, x: a is a term, and FV(x: a) = {x: a};
® x:1isaterm and FV(x:1)=g;

m for each type a, Og: 0—a is a term and FV(O,: 0— a) = @;
if A: @ and B: f are terms, (A,B): a x f is a term and

FV((A B): axpB)=FV(A: a)UFV(B: B);

if A: @ x B is aterm, so are m1A: @ and m2A: B, and

FV(m1A: @) =FV(mA: B)=FV(A: a x B);




Simple theory of types

= if A: a is a term, then, for any type S, ifA: a+f and ifA: B+a are
terms and FV(iPA: a+B) =FV(ifA: B+a)=FV(A: a);

mif C:a+fB, Aca—y, and B: f—y are terms, so is 6(C,A B): y, and
FV(6(C,AB): y)=FV(C: a+B)UFV(A: a - y)UFV(B: B—7);

m if A: Bis a term and x € Vj, then Ax: a.A: a — f is a term and
FV(Ax: a.A: a— B)=FV(A: B)\{x: a};

= if A: @ and B: @ —  are terms, then B-A:  is a term and
FV(B-A: B)=FV(A: a)UFV(B: a— f).

Terms represent the primitive computational statements.




Simple theory of types

Terms can be reduced according to the following rules, where it is assumed
that both sides of the equalities are correctly typed:

= 11(A B) =A;

= m2(A,B)=B;

m (1A A = A;

® (Ax: a.A)-B=A[B/x], the act of substituting B for x;
®m Ax:a.(A-x)=A, when x: a g FV(A: a — p);

" 5(iC,AB)=A-C;

8(i,C,A,B)=B-C.

It is clear that these rules satisfy the requirements on computable functions.




Simple theory of types

If we restrict to the subsystem whose types are those generated by type
variables, — and x, and whose terms are, correspondingly, the variables, and
those of the form Ax: a.A: a — B, called abstractions, A-B: B, called
applications, (A, B): a x B, called pairs, m1A: @ and m2A: B, called
projections, we get a subsystem of special interest.

In fact, if we interpret x as the Cartesian product, and — as the function
space, we can easily derive a representation of the natural numbers, together
with the operations of addition, multiplication and exponentiation, the
Boolean values, the if-then-else construction, and so on.

In fact, these representation are nothing but the same we used for the pure,
non-typed A-calculus.
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Propositions as types

If we put side by side propositional logical formulae and types in the simple

theory of types, we get:

types

formulae

variable
0
1
axp
a+p

a—p

variable
1
T
anp
avp

a>f

This correspondence shows that we can translate any logical formula in a
type and any type in a formula, by a one-to-one map.




Propositions as types

If we put side by side propositional proof in the intuitionistic natural
deduction system, and terms in the simple theory of types, we get:

proof | assumption T/ LE Al AEip Vvho VE o] oE
term\ variable « o (L) mym ifi§ 65 A

There is an evident one-to-one correspondence, which perfectly matches the
one on types.




Propositions as types

Let's examine a couple of examples:

m if A: « and B: f8 are terms, so is (A, B): a x  becomes

CA B
o b

anp

Al

m if A: Bis a term and x: a a variable, then Ax: a.A: @ — § becomes
[a]”
DA
B

]
a>p

I*

where the label * stands for x.




Propositions as types

The correspondence illustrated so far is known as the propositions-as-types
interpretation, and also as the Curry-Howard isomorphism.

At a first glance, the simple theory of types is just a way to write proofs and
formulae as linear expressions instead of adopting the tree-like syntax of
natural deduction.

But the logical syntax is coupled with a semantics, and the type theory with
a computational meaning, given by the reduction rules.




Computations, logically

Since every formal proof in intuitionistic logic corresponds to a typed term,
and typed terms are also A-terms, each proof is a program which computes
something.

It is possible to associate to each proof an object, which is an evidence of its
type, or its conclusion, if you prefer. So, the evidence of AA B is a pair of
evidences for A and B; the evidence of Av B is a pair (w,e), with w e {1,2}
telling us which disjunct holds, and e an evidence for it; the evidence of

A> B is a function mapping any evidence of A into an evidence of B.

These evidences are the intermediate results of the computation performed
by the A-term associated to the proof. So, in a constructive system, proving
a statement is, essentially, equivalent to write a computer program satisfying
a specification given by the conclusion.




Proofs, computationally

Since typed terms are proofs under the correspondence, we can reduce them
to a normal form. Formalising this process leads to state that every proof
possesses a normal form.

Thus, considering any proof n: AV B, it can be reduced to a proof
7': = Av B in normal form, whose last step is either an instance of v/ or
V. Hence, the conclusion of the last but one step would be either A or B.

Similarly, considering any proof m: F3x: s.A, it can be reduced to a proof
7': F3x: s.A in normal form, whose last step is an instance of 3/. Hence,
the conclusion of the last but one step would be either A[t/x] for some term
t, providing a witness to the existential statement.




Variations on the theme

The simple theory of types is just the simplest type theory: many other
systems have been analysed, and many of them have a propositions-as-types
interpretation, computationally characterising some logical system.

In some cases, like in the constructive type theory, the corresponding logical
system is part of the type theory itself. This reflection allows to use such a
system to describe mathematical theories, like set theory, inside the type
system, becoming part of it. Thus, the type system acts as a universal
theory, which contains the whole mathematics representable in its logical
counterpart.

This way of proceeding has recently lead to a promising approach, which
explains computation in terms of algebraic topology (and vice versa). It is
called homotopy type theory, and it is part of the contemporary frontier of
mathematical research. The basic idea is that, by adding a pair of axioms to
constructive type theory, one can interpret a computation as a path in some
homotopy space. It turns out that paths which are homotopy equivalent can
be represented by the same term. Of course, behind this intuition the formal
theory is somewhat involved, and still in development. ..




Normalisation

We want to discuss the normalisation process, which has been sketched
above, in the case of intuitionistic propositional logic.

The objective of normalisation is to eliminate the redundant steps in a proof,
and to give it a standard format, minimal, in a sense.

A natural requirement for a proof in natural deduction is that no conclusion
of an introduction rule must be the major premise of an elimination rule.
The major premise is the formula containing as principal connective the one
which is eliminated by an elimination rule.

Also, another natural requirement is that discharged assumptions should be
used in disjunction elimination, while the false elimination rule has to derive
a conclusion which is not L.

Finally, although the previous requirements seems evident, they can be
hidden, because of multiple subsequent elimination rules which can be
permuted.




Normalisation

The detour conversions are deputed to eliminate detours, i.e., redundant
elementary steps in a proof given by an introduction rule in the major

premise of an elimination rule:

= A rules:
pPL i P2 SpL ol op2
A B A B
Al i —— Al
AAB A AAB
/\E1 /\E2
A B
®m O rules: .
[A] :
: )
PP ‘ A
B * tp2
A>B e
SE B




Normalisation

m Vv rules: ) .
te (AT B L Py
A i, ipp A

V|1 :

Av B C C P po
VE* :
C C

: by [/‘.‘]1 [/?"]1 :
B i, P B
V|2 :

Av B C C ) P p3
VE :
C C




Normalisation

Since “A=A> 1, we do not need detour conversions for = rules, as soon as
we rewrite them as instances of the o rules. The conversions for o and v
are justified by Proposition 6.2, which allows to join proofs.

There are no detour conversions for L and T, since these connectives lack
an introduction and elimination rule, respectively.

It is instructive to see these conversions through the propositions-as-types
correspondence: for example, the detour conversion for A becomes
m1{p1,p2) = p1 and ma{p1, p2) = p2. This observation shows how
normalisation in proofs is the same as deriving a normal form for a term in
the simple theory of types.




Normalisation

Detour conversions eliminate obviously redundant steps in a proof. However,
there are instances of the disjunction elimination rule that are, in fact,
redundant, those in which one of the discharged assumptions is not used.
This fact leads to define the following simplification conversions: if, in

(A" [8]*
P ip2 iop3
AvB C C
C

vE!

either the assumption A in po is not used, or the assumption B in p3 is not
used, then we can use pp or p3, respectively to prove the conclusion.




Normalisation

ik
P1 P2 P3 — p2
AvB C C C
I vE!
A
tPLoip2 P30 i
AvB C C C
I vE!




Normalisation

Moreover, the instances of the L elimination rule in which the conclusion is
L are obviously redundant, and we can apply another simplification
conversion to eliminate them.

Sometimes, detours and simplifications cannot be directly applied, because
they are hidden inside a proof. This happens when we apply an elimination
rule whose major premise is an application of the disjunction elimination rule.

In those cases, we can move the disjunction elimination downwards,
eventually revealing hidden detours and simplifications. The rules to do so
are called permutation conversions.




Normalisation

= A elimination:

A" (B Al (8]
tpL P2 iops _ L P2 :p3
AvB CAD CAD ~ :pp CAD CAD
vE! : AE; AE;
cnD Av B C C
AE1 vE!
C C
A" (Bl [Al* [B]*
P P2 ip3 ' D p2 i p3
AvB CAD CAD ~ :pr CAD CAD
vE! : AE2 =)
CAD Av B D D
AEs V=
D D




Normalisation

m | elimination:

(A" (8] [A' (B!
tp1 P2 ip3 ' P2 i3
Av B 1 1 ~ ;L 1
i e ¢
?J_E a vEL




Normalisation

® > elimination:

(A 181
N I .
AvB C-oD C-oD S pa e
vEl
CoD C
oE
D
Al [B]*
. PP i opa D P3P
> épl CoD C E CoD C E
Av B D D =
vE!
D




Normalisation

= v elimination:

[A' (8]
ipt ip2 i [¢]2 [9]2
AvB CvD CvD o S pa iops ~
CcvD S E E
vE?
E
A" [ [DP 81" [ [DP
. P2 ips ips S p3 ipa :ps
~ :pp CvD E E CvD E E
' vE? vE3
Av B E E
vE!?
E




Normalisation

By applying all these conversions, mimicking the reduction process of the
simple theory of types, we get the following result

Each derivation in intuitionistic natural deduction reduces to a normal
derivation, in which none of the detour, simplification and permutation
conversions can be applied.

Although we are not going the see the details of the proof, since they rely on
a complex double induction, we are able to derive a few consequences which
are relevant.

Let m: T+ A be a normal derivation in intuitionistic propositional logic.
Then each formula in 7 is a subformula of some formula in T U {A}.




Normalisation

By looking at the proof of the Normalisation Theorem,

Let m: T+ A be a normal derivation in intuitionistic propositional logic. If A
is not atomic or L, then the last step is an introduction rule.

An immediate consequence is that disjunction is decidable.

Let m: T+ Av B be a normal derivation in intuitionistic propositional logic.
Then, there is a subproof n' of m whose conclusion is either A or B.

Similar results hold for intuitionistic first order logic, and, in particular

Let m: T+ 3x.A be a normal derivation in intuitionistic first order logic.
Then, there is a subproof ' of m whose conclusion is either A[t/x] for some
term t.




Normalisation

It is important to remark that we have proved these results about
normalisation in the natural deduction system for pure propositional logic.
Choosing a different deductive system, although sound and complete, does
not necessarily lead to the same result.

Also, adding a theory, and, thus, instances of the axiom rule may lead to
alternative normalisation procedures, or to systems in which normalisation
cannot be obtained.

In these cases, the constructive nature of intuitionistic logic, stemming from
Corollaries 18.4 and 18.5, is not automatically achieved.

As an obvious counterexample, consider that classical logic is just
intuitionistic logic plus the theory {Av —A: A formula}.
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Peano arithmetic

Peano arithmetic is the standard formal theory describing natural numbers
and their properties.

It is composed by a series of axioms, divided into groups, and it is
interpreted in classical first order logic.

The very same theory, interpreted in intuitionistic first order logic is called
Heyting arithmetic. Despite they are syntactically identical, their
interpretations are quite different. For example, in Peano arithmetic it is
possible to show that there are functions which cannot be computed, while
every function which can be proved to exist in Heyting arithmetic, is
computable, because of the constructive nature of the logic.




Peano arithmetic

Peano arithmetic is based on the language generated by the the signature
UNF:{0: N, S:N—=N,+,: NxN—=N}:{=: NxN}) .
The first group of axioms defines what is a natural number:
Vx,y.Sx=Syox=y ; (1)

Vx.5x#0 . (2)

The idea is that natural numbers are the elements of the free algebra
generated by 0 and S. The successor function S, given a number x,
calculates the next number, x +1. So natural numbers are written in the
unary representation, and they are naturally equipped with a total order
structure with minimum.




Peano arithmetic

The second group of axioms define addition and multiplication:

Vx.0+x=x ; (3)
Vx,y.Sx+y=S(x+y) ; (4)
Vx.0-x=0 ; (5)
Vx,y.Sx-y=x-y+y . (6)

It is worth remarking the inductive nature of these definitions.




Peano arithmetic

The third and last group of axioms is a schema: for any formula A,
Al0/x] A (Yx.AD A[Sx/x]) > Vx.A (7)

This schema formalises induction on the structure of natural numbers:
= if A holdson 0

® and, assuming that A holds on x, we can show that it holds on Sx,
= then, A holds for every x e N.




There is a link between induction and recursion: an inductive definition
induces a recursive procedure that allows to calculate/generate the defining
objects, and vice versa, a recursive procedure induces an inductive definition
of its results.

Example 19.1
The axioms (3) and (4) provide a recursive schema that allows to calculate
the addition:

x+y=if x=0then y else let x=Szin S(z+y) ;

Conversely, we may say that the result of the sum is identified by induction
of the first summand.




Standard model

The standard model for Peano arithmetic is the structure which interprets
the signature as

= the unique sort into the set of natural numbers, denoted by N;

= the function symbols into the zero number, the successor function, and
the usual addition and multiplication, respectively.

Any model, i.e., any pair (.#,0) is said to be standard when ./ is the
structure above while no restriction is posed on the evaluation o of
variables. Although it may be confusing, we adopt the standard notation
which uses the same symbols to denote the formal elements of the syntax,
and their intended interpretation. In any standard model, this convention
makes no difference.

Since the purpose of the theory of arithmetic is to characterise the class of
standard models, it would be nice if these were the only models of the
theory. Unfortunately, this is not the case.




Non-standard models

Any structure A on the language of Peano arithmetic which is not
isomorphic to the standard model .# but, for any evaluation o of variables
is a model (A,0) of Peano arithmetic, is called a non-standard model.

In the definition above, an isomorphism between structures f: A — 4 is
m an invertible function between the universes:

= for each term t, f([tl ) =[tl .

If a non-standard model exists, it means that there is a structure A4 which

makes Peano arithmetic true but interprets some term into an element e in
the universe which cannot be mapped in some natural number.

Notice that the element e must be the image of a term under the
interpretation function: so, for example, the real numbers consisting of all
the non-negative integers, is not a non-standard model, even if it is
constructed in a very different way from the naturals (all the reals are a
quotient of Cauchy sequences).




Non-standard models

There is a non-standard model for Peano arithmetic.

Define S°(0) =0, and S'*1(0) = SS/(0). Evidently the term S"(0) gets
interpreted in n in any model.

Let =, ={x # S(0): i < n} be a collection of formulae, and let = = UpenZp.
Calling . the structure of the standard model, and defining o, such that
on(x) = n, evidently the standard model (.#,0,) makes £, valid, together
with all the axioms of Peano arithmetic.

Thus, any finite Z c X has a model, because it is contained in X, for some n.

Thus, by the Compactness Theorem 10.1, X has a model (A/,a) which
makes true also all the axioms of Peano arithmetic.




Non-standard models

In this model, o(x) # n for any neN because [S"(0)].4 = n but x # S"(0)
occurs in X, so, by definition of interpretation, o(x) # [S"(0)].4

Hence, there is an element k €N such that o(x) = k. But interpreting x on
M leads to some neN, whatever evaluation of variables we may choose.
So, any function mapping A to .4 has to be non-invertible on the term x.

Thus, (#,0) is a model of Peano arithmetic, which is not isomorphic to any
standard model, so it is non-standard. O




Discussion

The existence of a non-standard model for Peano arithmetic shows that this
theory does not describe exactly the natural numbers and their properties
which can be expressed in the language. Here, not exactly means not only.

The first thought is to try to complete Peano arithmetic to prevent the
construction of a model like the (.#,0d) above. Clearly, the shape of the
proof, using the Compactness Theorem, does not allow to obtain this result
in a direct way.

However, it is not evident whether the existence of a non-standard model is
disturbing: we cannot use the proof of Proposition 19.3 to write a formula
which holds in the non-standard model while is does not in any standard
model. In fact, we used this property to synthesise the non-standard model
from the standard ones.




Discussion

Of course, we can use a theory to separate the non-standard model from any
standard one: this is exactly the purpose of the X theory in Proposition 19.3.

But, still, it is not clear whether there is closed formula, i.e., a formula with
no free variables, allowing to separate standard models from non-standard
ones.

This would be crucial, since such a formula ¢ does not depend on the
evaluation of variables, thus its truth variable would be defined by the
structure of the model only. In a sense, ¢, if it exists, cannot be provable,
even if it is true in any standard model, because it would be false in some
non-standard model, thus, by the Soundness Theorem, it cannot be proved.

If such a ¢ exists, it means that we have a way to separate models within
the theory of Peano arithmetic, just by adding a single axiom, ¢, or its
complement, —¢p.




Representable entities

Given neN, the numeral n representing n is defined as 0=0,and n+1=S 7.

A relation R <NK is representable in Peano arithmetic if and only if there is
a formula ¢ such that

w if (n1,...,nk) € R then Fpa ¢(71,...,7k);

u if (n1,...,nk) € R then Fpa =¢(71,...,7k);

where ps means ‘provable in Peano arithmetic'.

A function f: NK — N is representable in Peano arithmetic if the relation
R={(n1,...,nk,m): m=f(ny,...,ng)} is representable.

A set SN is representable in Peano arithmetic if its characteristic function
is representable.




Representable entities

Example 19.6

Equality is representable in Peano arithmetic.

If the relation P, Q <Nk are representable in Peano arithmetic, so are =P,
PAQ, and Pv Q.

Since P and Q are representable, there are ¢pp and ¢ as in Definition 19.5.
So, (n1,...,nk) € 7P if and only if (n1,...,nk) € P. Thus, ¢p represents
—P, because _I_|(Pp(n1,...,nk) = (Pp(nl,...,nk).

Also, (n1,...,nk) € PAQ if and only if (n1,...,nk) € P and (n1,...,nk) € Q.
Thus, ¢prq =Pp Adpq. Similarly, dpyo =PV do. u




Representable entities

The Q function is representable.

Since 0: N— N, we have to find a formula representing

Z={(n,m): m=0)(n)}. Consider ¢o(x,y)=(y =0).

= If (n,m)e Z, then m=0(n), so m=0. Thus, ¢o(n,m)=(m=0)=(0=0),
so Fpa ¢o(n,m), by reflexivity.

u If (n,m)g Z, then m#0(n), so m#0. Thus, m=S m' and
$o(n,m)=(m=0)=(S m' =0), so Fpa (7, m), by axiom.




Representable entities

All recursive functions are representable in Peano arithmetic.

All recursive sets and relations are representable in Peano arithmetic.

These proofs can be found in Elliott Mendelson, Introduction to
Mathematical Logic, CRC Press. The proof is by induction on the structure
of partial recursive functions and it is far too complex to be detailed here: in
fact, it is usually absent in most textbooks.

But it is a constructive proof: given a partial recursive function f, it provides
an effective method to build a formula representing f.
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Limiting results:

Godel's First Incompleteness Theorem
The idea behind the proof
Coding terms

Coding formulae




Induction, again

The induction principle says that, fixed a property P<N, if 0€ P and, for
any neN, if ne P then n+1€ P, then P=N.

Clearly, the induction schema (7) in Peano arithmetic is just an
approximation of the real induction principle: since |p(N)|=2™ while the
collection of formulae on the language of arithmetic has cardinality |N|, we
have not enough formulae to represent all the possible properties.

The gap between what can be formalised and what is the intended meaning
about the structure of natural numbers, the induction principle at the first
place, is responsible for non-standard models.




Incompleteness theorem

Let T be an effective theory which is consistent, and able to represent all
the recursive functions. Then, there is a closed formula G such that T+ G

and T I G.

A theory is said to be effective when the set of axioms is recursive, that is,
applying a coding to its axioms so that they become a set of numbers, this

set is recursive.

A coding of Peano arithmetic, or, more in general, of recursive functions, is
a total map g from the expressions of the syntax (terms, formulae, proofs)
to N such that

® g is injective;
m g is recursive;

= g1 on the image of g is recursive, too.




Strategy

The proof of the incompleteness theorem is complex. It has a difficult part,
the fixed point lemma, and a lot of technicalities.
The strategy is to consider the sentence “this sentence is not provable.

= we will show that there is a coding function that maps terms, formulae
and proofs into natural numbers;

= hence, it is possible to write a formula which says “there is a number p
which is the code of a proof of the sentence x";

® negating that formula, we can express the fact that x is not provable;

= we will show a fixed point theorem saying that there exists a fixed point
of the transformation which maps each sentence x to the code of the
sentence expressing that x is not provable;

® thus, the sentence G becomes the formula stating that x is not provable
with x substituted with the fixed point;

= the meaning of G is that G is not provable;

= but G must be true in the standard model, otherwise the theory would be
contradictory, so the result follows.




In the following, for the sake of simplicity, we will assume the set of variables
in the language of Peano arithmetic to be V ={x;: i e N}.

The Gédel’s coding function g on terms is inductively defined as follows:
u g(O):2-3;
( ) 2. 32 5i+1.
g(St) 2.33.58(1),
» g(t+s)=2-3%58(1).78(s);
g(t-s)=2-35.58().78(s),

Thanks to the theorem saying that natural numbers admit a unique
factorisation in primes, g is computable, injective, and g~1 is computable.




Coding terms

A few remarks are needed:
m each code for a term is of the form 2-n, with n odd;

= the exponent of the factor 3 tells whether the term is 0, a variable, a
successor, a sum, or a multiplication;

m the parameters of a term, i.e., the index of the variable, or the arguments
of the successor, of the sum, or the multiplication, are the exponents of
the factors 5 and 7, in that order.

Hence, intuitively, it is possible to write a formula in Peano arithmetic that
tells whether its argument is a code of a term. This can be formalised by
showing that the set of codes for terms is recursive, so that

Proposition 19.10 yields the result.




Coding formulae

The Gédel’s coding function g on formulae extends the coding of terms and
it is inductively defined as follows:

= g(T)=22-3;
- g(J.) 22, 32.
. g( =

" g(

(AAB) = 5g(A) 78(B).
= g(AVB)= 22 36 58(A).78(B);
= g(A> B)=22.37.58(4).78(B);
= g(Vx.A)=22.38.58(4).78(x).
= g(3x.A)=22.39.58(A).78(x),

Again, the coding g is computable, injective, and g1 is computable, too.




Coding formulae

A few remarks are needed:

= each code for a formula is of the form 22-n, with n odd, so we can
separate the codes of terms from the ones of formulae just looking the
exponent of the factor 2;

= the exponent of the factor 3 tells which kind of formula the code
represents;

m the parameters of a formula are the exponents of the factors 5 and 7, in
that order.

Hence, intuitively, it is possible to write a formula in Peano arithmetic that
tells whether its argument is a code of a formula. This can be formalised by
showing that the set of codes for formulae is recursive, so that

Proposition 19.10 yields the result.




Coding sequences

The Gédel’s coding function g of a finite sequence ny,...,n, of natural
numbers is g(ny,...,ng) =23 Tli<izk plnflrl with p; the j-th prime number.

It is clear that the coding function is injective, computable, and its inverse is
computable, too. Also, the codes for sequences can be separated by the
codes of terms and formulae, and the set of codes for sequences can be
represented, in the sense of Proposition 19.10, by some formula of Peano
arithmetic, specifically by 3y.x=555555550-y.




Coding proofs

The Gédel’s coding function g on proofs extends the previous coding g and
it is inductively defined as:
(nl: I'FA n:THB
=g
AAB
m:THFAAB )

A|) =24.3.58(m: TFA) 7g(m2: TEB) , 136(ANB).
" g E;|=24.32.58(n: TFAAB) [ 138(A).

E,|=24.33.58(n: TFAAB) . 138(B).

[ ]
Oq

T FI—A
Av B
n:THB )

| |
Oq

) 24 34 5g(7‘[ THA) . 13g(AVB)

=g 24.35.5g(n: TFB) , 13g(AVB)

T
(n FI—A/\B )
Fave
s




Coding proofs

(7‘[1:F|—AVB ay: T,ARC 7m3:T,B-C )
g VE|=

C
24, 36 . 5g(7‘[1: T'FAVB) | 7g(n2: ILA-C) | 11g(7‘t3: I,B-C) 13g(C);
=g (% DI) —024.37. 5g(n: IAFB) . 13g(A:>B);

. g m1:THFASB m:THA E) = 04.38.56(m1: TFASB) 7g(m2: THA).138(B).

24 39 5g(n IA-L) . 13g(—|A)

| |
Oq

~E| = 24.310.5g(m1: THA) [ 7g(m2: THA)  138(L).

| |
o

(n AR L )
(nl FI——|A mo:THA )

" g 7 ) 24.311.138(7).




Coding proofs

- g( ) 24.312 gg(n:TH1), 13g(A)
- g( AV oA Iem) 04,313, 13g(AV—|A)
= g(” FA ) 24 .314. 5g(n T+A) . 13g(Vx A). 19g(x)
Vx. A

. g(” [F¥xA ) 24315 5a(n: THvx.A) .1 38(Alt/x]) . 178(1) . 198 ().

Alt/x]
" g( 7: LAl ) =04.316.5g(n: THA[t/x]) . 138(3x.A) . 178(t) . 198(%).

Ix.A
m1:T'F3Ix.A n: T,ARB

| ] g( B 3 ):

24.317 . 5g(m: TH3x.A)  7g(m2: T,AFB)  138(B) . 198(x).




Coding proofs

= g Yxxx ¥ =2°-318 138092 1060,

_ 4219 Vx,y.x=yoy=x) . ).
g(vX,y.x=y:y=x aX)_Q .319.138(¥xy.x=y2y=x) .19&(x).

g( VX,y,ZX=yAy=2zDX=2z ax):
24. 320 . 13g(Vx,y,zlx:yAy:sz:z) . 19g(x,y,z);
(nl: FFA[t/x] ma:Tkt=r )_
Alr/x] )T
24.321 . pg(mi: THA[t/x]) . 78(n2: Trt=r) . 138(Alr/x]) . 198(x).

g( VX1, .o Xp A2z =F(x1,...,Xn) ax) -

(Vs gy ) =2t 135X 108(),




Coding proofs

— o4 224 Vx,y.Sx=S =y). ).
&\ Vx,y.Sx=Syox=y X)—2 .324.138(Yxy.Sx=Sy=x=y) .198(x¥).

_ 04 225 Vx.0+x= .
gl vx.0+x=x )—2 .325.138(Vx.0+x X).lgg(x)’

—04.326,138(Vxy.Sx+y=5(x+y)) . 19g(X’Y);

24.327.138(¥x.0.x=0) . 1 g8 (x).

" 8| vx.0-x=0 )

x| = 24. 328 . 13g(Vx,y.5x-y:X.y+y)) ) ]_gg(x,y);

(
CrrT—
" &(Vxysxiy= Soery) )
(Vox=0
£(Vxy Sxy=xyry) )

- g AJ0/x] A (Vx.A> A[Sx/x]) > Vx. A )=
24.329 . 5g(A) . 138(A[0/x]A(Vx. ASA[Sx/x])=Vx. A) | 19g(x);

= if AeT is a proof by assumption, g(A) =2%.330.58(4).78() .13&(A) with
I'={y1,....,yn} and g(T) =g(y1,...,7n).




Coding proofs

It should be remarked that g(ey,...,en), when e; are not numbers should be
read as g(g(e1),...,g(en)), i.e., the code of the sequence of codes of the
elements.

Although it is long and tedious to verify, g is injective, computable, and g1
is recursive. Also, the coding function is written down to make easy to tell
pieces apart. For example, the code of the conclusion is always the exponent
of the 13 factor.




Numeral

The numeral "A7 of a formula A is defined as A7 = $&8(A)(0), that is, the
code of A written in the syntax of Peano arithmetic.

Similarly, the numeral of a term t is "t 7= S&(1)(0), the numeral of a proof
is "7 = S8(")(0), and the numeral of a sequence is
Tel,...,ep ' = Sg(el’“"e")(O).

Numerals allow to internalise the codes: we can, indirectly, speak of a
formula (term, proof, sequence) by stating a property of its code. As soon
as the property does not rely on the value, but on the “meaning” of the
code, this is a perfectly reasonable way to proceed.




Fixed point lemma

Let = be a theory in which every (primitive) recursive function is
representable, and let A be a formula such that FV(A) =1{y}. Then, there is
a formula 6 5 such that FV(64)=@ and F=8a=A["64"/y].

Let Ag be the map from formulae to formulae defined by
Ag(B)=3x1.x1 ="B7" A B. This function is total, computable and injective.

Thus, the map Ay defined by An(g(B)) = g(Az(B)) is total on the image of
g, (primitive) recursive, and injective.

By hypothesis, there is a formula A with FV(A) = {x,y} such that A
represents the function Ay.

Let F=3y.A[x1/x]AA. Clearly, FV(F)
Sa=3x1.x1 ="FAF. Thus, FV(64) =

={x1}. Also, let 64 =Ag(F), that is,
Q.




Fixed point lemma

Since Jy.A["F7/x] A A implies 3x1,y.A[x1/x] AA with x; =" F7, we can
prove that 3x1.x1 =" F A 3y.A[x1/x] A A, which is just § 4, Hence, we have
shown that - (Jy. A["F/x]AA) 28 4.

Conversely, 64 =3x1.x1 =" F'A3y.Alx1/x] A A, so 84 implies
Ix1,y.Alx1/x] A A with x; =7F7, thus we can prove that 3y.A["F7/x] A A.
Hence, we have shown that =842 (3y.A["F7/x] A A), thus §4 and
Jy.A["F7/x] A A are equivalent.

But A represents Ay, so E allows to prove, for each neN,

FA[S"(0)/x] = (y = $*("(0)). Specialising to n=g(F), we obtain

FYy. A[TF7/x] = (y = SA(&(F))(0)).




Fixed point lemma

So the previous equivalence 84 = (3y.A["F7/x] A A) allows to derive
Féa=(3y.y = S (&) (0) A A).

Evidently, we can prove - A SAN(g(F))(O)/y] = (Ely.y= san(e(F)(0) /\A),
thus we can immediately prove 4= A [SAN(g(F))(O)/y].

But 8,47 = 58(04)(0) = 58(2=(F)(0) = $2u(&(FM))(0). Thus, the proof above
can be rephrased as F64=A["64"/y]. O




Provability predicate

The formula 2 with FV(2) = {x,y} is defined as
@ =32.13" -z = x NisExpr(x) AisExpr(y) AisProof(x) AisFormula(y).

The provability predicate T is the formula 3x.9, having FV(T) = {y}.

Clearly, 2| n7/x,"A7/y] holds exactly when A is the conclusion of the proof
n: = A. And, consequently, T["A™/y] holds when A is provable.

The formulae isExpr(x), isExpr(y), isProof(x), and isFormula(y) in the
definition of 2 have not been made explicit. While isProof(x) can be defined
as 3z.2%. z=x, and isFormula(y) can be defined as

(32.23 -z = x) A -isProof(x), the definition of isExpr comes from the fact
that the collection of codes forms a recursive set. It could be written down
in an explicit way, but it is a cumbersome formula.




Incompleteness theorem

Let T be an effective theory which is consistent, and able to represent all
the recursive functions. Then, there is a closed formula G such that T+ G
and T i G.

Consider the formula = T[x/y]: applying the fixed point lemma, there is G
such that FV(G)=¢ and F G==T["G/y].

Assume there is 7: = G. Then == T["G"/y]. But, because m: + G, it holds
that F2["n7/x,"G/y], and thus - 3x.2["G/y], thatis, - T[T G/y],
making the theory non consistent. Hence I/ G.

Oppositely, suppose there is 7: ==G. Then = T["G™/y] by definition of G,
so F3x.2["G"/y]. But this means that there exists 8: + G with x="G™.
Thus, again, we get a contradiction. Thus V¥ =G. O




References

The original proof of the first incompleteness theorem can be found in Kurt
Gédel, Uber formal unentscheidbare Satze der Principia Mathematica und
verwandter Systeme, |, Monatshefte fiir Mathematik und Physik 38,
173-198, (1931).

The proof has been generalised and polished by Rosser, and we have shown
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Rosser, Extensions of some theorems of Gédel and Church, Journal of
Symbolic Logic 1, 87-91 (1936).

An account can be found in John Bell and Moshé Machover, A Course in
Mathematical Logic, North-Holland, (1977), ISBN 0-7204-28440.
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Limiting results:
m Godel's Second Incompleteness Theorem
= Meaning and consequences




Properties of provability

For any pair of formulae A and B in Peano arithmetic,

= T["A"/y] if and only if = A;

TP AS Byl A T AT/ TIBT/y);

FTIAT )= TETIEAY )
H(TAY/YIATIEBY/y]) = TITAABYy];

if-A>B then =T[TAV/y]> T["B/y];
if=(T[TA7/y]nA)> B, then = T[TA7/y]=> T["B7/y].

o R~ w

These properties, we are not going to prove, show that the provability
predicate T allows (i) to prove A whenever there is proof the A is provable;
(i) it acts naturally with respect to implication and conjunction; (iii) proving
provability is equivalent to prove that provability is provable.




Properties of provability

In Peano arithmetic, if - A==T["A7/y], then = T[TA/y]=T[ L7/y].

Again, without proving it, the proposition says that every formula, which
behaves like Godel's G, is provable if and only if L is provable, a fact that
captures the content of Theorem 20.9. But, and this is important, the
proposition proves that this fact holds inside the theory, which is not

obvious.




Second incompleteness theorem

There is no provable formula C in Peano arithmetic which codes the
consistency of the theory, i.e., such that = Co>=T[ L7/y].

Suppose there is C such that - C and - C>~T["L7/y]. Then,
F - T["L"/y], which means that L is not provable, that is, Peano arithmetic
cannot contain a contradiction, hence it is consistent.

From Theorem 20.9, there is a formula G such that - G==T["G"/y], but
¥ G. By Proposition 21.2, - T["G/y]=T["L7/y], so ¥ 2 T["L"/y]. Thus,
we have a contradiction, showing that C cannot exist. O




Mathematical meaning

The incompleteness theorems closes the quest for a universal, self-contained
foundation of Mathematics which is able to prove its own consistency.
Simply, such a system cannot exist.

Nevertheless, these theorems opened the way to many developments, and to
some of the other fundamental results in XXt century:

= the effective construction of non-computable functions

m the idea of coding lead to reason “modulo a coding function”, which has
been influential in algebra, algebraic geometry, algebraic topology,
number theory, ...

m examples of independent statements arose in many fields, and they shed
lights to a variety of hidden aspects of apparently clean notions, like, for
example, the assumptions behind cardinality in set theory




Foundational consequences

Having a mathematical theory T which is powerful enough to represent
Peano arithmetic has the consequence that we cannot prove its consistency
within T. We need a theory T’, containing T, and more powerful.

This fact led to the development of many hierarchies of formal systems to
classify the power of mathematical theories: we scratched just the surface,
by showing that the consistency of Peano arithmetic can be proved in a
stronger system. But, how much stronger? Since the proof of Godel's
results, much deeper analyses have been conducted, and nowadays this part
of Logic is a complex, intricate, difficult field on its own.

In constructive mathematics, the same fact led to doubt that “truth” is the
right concept to analyse, and there are approaches favouring the notion of
provability as the real foundation of Mathematics. This has a number of
consequences, which we do not want to discuss here.




Understanding

For a very long time, mathematicians regarded the incompleteness theorems
as strange beasts: something which is important, but, essentially, with no
influence in the mathematical practise.

For example, the textbook of Bell and Machover we referred to many times,
explicitly says that the sentences which are not provable in Peano arithmetic
are not important in arithmetic, because they have no “arithmetical”
content, but just a logical content. This is true for the sentence G, and for
most other sentences we can construct within the logical analysis.

Unfortunately, there are purely arithmetical properties of genuine interest for
mathematicians not working in logic, which are independent from Peano
arithmetic.




Natural incompleteness

For all e,r,k €N, there is M €N such that, for every
f:{Fc{0,....M}: |Fl=¢€}—1{0,...,r}, there is H<{0,..., M} such that

® |H| = max{k,min H}, and
® exists v < r such that, for all F< H with |F|=n, f(x)=v for each xe F.

By using the Infinite Ramsey Theorem, it is not too difficult to derive a value
M e N which makes the statement true on naturals. This proof is carried out
either in second-order arithmetic, with the full induction principle, or in a
suitable set theory, e.g., ZFC. Nevertheless, it is possible to show, within
Peano arithmetic, that the combinatorial principle in Theorem 21.4 implies
the consistency of Peano arithmetic, thus it is impossible to prove in that
theory, according to Godel's second incompleteness theorem.




Natural incompleteness

Actually, a simplified version of Theorem 21.4 suffices:

For all neN, there is M €N such that, for every function
f: {F {0,...,M}: |FI = n} — {0, 1}, there is HE10,..., M} for which, for all
F < H with |F| =n, f(F) = {0}' and |H| > n(znmmH_’_l)_

This theorem and the previous one are natural in the sense that, changing
the first condition in Theorem 21.4 to |H| = k, we get the Finite Ramsey
Theorem, which is provable inside Peano arithmetic, and which is the
starting point for a large branch of Combinatorics.




Natural incompleteness

Another important theorem from a different branch of combinatorics is
independent from Peano arithmetic: it holds in the standard model, but we
cannot prove it in the theory. This is the famous Kruskal's theorem on trees.
A simplified version suffices to yield the independence result.

There is some n€N such that, if T1,..., T, is a finite sequence of trees,
where Ty has k+ n vertices, then, for some i <j, there is an injective map
f: Ti— T; between the vertices of the trees which preserves paths.

The independence proof for this theorem follows a different pattern: it is
possible to show that any function which provably exists in Peano arithmetic
cannot grow too fast, but the above theorem allows to construct a function
which grows even faster. And this suffices to establish the fact that the
theorem is unprovable in Peano arithmetic.




Natural incompleteness

Kruskal's Theorem plays an important role in the algebra of well quasi
orders, a topic which has shown relevance in proving the termination of
algorithms, so the above independence result has a direct, negative,
application to Computer Science, for example.

In this sense, Kruskal's Theorem is “natural” and practically significant.




Incompleteness in set theory

We have already discussed how the Axiom of Choice, the Continuum
Hypothesis, and the Generalised Continuum Hypothesis are independent
from ZF. All these statements are “natural”, as they state properties of sets
which are inherently of interest, either because of their consequences, or
because they impose a regular structure over the objects we want to study.

In fact, the independence results in set theory and in Peano arithmetic are
related. For example, Theorem 21.4 is a restriction to the finite case of the
proof of independence about the existence of large cardinals.

A cardinal k is said to be large, simplifying a bit, when, for every x € k,
px € k, too. This fact is spelt as, k is large when, for every

f: {{ki,ki}: ki € k, ko € k} — 2, there is A € k such that f restricted to A is
constant.




Ordinal analysis

There is a branch of proof theory devoted to study the “power” of deductive
systems, showing which is the minimal ordinal to which transfinite induction
can be relativised in order to prove a consistency statement.

This is a deep, delicate, difficult, and complex part of logic, still in
development: it is sometimes referred to as “reverse mathematics” when the
goal is to find the minimal theory in which a given statement can be shown
to hold.
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The end
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